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Boolean networks at the critical point have been a matter of debate for many years as, e.g., the scaling of
numbers of attractors with system size. Recently it was found that this number scales superpolynomially with
system size, contrary to a common earlier expectation of sublinear scaling. We point out here that these results
are obtained using deterministic parallel update, where a large fraction of attractors are an artifact of the
updating scheme. This limits the significance of these results for biological systems where noise is omnipres-
ent. Here we take a fresh look at attractors in Boolean networks with the original motivation of simplified
models for biological systems in mind. We test the stability of attractors with respect to infinitesimal deviations
from synchronous update and find that most attractors are artifacts arising from synchronous clocking. The
remaining fraction of attractors are stable against fluctuating delays. The average number of these stable
attractors grows sublinearly with system size in the numerically tractable range.
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Boolean networks at the critical point (sometimes also
called Kauffman networks) have been discussed as simpli-
fied models for gene regulation networks for many years
[1-3]. We currently experience a renewed interest in these
models, as the structure and dynamics of the genetic network
in a living cell become visible thanks to new powerful ex-
perimental techniques (DNA chips) [4]. From the theorist’s
point of view, Boolean networks exhibit interesting statistical
mechanics with a prominent order/disorder phase transition
[5]. Earlier, the critical state has been postulated to have
some relevance in the biological context as the scaling prop-
erties of numbers of attractors with network size appeared to
resemble how numbers of cell types scale with the amount of
genetic information when comparing simple and complex
organisms [3]. Until recently it was believed that the total
number of attractors increased as VN [3]. This has been fal-
sified by improved simulation techniques [6] and subse-
quently it was shown that the total number of attractors
grows even faster than any polynomial [7,8].

Let us step back for a moment and reconsider Kauffman
networks, in the context of their original motivation, as mod-
els for biological systems. While the use of models discrete
in time is an established approach in many circumstances of
biological modeling, such idealizations always have to be
treated with special care. In the case of Kauffman networks,
the system evolves by a synchronous update of all nodes at
integer values of time. Such a clocking, however, can pro-
duce spurious synchrony. For instance, subsystems are kept
phase synchronized even if they are not interacting at all. In
order to circumvent computational artifacts it has been sug-
gested to use a more natural updating schedule [9]. For ex-
ample, it has been shown that the complex spatiotemporal
patterns observed under synchronous update often disappear
when units are updated asynchronously [9-11].

In this paper we reconsider Boolean networks at critical-
ity, while destroying spurious synchrony by equipping the
nodes with weakly fluctuating response delays. This allows
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us to analyze the stability of dynamical attractors in the dis-
crete network model. A deterministic Kauffman network at
an attractor is perturbed by a slight shift of update events
forward or backward in time. If all such perturbations die
out, i.e., the system returns to the identical attractor, we call
this attractor “stable.” Otherwise ongoing temporal fluctua-
tions accumulate and drive the system away from the attrac-
tor. These latter cases correspond to attractors that are an
artifact caused by synchronous update of the deterministic
system. When systematically applying this method to Kauff-
man networks we obtain as a main result that the number of
stable attractors grows sublinearly with system size [see Fig.
1(a)].

Let us study a Kauffman network composed of N binary
nodes where each node determines its state x; by applying a
Boolean function (a rule table) f;:{0,1}>—{0,1} on inputs
received from two other nodes a(i) and b(i), according to a
randomly chosen quenched topology. To be definite, we ex-
clude self-couplings. States of the nodes are synchronously
updated at integer times ¢ according to the Boolean function

Xp(i) (1)) (1)

The network itself as defined by f;, a(i), and b(i) remains
constant in time. For arbitrary initial condition
[x,(0),x,(0), ...,x,(0)], the finite discrete state space of 2V
possible states ensures that, eventually, a state reappears that
has been encountered before. From thereon, the deterministic
system will indefinitely follow the attractor it reached. Dif-
ferent initial conditions may lead to the same or to a different
attractor. The total number of attractors is a characteristic
property of a network. The expected number of cycles in an
ensemble of random Kauffman networks has been shown to
increase superpolynomially with system size N [7].

Let us now define a criterion for stability of an attractor in
the presence of deviations from deterministic parallel update.

xi(t+ 1) = filoe, (1),
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For this purpose, we replace the discrete update times by a
continuous time variable ¢ where nodes may update at any
point in time. Our goal is to slightly desynchronize the dy-
namics of the network by shifting the individual updates of
nodes to earlier or later time points. To prevent this from
generating spurious spikes during transitional phases (e.g.,
when several signals interact that used to be simultaneous,
but now arrive at different times), nodes have to be pre-
vented from switching on a time scale s much shorter than
the original integer update time step (i.e., s<<1). This is
implemented by a low-pass filter that averages out fluctua-
tions on short characteristic times scales s, namely by aver-
aging over the input signal according to

x(t+1)= e[(zs)_lf Silxaiy (0, xp(0))dt =172 |,

2)

where O is the step function with ©(h)=1 for =0 and
O(h)=0 otherwise. Let us briefly check how this works.
Imagine node a(i) switches on at time z, node b(i) switches
off at time r+e¢€, while f; is the function AND. Without a
low-pass filter (s=0), node i switches on at time 7+ 1 and off
again at time 7+ 1+ €. For s> €, the spurious spike is filtered
out, i.e., node i remains constant. In the limit of fast switch-
ing time scale s—0, Eq. (2) converges towards Eq. (1). In
particular, all synchronous solutions of Eq. (1), i.e., solutions
with nodes switching precisely at integer values of #, are
solutions of Eq. (2) for arbitrary s<<1/2, as well.

In order to check the stability of a network against small
fluctuations in the timing of the switching events, we perturb
the system at some time 7 by temporarily retarding a fraction
of the switching events. Thereby, a subset of nodes that
would normally change state at time 7 is kept frozen in their
present state during the time interval [T,T+ €] with e<s.
After t=T+e€, we let the system evolve as usual according to
Eq. (2). The original and the perturbed solutions differ only
on time intervals [7,7+ €] for integer ¢. In general, the pertur-
bation may propagate, i.e., for each integer #=T some units
flip at time # while others flip at time 7+ € in the perturbed
solution. If, however, there is a later integer time "> T such
that either (I) no flips occur at time ¢ +€ or (II) no flips
happen at time ¢*, the perturbation has healed out and the
system has regained synchrony. Then, at times t=1", the per-
turbed and the original solutions are either identical [case (T)]
or identical up to a global phase shift € [case (II)]. We call an
attractor stable if for all possible perturbations of the above
type (i.e., for all possible permutations of perturbed and non-
perturbed nodes) the system regains synchrony and the origi-
nal attractor is stabilized within a finite time interval. Other-
wise the attractor is called unstable. This stability criterion is
robust under variation of the perturbation scheme, including
the case of different time lags ¢; for different nodes i. In
real-world situations, ongoing perturbations may cause accu-
mulating phase shifts in the unstable case. This eventually
leads to a change in time ordering of the switching events,
which may shift the system into a different attractor. With
this we choose here a particularly simple criterion for the
stability of an attractor in a discrete dynamical network in
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FIG. 1. Frequency and accessibility of stable and unstable
cycles in Kauffman networks. (a) Average number of stable (*) and
unstable ([J) attractors as a function of the number of nodes in the
network. (b) Fraction of initial conditions leading to a stable attrac-
tor (solid line) and the ratio between numbers of stable and all
attractors (dashed line). Data points in (a) are averages over R in-
dependent realizations of the Kauffman network, R=10" for N
<24, R=10° for 24<N<31, and R=10* otherwise. For increasing
computational speed the networks are subject to the decimation
procedure [6] before simulation. For the decimated network we
fully enumerate the state space such that it is certain that all cycles
are detected. Sizes of basins of attraction in (b) have been estimated
in 10° networks, testing 100 randomly chosen initial conditions in
each original network (no decimation applied).

the presence of noise. The system is on a stable attractor if
after each small perturbation it reaches the attractor again.
On unstable attractors, such time lags do not relax. This sce-
nario is better suited as a stability criterion than stochasti-
cally adding or removing switching events [12,13], which
does not allow for the limit of infinitesimally weak perturba-
tions. Furthermore, the low-pass filter characteristics used
here are well motivated by the dynamics of biochemical
switches [14] where molecule concentrations typically re-
spond slowly, leading to overall low-pass filter characteris-
tics of the switch. This natural property of genes is a simple
means of stabilization which is of low cost and ubiquitous in
nature.

Applying our stability criterion to random Boolean net-
works at criticality, one observes that the average number of
all attractors, stable and unstable ones, grows much faster
than the average number of stable attractors alone [see Fig.
1(a)]. In large networks, almost all attractors are expected to
be unstable. Interestingly, the probability to reach a stable
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FIG. 2. (Color online) System size scaling of the number of
stable attractors plotted as a function of the rescaled number of
nodes (N/5)* with @=0.3,0.5,0.7 (left to right). Error bars in (b)
indicate standard deviation divided by VR with ensemble size R (cf.
Fig. 1).

attractor from a random initial condition is much larger than
the fraction of stable attractors, as shown in Fig. 1(b). Thus,
unstable attractors typically have significantly smaller basins
of attraction than stable attractors. The main result is that,
with system size N, the number of stable attractors grows
sublinearly as ~N® with «=0.5, as shown in Fig. 2 in the
numerically feasible range of N=<40. A least-squares fit of
the form c+bN® fits best ((x>)=0.000 13) with the parameter
values a=0.448, ¢c=1.107, and b=0.108 (with a correlation
coefficient for this fit of ¥=0.999 742). The number of stable
attractors varies broadly around the mean value, e.g., for N
=30, where we observe a mean value of 1.6, the fraction of
realizations with more than k stable attractors is 0.009 for
k=5 and 8.7X 107 for k=9. The Poisson distribution with
the same mean has P(>5)=~0.006 and P(>9)=7 X 107°.
Let us further analyze the number [ of states contained in
the attractors. While stable attractors are shorter on average
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FIG. 3. Statistics of attractor lengths for networks with N=10
(thin curves) and N=30 (thick curves). The cumulative distribution
is shown for stable attractors (solid lines) and unstable attractors
(dashed lines). For N=10 nodes the average length of stable attrac-
tors is ([)p,=2.59; of unstable attractors (l),,=3.56; for N=30 we
find (),,=5.50 and (l),=7.16.
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FIG. 4. (Color online) A stable and an unstable attractor in the
same system. (a) Three nodes forming a feedback loop. Each node
i performs the Boolean function negation on the input from its
predecessor j, i.e., x,(t+1)=1-x;(r). (b) Temporal evolution of a
stable attractor. There is a unique causal chain of flipping events
(thick arrows). A retarded update (shaded box) retards all subse-
quent events by the same amount of time. Thus, perturbations heal
immediately. (c) An unstable attractor consisting of three indepen-
dent chains of flipping events propagating along the cycle of nodes.
One of these chains is indicated by thick arrows. Retarding an event
affects subsequent events in the same causal chain only. Causal
chains remain phase shifted. The system does not regain synchrony
after a perturbation.

than unstable attractors, the distribution of attractor lengths is
broader for stable than for unstable attractors, as shown in
Fig. 3. The majority of long attractors with lengths far above
average are stable.

Can we understand by a simple picture how unstable at-
tractors differ from stable ones? Most obviously, unstable
attractors occur when the network falls into two or more
noninteracting clusters. When all updates in one of the clus-
ters are delayed by the time e, this phase lag with respect to
all other clusters cannot heal. All attractors with flipping
events in more than one network cluster are unstable. How-
ever, also in networks consisting of a single cluster unstable
attractors are found. Figure 4 illustrates the coexistence of a
stable and an unstable attractor in a small connected net-
work. The example suggests that an attractor is stable if there
is a single cascade of switching events. Let us consider the
minimal number of simultaneous flipping events

m =min|{ilx;(r) # x,(t + 1)}] (3)

for a given attractor. The attractors with m=0 are the fixed
points. These are stable by definition because no flipping
events are to be retarded. Attractors with m=1 are stable as
well. These attractors contain a step with only a single flip-
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ping event. Going through this step the system always re-
gains synchrony. For m=2 the attractor is likely to contain
several chains of causal events as in Fig. 4(c). In the simu-
lations we find that a large fraction u of the attractors with
m=2 is unstable, #=0.856,0.882,0.899,0.9094 for N
=10,20,30,36, respectively. Thus the minimal number of
simultaneous flipping events m allows for an almost perfect
distinction between stable and unstable attractors, where m is
measured in the decimated networks [6].

Comparing these results to past studies of random Bool-
ean networks at criticality (K=2 inputs per node), we obtain
a distinctly different picture: Only a small fraction of attrac-
tors are at all stable against small amounts of noise. Or, put
differently, the effect of spurious synchronization due to a
parallel update mode has been underestimated in previous
studies, at least where these studies have been made with a
potential application to biological systems in mind. In par-
ticular, characteristic properties of the attractor statistics are
different when considering the subset of stable attractors:
The average number of stable attractors scales less than lin-
early while the number of unstable attractors shows a faster,
superlinear growth with N in the simulations. A similar scal-
ing has been observed in a different approach to asynchro-
nous Boolean networks [15]. Also, stable attractors have a
significantly larger basin of attraction than unstable ones.

RAPID COMMUNICATIONS
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This latter property might have been the reason for the long
prevalence of the opinion that the total number of attractors
scales as VN [3]. Mainly these stable attractors were likely to
be found in the early studies using sparse sampling.

Biological networks are of course far from random and
random network models can at best describe few aspects of
real systems (we study the role of specific topologies else-
where [11]). If one aims at discussing random Boolean net-
works as simplest models for biological signaling networks,
our study suggests to consider more carefully the question of
which attractors are at all relevant to the biological system.
Kauffman’s hypothesis, that the number of attractors in criti-
cal random Boolean networks exhibits a similar scaling with
system size as the number of cell types with genome size in
organisms [3], seems to be wrong in light of the results by
Troein and Samuelsson [7]. However, it appears to be still
open to debate when considering solely the subset of stable
attractors.
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