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Diffusing wave spectroscopy with a small number of scattering events: An implication to
microflow diagnostics

Sergey Ulyanov
Department of Optics, Saratov State University, Saratov, Russia
(Received 19 June 2004; revised manuscript received 16 February 2005; published 3 November 2005)

Limits of applicability of classical diffusing wave spectroscopy (DWS) are essentially extended. DWS is
adapted to the case of small number of scattering events. An explicit formula for correlation function of
intensity fluctuations of scattered light is derived. Potentials of DWS for diagnostics of random microflow are

demonstrated.
DOI: 10.1103/PhysRevE.72.052902
I. INTRODUCTION

One of the methods that can be effectively applied for the
diagnostics of highly scattering dynamic media is diffusing
wave spectroscopy (DWS) [1-3]. In particular, DWS is used
for in vivo blood flow diagnostics [4], study of microrheol-
ogy of complex fluids [5], analysis of particles suspensions
[6-8], foams and sands [9,10], etc. In general, DWS ap-
proaches the problem of multiple scattering in the limit when
light is scattered a very large number of times. The break-
down of DWS is analyzed in Refs. [11,12].

Sometimes it is necessary to study the objects, which are
characterized by a small number of scatterers, but, neverthe-
less, exhibit a very high degree of multiple scattering. Usu-
ally this situation is typical for biomedical applications. For
example, it is important to provide laser measurements of
velocity of the isolated random microflow in the single blood
vessel (such as capillaries, smallest arterioles, or venules).
Speckle or Doppler methods are powerful tools for the diag-
nostics of blood flow in microvessels with diameters less
than 50 um [13]. For vessels with a larger diameter, Monte
Carlo simulations may be successfully applied for the analy-
sis of the processes of light scattering [14,15]. Regretably,
the Monte Carlo technique does not possess the analytical
power of DWS to interpret the measured decay time of the
correlation function of the scattered light. On the other hand,
traditional DWS cannot be used in the case when the light
undergoes only one or even a small number of scattering
events. The failure of the DWS theory for samples of small
thicknesses has been predicted theoretically [11] and ob-
served experimentally [12].

For blood microvessels with diameter d up to 100 um,
the ratio between d and mean-free path [* lies within the
range 1 <d/I" <4, and the scattering anisotropy factor g is
close to 1. The analytic expressions, those that are accurate
for the mentioned case, are not obtained in DWS. This Rapid
Communication partially fills this gap. The theory of DWS is
adapted to the case of a small number of scatterers. The
explicit formula for correlation function of scattered intensity
fluctuations of light is derived.

II. STATEMENT OF THE PROBLEM

Only the most basic elements of the theory of classical
DWS are presented here; more detailed accounts are given in
Refs. [16-18].
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A photon, which propagates through the microflow, scat-
ters N times (see Fig 1). The single photon, after passing
from a laser source to the detector acquires the total phase
shift (1),

N
V() =ky-s(t) = 2 ki [Py () = F(0) ], (1)
=0

where 7 is the running number of the scatterers that are in-
volved into the scattering processes, N is the total number of
scatterers interacting with the photon, /2,- is the wave vector of
scattered light after the i scattering events, lg,»|:k0, 7; is the
radius vector of ith scattering particle, and s(z) is the total
path length of the photon.

The whole field at the observation point is the superposi-
tion of the fields from all light path through the microflow to
the detector,

E(t) = 2, E,exp(iW,(1)), (2)
P

where Ep represents the sum over path, and E, and \pr are
the amplitude and phase from path p at the detector. In the
multiple-scattering case, there are many scatterers for each
light path, so the last relation involves two sums: one over
light paths, another over the scattering events in each path
[17].

The field autocorrelation function is

FIG. 1. Scheme of photon migration in microflow with a small
number of scattering events.
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where (I) is the total average scattered intensity at the detec-
tor, * is the symbol of complex conjugation. For independent
scatterers, the fields from the different paths are not corre-
lated, so

gi(0) = 2 %)2 (expli(¥,(0) - ¥,(n)]), (4)

where (I,)=(|E,|*) is the average intensity from path p. The
phase V¥, and field amplitude £, are assumed to be indepen-
dent at the detector.

The last relation is treated in DWS as a sum over path
length rather than a sum over individual path, provided that it
replaces the fraction of scattered intensity in paths of length
s. Also,

N
AV, =V,00)-V, ()= 22"k, sin(%)mi(t), (5)

i=1

where N is the number of scattering events in each path p, 6;
is the scattering angle corresponding to each scattering event,
Ar; is the displacement of scattering particles in microvessel.

Let us suppose that all the scatterers (for example, blood
form elements, albumin of blood plasma, etc.) are uniformly
distributed at random over a cross section of Poiseuille’s
flow. Then, in the following case:

2
Ar,(t):vo[l —{rnd<ﬁ>} }t, (6)
o

where v is centerline velocity of the flow, r; is the distance
from the particle to the center of the flow, r is the radius of
microvessel, and rnd(r;/r,) is the random value, uniformly
distributed within the range [0;1].

To make further progress we need to calculate (Ip)/ (I) and
(exp(iAW,)) in Eq. (4). In traditional DWS theory two key
approximations are accepted: total number of scatterers is
large and tends to infinity; AW, is a random value, which
obeys the Gaussian statistics.

Regretfully, these postulates cannot be used in the case of
a small number of scattering events. Application of other
theoretical approaches (such as the Feynman diagram tech-
nique [19]) also cannot provide the analytical expression in
evident form. The general purpose of this paper is to rear-
range Eq. (4) for the case of small number of scattering
events.

IIL. CALCULATION OF (I,)/{I)

In Ref. [17] it is demonstrated that (/,)/(I) may be inter-
preted as the distribution of a fraction of scattered intensities
in diffraction paths of length s. Let us calculate path-length
distribution function for photons, propagating in a nonab-
sorbing medium.
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FIG. 2. Histogram of the number of scattering events. Bars:
histogram of photons; circles: Poissonian distribution.

If each photon is scattered only one time, the distribution
of path lengths between elementary scattering events is ex-
pressed by the formula [20]

p(sl1) = pyexp(- u,s), (7)

where u, is the scattering coefficient.

If a photon has been involved in two independent scatter-
ing events, the probability density function of the sum of two
random paths is given by

p(s12)=p(sl1) @ p(sl1) = wisexp(- pes),  (8)

where ® is the convolution symbol.
For three scattering events, the probability density func-
tion of the sum of three paths equals to

S2
p(s13)=p(s2) ® p(s|1) = M?E exp(— pes).  (9)

Evidently, for n scattering events, the recurrent formula may
be derived

(n—1)
(n-1)

p( S|7’l) = /‘l"; exp(_ ,LLSS), (10)
where p( s|n) is the conditional probability density function
that corresponds to the case that a photon passes length s
and participates in n scattering acts. Clearly, s>0 in
Egs. (7)-(10).

Finally, in accordance to Bayes’s theorem, the total prob-
ability density equals

p(s) = p(sln) P(n), (11)

where P(n) is discrete probability distribution of number of
scattering events.

An example of the histogram, obtained with a small num-
ber of scattering events, is presented in Fig. 2. The number of
scattering events obeys Poissonian distribution

(n)'exp(=(n)

Plm) = n!

(12)
where (n) is the average number of scattering events. Monte
Carlo simulation [20] has been used to test this hypothesis.
As an investigation of the statistical properties of the scat-
tered light shows, the hypothesis about Poissonian distribu-
tion in a number of scattering events should be accepted [21]
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FIG. 3. Dependence of (exp[iAW,]) on the g factor and the
average number (n) of scattering events.

at a significance level of @=0.05, at least when the average
number of scattering events lies in the interval (n) e [1;4],
with a waist beam radius within the interval W,
e [0.5N;10\], and a factor of anisotropy of the medium g
€[0.9;0.99)).

So, finally the explicit formula for (/,)/{I) may be derived
from Egs. (10)—(12),

1) s

(1 =« p(s) _Ms( Y

(n)"exp(=(n))
xp(- )l

(13)

IV. CALCULATION OF (exp[iAW,])

The dependence of (exp[iAW,]) on the g factor and the
average number (n) of scattering events cannot be obtained
analytically. Regression analysis [22], however, based on the
results of Monte Carlo simulations (for more details see
[14,15]), allows us to find out the relation between the men-
tioned value and scattering characteristics of microflow in
the explicit form

r2
(explidw,]) = exp{—<n>(1 g><A (”>], (14)

where Ar is described by Eq. (6), and A is the wavelength of
scattered light.

This dependence is presented in Fig. 3 (the points are the
result of Monte Carlo simulation, the solid line is an approxi-
mation of data points, obtained on the base of the linear
regression model [21]).

The obtained formula (14) is also valid within the range
of g€[0.9;0.99] and (n) e [1:4].
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The expression for (A (1)), after the averaging using Eq.
(6), takes the following form:

2.2

NORS (15)

So, finally, for DWS with a small number of scattering
events, (exp[iAW,]) equals to

2.2
(explinw ]>-exp[—<n> (1 gt } 16

V. SECOND-ORDER STATISTICS OF SCATTERED
LIGHT

Using Egs. (4), (13), (16), the autocorrelation function of
the fluctuations of complex amplitude of scattered light may
be expressed as

(n 1) Y a
gi(n) = f 2/.1, 1)'exp(—,uss).M
n!
2
Xexp{— %<n>(l—g){%°l] }ds. (17)

It should be mentioned that [23]
<n>l‘l
SO exal(n)

(18a)

and

- -1)!
f s Dexp(— pes)ds = (n - ) .
0 Mg

(18b)

After some algebra we obtain the final expression for the
correlation function of complex field fluctuations

a vot |2
gi1(t) = eXp{— %<n>(1 —g){T] } (19)

where v, again, is center line velocity of the microflow.

In Ref. [2] it has been indicated that the correlation func-
tion g, of scattered intensity fluctuation is given by the Sieg-
ert relation

< gl (20)
Then, we can recast Eq. (19) and thus Eq. (20) becomes

2
gz(t)ocexp{— %(”Xl —g)[vTOt] } 21

Clearly, the correlation function of the intensity fluctuations
of scattered light has a Gaussian shape.

The typical experimental arrangement for microflow mea-
surements [24] in a transmitting geometry is shown in Fig. 4.
A conventional optical microscope fitted with a charge-
coupled device (CCD) camera (elements 8, 7, 4, and 10 in
Fig. 4) enables visual observation of the blood flow in a
microvessel (an isolated capillary of white rat mesentery). A
laser beam (A=630 nm) is focused on a spot of a small ra-
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FIG. 4. Optical scheme. 1: laser; 2, 4: microobjectives with 10*
magnification, 3: beam splitter; 5: stage; 6: microflow (blood cap-
illary of mesentery of white rat); 7: mirror; 8: lamp; 9: photore-
ceiver with a pinhole; 10: CCD camera, supplied by focusing
optics.

dius (Wy=1.5 wm) in the investigated microflow. As blood
flows through the microvessel, the strongly focused laser
beam is modulated in the waist plane. This leads to the for-
mation of the dynamic speckles. The temporal fluctuations of
the scattered intensity are detected by the photoreceiver.

Experimental correlation function of intensity fluctuations
of light, scattered from 100-um blood flow is presented in
Fig. 5. Evidently, experimental data is in good agreement
with the theoretical prediction (i.e., the forms of comparing
correlation functions are practically the same).

VI. CONCLUSIONS

The decay time AT of the correlation function of the
fluctuations of scattered intensity can be derived from
Eq. (21)
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FIG. 5. Correlation function of intensity fluctuations of light,
scattered from 100-um blood flow. The solid line is a theoretical
result (based on Eq. (21)); the dots are the experimental data.

AT = 5 A .
v \/ —S(1-g)

Formula (22) is the main theoretical result of this Rapid
Communication. Evidently, AT depends not only on velocity
v, of the flow, but on its scattering characteristics as well.
Equation (22) allows us to measure the center line velocity
of the highly scattering microflow in the case when the g
factor and the average number of scattering events are esti-
mated anticipatorily. Usually, these parameters are well
known, at least for blood flows in microvessels.

(22)
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