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Fast heat propagation in living tissue caused by branching artery network
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We analyze the effect of blood flow through large arteries of peripheral circulation on heat transfer in living
tissue. Blood flow in such arteries gives rise to fast heat propagation over large scales, which is described in
terms of heat superdiffusion. The corresponding bioheat heat equation is derived. In particular, we show that
under local strong heating of a small tissue domain the temperature distribution inside the surrounding tissue

is affected substantially by heat superdiffusion.
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I. INTRODUCTION

There is a great variety of inhomogeneous media where
transport phenomena exhibit intriguing anomalous proper-
ties, the investigation of which is certain to refine under-
standing the basic characteristics of complex systems widely
met in nature (see, e.g., [1-6]). However, the mathematical
description of these phenomena is far from being developed
well and seems to remain a challenging problem for a long
time.

The studying of the anomalous transport phenomena in-
troduces new mathematical objects into physics. One of them
is living tissue, which is interesting from different points of
view. First, the understanding of the basic characteristics of
mass and heat transfer in living tissue is important for the
application of mathematical modeling in medicine. Second,
the notion of living tissue as a medium with certain, maybe,
nontrivial properties forms the basis of describing higher or-
ganisms at the mesoscopic level. Third, the description of
mass and heat transfer in living tissue forms a problem of the
fundamental physics, relevant to the advection-diffusion
problem. Moreover, living tissue and transport phenomena in
it can be regarded as a new individual class of active fractal
media with special anomalous properties playing the essen-
tial role in the life nature [7,8].

When living tissue is heated sufficiently strongly its re-
sponse will be primarily directed to smothering the tempera-
ture increase. Therefore in order to specify its response we
should begin with the consideration of particular ways in
which living tissue can control temperature variations. The
matter is that the complex structure of the velocity field in
the vascular network in contrast to turbulence ([1,2]) is
partly given beforehand. Therefore the temperature distribu-
tion inside the region of heated tissue is essentially nonuni-
form. In particular, the temperature of blood flowing through
a sufficiently large vessel of regional circulation can differ
remarkably from the temperature of the surrounding cellular
tissue. Moreover, if the surrounding tissue is locally heated
its temperature will vary substantially along such a vessel,
whereas the blood temperature in it will be practically con-
stant. There is a question of how to average temperature
distribution over a certain domain in order to get a right
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bioheat transfer problem. Analyzing the properties of trans-
port phenomena in living tissue caused by its fractal structure
vascular network it is possible to develop regular theory of
heat transfer in living tissue [8].

In this paper by qualitative description we derive an equa-
tion for heat transfer in living tissue with blood flow through
a large artery tree.

II. LIVING TISSUE AS A HETEROGENEOUS MEDIUM

Blood flowing through vessels forms paths of fast heat
transport in living tissue and under typical conditions it is
blood flow that governs heat propagation on scales about or
greater than 1 cm (for an introduction to this problem see,
e.g., [9,10]). Blood vessels make up a complex network be-
ing practically a fractal. The larger is a vessel, the faster is
the blood motion in it and, so, the stronger is the effect of
blood flow in the given vessel on heat transfer. Blood flow in
capillaries practically does not affect heat propagation
whereas blood inside large vessels moves so fast that its heat
interaction with the surrounding cellular tissue is ignorable
[9]. Thus there should be vessels of a certain length €, that
are the smallest ones among the vessels wherein blood flow
affects heat transfer remarkably. The value of €, can be es-
timated as [8] (see also [9,10])

)
0, ~\—, 1
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where D= «/(cp) is the temperature diffusivity of the cellular
tissue determined by its thermal conductivity «, specific heat
¢, and density p, the value j is the blood perfusion rate (the
volume of blood going through tissue region of unit volume
per unit time), and the factor L, ~1n(l/a) is the logarithm of
the mean ratio of the individual length to radius of blood
vessels forming peripheral circulation. For the vascular net-
works made up of the paired artery and vein trees where all
the vessels are grouped into the pairs of the closely spaced
arteries and veins with opposite blood currents the coeffi-
cient f ~L;1/ 2 accounts for the countercurrent effect
Initially the factor f was phenomenologically introduced
in the bioheat equation to take into account a certain renor-
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Random walker path
imitating heat diffusion

Vein node

FIG. 1. Schematic illustration of the effect of blood flow
through the vein tree on heat diffusion imitated by random walks.
The figure shows trapping of a random walker because of getting
the internal points of a large vein after passing the vein node.

malization of the blood perfusion rate caused by the counter-
current effect [11-13]. Its theoretical estimate was obtained
in [14,15] as well as in [8] (announced for the first time in
[16]). For the vascular networks where the artery and vein
trees are arranged independently of each other the factor f
should be set equal to unity, f=1. In particular, for the typical
values of the ratio I/a~20-40 [17], the thermal conductiv-
ity k~7Xx1073 W/cmK, the heat capacity c~3.5J/gK,
and the density p~ 1 g/cm? of the tissue as well as setting
the blood perfusion rate j~0.3 min~! from Eq. (1) we get
the estimates €,~4 mm and L,~3-4.

In the mean-field approximation the effect of blood flow
on heat transfer is reduced to the renormalization of the tem-
perature diffusivity, D — D.g, [14] and the appearance of the
effective heat sink fj [9,8,15] in the bioheat equation:

% =V(De V1)~ fi(T-T,) +qr. @)

Here T(r,r) is the tissue temperature field averaged over
scales about €,, the parameter T, is the blood temperature
inside the systemic circulation arteries, and the summand
q7(r,1) called below the temperature generation rate is speci-
fied by the heat generation rate g as gr=¢q/(cp). The renor-
malization of the temperature diffusivity is mainly deter-
mined by the blood vessels of lengths about €, and due to the
fractal structure of vascular networks the renormalization co-
efficient F=D./D 1is practically a constant of unity order,
F=1 [8]. Let us imitate the temperature evolution in terms
of random walks whose concentration is (7—T,). Then the
part of the vein tree made up of vessels whose lengths ex-
ceed or are about the scale ¢, forms the system of traps. In
fact, blood streams going through the vein tree merge into
greater streams at the nodes (Fig. 1). Therefore an effective
random walker after reaching the boundary of one of these
veins inevitably will be moved by blood flow into the inter-
nal points of large veins. Then, due to relatively fast blood
motion inside these veins it will be carried away from the
tissue region under consideration, which may be described in
terms of the walker trapping or, what is the same, the heat
sink [8]. Since the mean distance between these veins is
determined mainly by the shortest ones, i.e., by the veins of
length ¢, the mean time during which a walker wanders
inside the cellular tissue before being trapped is [8]
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In obtaining the given expression we have assumed the vas-
cular network to be embedded uniformly in the cellular tis-
sue, so the tissue volume 63 falls per one vein (and artery,
respectively) of length €,. Whence it follows, in particular,
that the rate at which the walkers are being trapped by these
veins, i.e., the rate of their disappearance, is estimated as
1/ 7, leading together with expression (1) to the heat sink of
intensity fj in the bioheat equation (2). The characteristic
spatial scale of walker diffusion in the cellular tissue before
being trapped is €7~ VD7, i.e.,

D
€T~€u\’7:~ \/— ~1cm. (4)
if

The scale € gives us also the mean penetration depth of heat
penetration into the cellular tissue from a point source or,
what is the same, the widening of the temperature distribu-
tion caused by heat diffusion in the cellular tissue. It is the
result obtained within the mean-field approximation.

Beyond the scope of the mean-field theory we meet sev-
eral phenomena. One of them is the temperature nonunifor-
mities caused by the vessel discreteness [18] which can be
described assuming the heat sink in Eq. (2) to contain a
random component. In this case transport phenomena could
be described by the equation [8,19]

aTr

o= VD V) = fi(T=T,) + qr+g(x), (5)
where random field g(r) satisfies the correlation conditions.
In this case the correlation function G([r—r’|) of the tem-
perature  nonuniformities  [(7(r))=0,(T(r),T(r'))=G(|r
—r’|)] depends on the temperature, blood flow rate, and
r-multiplier erf(|r—r'[)/([r—r’|) [8,19].

Another phenomenon is the fast heat transport over the
scales substantially exceeding the length €, caused by the
process of blood flow through the artery tree, which occurs
due to the convective heat transport in large vessels. In this
case, the term g(r) has a different essence from the one that
it had at investigation of nonuniformities where correlation
conditions were applied. In our case it takes into account
additional heat transport caused by the branching artery net-
work. Based on the qualitative description of transport phe-
nomena in the vicinity of large vessels, we derive the ap-
proximate analytical form of the term g(r). The idea of this
derivation implies an estimation of the influence of the fast
transport phenomena g;(r) on each scale of the hierarchy
level /, averaging this influence over all possible realization
(g,/(r)) and then integrating over the whole hierarchical ar-
chitectonics in order to get the analytical expression for the
term g(r) presented in Eq. (5).

We emphasize that transport phenomena in the living tis-
sue with branching artery network and large vessels possess
anomalous properties and the bioheat transfer equation (2)
does not apply in this case. The mentioned phenomena is the
main subject of the present paper.

051920-2



FAST HEAT PROPAGATION IN LIVING TISSUE...

random walker transported
by blood flow

random walker going
into a large artery

random walker leaving

artery tree fragment a small artery

FIG. 2. Schematic illustration of the anomalously fast heat
propagation caused by blood flow through a large artery tree in
terms of random walks. The figure shows the effective walker mo-
tion with blood from a large artery to a small one where the walker
leaves it wandering in the cellular tissue.

It should be noted that the standard method of modeling
the heat transfer in the close proximity of large vessels by
implementing the Navier-Stokes equation along with the
model (2) is much more complicated for practical use (see,
for example, [20]) because it requires simultaneous solving
of three-dimensional hydrodynamic and parabolic equations.
Our model consists of a modified bioheat equation and it
makes it possible to get approximate temperature distribution
in living tissue even without taking into account exact geom-
etry of the artery branching network.

II1. FAST HEAT TRANSPORT WITH BLOOD FLOW
THROUGH LARGE ARTERY TREE

Let at a certain time a random walker wandering in the
cellular tissue get a boundary of a large artery, i.e., an artery
of length exceeding €,. It should be noted that such an event
is of low probability and cannot be considered within the
standard mean-field approximation [8] because the relative
number of large arteries is small. Due to the direction of the
blood motion from larger arteries to smaller ones as well as
the high blood flow rate in the large arteries the walker will
be transported fast to one of the arteries of length €, (Fig. 2).
The blood flow rate in small vessels is not high enough to
affect the walker motion essentially and it has inevitably to
leave this artery and wander in the cellular tissue until being
trapped by the veins of length €,. Thereby a certain not too
large number of random walkers generated, for example, in-
side a cellular tissue neighborhood of a point r can be found
during the time 7 inside a cellular tissue neighborhood of a
point r’ at a distance much larger than ¢, i.e., |[r—r'|>¢,.
The given effect may be regarded as anomalously fast heat
diffusion in living tissue, i.e., heat superdiffusion.

Dealing with heat transfer in living tissue we may confine
our consideration to the peripheral vascular networks typi-
cally embedded uniformly into the cellular tissue, at least at
the first approximation [21]. The latter statement means, in
particular, the fact that for a fixed peripheral vascular net-
work the vessel collection comprising all the arteries of
length [ meets the condition of the volume [*> approximately
falling per each one of these arteries. Therefore as is seen in
Fig. 2 a walker going into a large artery of length / at initial
time during the time 7 before being trapped by the veins can
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be found equiprobably at each point of the given artery
neighborhood of size I. In other words, this walker makes a
large jump of length / that exceeds substantially the mean-
field diffusion length €. In what follows we will analyze the
temperature distribution averaged over all the possible real-
izations of the vascular network embedding. This enables us
to regard a walker entering a large artery of length [/ as a
random event whose probability is independent of the walker
initial position. Thereby, the probability P, for a walker to
make a large jump over the distance [ is also independent of
the spatial coordinates r. It should be noted that for a fixed
realization of the vascular network embedding the probabil-
ity P; depends essentially on the spatial coordinates r and the
heat transfer in living tissue on large scales has to exhibit
substantial dependence on the specific position of the heat
sources.

Now we estimate the value of P, assuming the heat
sources to be localized inside a domain Q, of size £. Two
different factors determine the value of P,. First, it is the
process of walker trapping by an artery of length /> £ going
through the domain Q. If /<L blood flow in this artery has
practically no effect on heat diffusion. On the average a ran-
dom walker during the time 7 travels the distance € in the
cellular tissue until being trapped by the veins of length €,,.
So for a walker to enter this artery and, thus, to leave the
domain Q, with blood flow in it the walker, on one hand,
should be located at initial time inside a cylindrical neigh-
borhood Q, of the given artery whose radius is about €, and
the volume is £€ % On the other hand, it has to avoid being
trapped by the veins of length €. The probability of the latter
event is about (¢,/¢7)*. Indeed, a vein of length €, may be
treated as a trap of cylindrical form. Thereby in qualitative
analysis the walker trapping can be described in terms of
two-dimensional random walks in the plane perpendicular to
the artery under consideration where the trapping veins are
represented by small circular regions [6,8]. Their density is
about 1/€ 5 which directly leads to the latter estimate. There-
fore the total number of walkers leaving the domain Q, with
blood flow through the given artery per unit time is

2
l(ﬁ) Ef%(T—Ta)=L2£(T_Ta)' (6)

T€T n

In obtaining Eq. (6) we have taken into account expression
(3). Since the trapped walkers spread uniformly over a region
of size [ the resulting density of the walker transition rate to
a point r spaced at a distance about / from the domain Q  is

D £ T-T 7

8i(r) L p(T=To). (7)

It should be noted that the transition rate g,(r), as it must,
does not depend on the local value of blood perfusion rate.
At the second step we should average the obtained tran-
sition rate g,(r) over the possible realizations of the vascular
network embedding [8]. We suggest the space-filling require-
ment for the vascular network to fill precisely the space of a
fixed relative volume at each hierarchy level. This idea is
quite similar to those considered in [21,22]. Although this
suggestion is not true for the explanation of metabolism state
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FIG. 3. Models of the peripheral artery network embedding into
the cellular tissue, (a) fourfold node model used in the present
analysis and (b) a more realistic dichotomic artery tree uniformly
embedded into a cellular tissue domain M. In the qualitative de-
scription of heat transfer both the models lead to the same result.

behavior [23] from the standpoint of heat transfer vascular
network architectonic is of little consequence. The matter is
that temperature distribution in living tissue is practically
independent of specific details of vessel branching. In par-
ticular, it can depend on the mean distance between vessels
of a given level or the mean number of arteries of the same
length. These characteristics called the self-averaging prop-
erty of heat transfer in living tissue allow one to consider a
model for the vascular network chosen for convenience [8].

Let us adopt a simplified model for the vascular network
shown in Fig. 3(a) where the vessel lengths [, and [, of the
neighboring hierarchy levels n and n+1 are related as I,
=21,,,. Figure 3(b) demonstrates a more adequate model for
the peripheral artery tree which, however, within the frame-
work of the present qualitative analysis, may be reduced to
the former one by combining three sequent twofold nodes
into one effective fourfold node at all the levels. In this case
the cubic domain of volume lfl falls per each artery of level n.
Let us now consider individually three characteristic forms
of the domain Q, a ball or a cube of size £(d=3), an infi-
nitely long cylinder of radius £(d=2), and a plane layer of
thickness £(d=1). For the ball or the cube, i.e., a region
bounded in three dimensions, the probability that an artery of
level n passes through the domain Q, is about

2
PP~ <£> :
Ly

For the infinitely long cylinder

(0
Ly

and for the plane layer P§18>~ 1. Multiplying g,(r) by the
corresponding values of P;e) we get the result of averaging
the walker transition rate g,(r) over the possible realizations
of the vascular network embedding. The obtained result is
written as

d

D L
(gi(r)) ~ L_nliT’(T_ T, (8)

where the value d actually plays the role of the dimension of
the space inside which the temperature field can be consid-
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ered. At the next step we should sum the terms (8) over all
the levels of the large artery tree. However, due to the strong
increase of the terms (8), (g;(r)) = 2"+ as the level number
n increases the arteries of length /~r mainly contribute to
the value of (g,(r)). So the term describing the fast heat
transport with blood flow through large arteries from the do-
main Q. (located near the origin of the coordinate system)
can be written as

T(r")

D !
g(r) ~ L—nfMdr TP 9)

where M is the region containing the peripheral vascular
network as a whole and the integration in the three-
dimensional space over the domain Q, allows for all its three
considered types.

Expression (9) together with the mean-filed bioheat equa-
tion (2) enables us to write the following equation governing
the anomalous heat transfer in living tissue:

o DV*T - fj(T-T,) f dr’
— = - -T,)+qr+— r
at / o L,J

T(r') - T(r)
e—r'|P+¢°
(10)

where we have added directly the value €, in order to cut off
the spatial scales smaller than the length €, and ignored the
difference between the effective temperature diffusivity and
the true one of the cellular tissue. Equation (10) is the de-
sired governing equation of the anomalous fast heat diffusion
in living tissue for the averaged temperature field. It should
be noted that the second term on the right-hand side of Eq.
(10) depends weakly on the blood perfusion rate. Therefore
for the nonuniform distribution of the blood perfusion rate
Jj(r,1) Eq. (10) holds also.

A. Anomalous temperature distribution under local strong
heating

Hyperthermia treatment as well as thermotherapy of small
tumors of size about or less than 1 cm are related to local
strong heating of living tissue up to temperatures of about
45 °C or higher values. In this case the tissue region heated
directly, for example, by laser irradiation is also of a similar
size. Due to the tissue response to such strong heating the
blood perfusion rate can grow tenfold locally whereas in the
neighboring regions the blood perfusion rate remains practi-
cally unchanged [24]. The feasibility of such nonuniform
distribution of the blood perfusion rate may be explained
applying to the cooperative mechanism of self-regulation in
hierarchically organized active media [8,25]. Therefore in the
region affected directly the blood perfusion rate j,,,, can ex-
ceed the blood perfusion rate j, in the surrounding tissue
substantially. In this case the characteristic length of heat
diffusion into the surrounding tissue is about

. | D
€~ 11
T 7 (11)

k)
max

giving us also the minimal size L, of the region wherein
the tissue temperature increase (Tya—7T,) is mainly local-
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ized. In the neighboring tissue the blood perfusion rate keeps
up a sufficiently low value jj, which makes the heat propa-
gation with blood flow through large arteries considerable.
Indeed, let us estimate the temperature increase caused by
this effect using the obtained equation (10). The temperature
increase T(r)—T, at a point spaced at the distance r> £ from
the region (of size L) is affected directly, i.e., the tail of the
temperature distribution is mainly determined by the anoma-
lous heat diffusion and, so, is estimated by the expression

. €’ 2£3
T(r)_TaN @L(Tmax_Ta)~ (12)
L,jo r

As seen from Eq. (12) for a sufficiently local and strong
heating of the tissue, i.e., when £~ € *T and j,.« > Jo, the tem-
perature increase at not too distant points such that r= L can
be considerable. Otherwise the anomalous heat diffusion is
ignorable.
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IV. CONCLUSION

In this paper we do not claim the complete solution of the
heat transfer problem for living tissue with large arteries.
Based on the well-known equivalence of the diffusion type
process and random walks, we have designed an equation
governing the anomalous heat transfer in living tissue. By
qualitative description we have shown that heat diffusion in
living tissue caused by a branching artery network possesses
anomalous properties. Our particular difference in relation
with standard heat transfer problems [8] concerns the view of
Eq. (10). The last term in this equation is nonlocal and at
small distances from large arteries its influence is essential
[Eq. (12)]. Tt means that the standard bioheat equation can
not be applied for investigation temperature distribution in
the vicinity of large arteries and some more complicated
equations should be used. Although the present model is a
simplified picture of the process it captures the main charac-
teristic features of heat transfer in living tissue in the pres-
ence of large arteries.
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