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Mammalian prion proteins (PrP) are of significant public health interest. Yeasts have proteins, which can
undergo similar reconformation and aggregation processes to PrP, without posing a threat to the organism.
These yeast “prions,” such as SUP35, are simpler to experimentally study and model. Recent in vitro studies
of the SUP35 protein found long aggregates, pure exponential growth of the misfolded form, and a lag time
which depended weakly on the monomer concentration. To explain this data, we have extended a previous
model of aggregation kinetics along with a stochastic approach. We assume reconformation only upon aggre-
gation and include aggregate fissioning and an initial nucleation barrier. We find that for sufficiently small
nucleation rates or seeding by a small number of preformed nuclei, the models achieve the requisite exponen-
tial growth, long aggregates, and a lag time which depends weakly on monomer concentration. The spread in
aggregate sizes is well described by the Weibull distribution. All these properties point to the preeminent role

of fissioning in the growth of misfolded proteins.
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I. INTRODUCTION

Bovine spongiform encephalopathy (BSE) in cows,
Scrapies in sheep, Creutzfeldt-Jakob Disease (CJD) and
Kuru in humans are all diseases caused by a specific mis-
folded protein residing on neurons [1,2]. This prion protein
(denoted PrP¢ in its normal form and PrP*¢ in its misfolded
form) is present in all mammals and its full function, to date,
is still unknown. A growing body of evidence strongly im-
plies that this disease propagates not by nucleic acids, such
as DNA or RNA, but by misfolded proteins (PrP*‘) [3,4].
In our current understanding of prion diseases, the autocata-
lytic misfolding of the prion proteins plays a central role.
The misfolded form PrP*¢ entices normal versions of the cel-
lular prion protein (PrP¢) to change conformation to the mis-
folded or disease causing form. Although PrP¢ and PrP*¢
have the same amino acid sequence (230 amino acids or
residues), PrP*¢ has a higher beta sheet content than its nor-
mal form [1]. In humans, the disease is mostly sporadic,
perhaps caused by a rare spontaneous misfold of the protein.
But, infectious forms are also known to occur, such as in the
case of new-variant CJD caused by eating BSE infected
meat. In the latter case, infectious agents are presumably
misfolded “seeds” that have entered the body from outside.
Developing an understanding of the misfolding process
should provide insights to prevention and/or cure of these
diseases.

A class of proteins in yeast (SUP35) undergo a conforma-
tion change similar to the mammalian PrP. However, in case
of yeast, this does not kill the organism. In fact, reconfigured,
aggregated forms lead to a new phenotype [5]. Because they
are not toxic, the misfolding is much easier to study for these
proteins. Besides, it has been shown that aggregates pro-
duced in vitro can lead to the same phenotype, when added
to a yeast cell [6-8]. Thus, it is possible to study the molecu-
lar aggregation processes for yeast prions in a test tube in
tremendous detail, and a large quantity of experimental data
is indeed available [9,10].
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In this paper, we explore, using conventional kinetic as
well as stochastic models, the aggregation dynamics for
model yeast prions with a particular goal of explaining
in vitro data [9,10] including (i) linear aggregates which
grow by monomer addition, (ii) a modest concentration de-
pendence of initial aggregate growth time varying roughly
inversely as the square root of the monomer concentration,
(iii) an observed distribution of aggregate sizes with a mode
that is large (10s—100s of monomers), and (iv) a sigmoidal
growth that is nearly exponential. We extend the nucleation
and fissioning model of Collins er al [9,10] from a
moments-only model to monitor individual polymer lengths
and show that we can readily obtain the above listed features
in the data. In particular, we argue against a model based
upon rapid equilibration with micelles, which can also pro-
vide a weak concentration dependence to initial aggregation
times [11,12], but not the exponential growth implied by
including explicit fission of aggregates. The fission rate plays
a central role in determining the time scales as well as the
mean aggregate length. The range of aggregate sizes assumes
a Weibull distribution, also well known from other processes
where fissioning is important. Thus the agreement with ex-
periments highlights the importance of fissioning in the
growth dynamics.

We study our kinetics both with continuous time model-
ing and via the discrete time stochastic Gillespie algorithm.
The motivation for applying the latter is to determine where
stochastic effects from the relatively rare processes of large
length polymer generation may be observable in experiment.

In considering the relevance of these studies to mamma-
lian prions, there is an important caveat that arises from the
fact that mammalian prions are glycosyl phosphatidyl-
inositol (GPI) anchored on neuron cells and, thus, move in a
two-dimensional plane and, hence, can lead to areal aggre-
gates [13,14]. The aggregation and fissioning processes are
likely to be very different there. Nevertheless, the dominance
of fissioning can lead to long-time growth kinetics, which are
in many ways closely related.
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FIG. 1. Aggregation model where circles are normal proteins
(psi”) and squares are the misfolded type [PSI*].

II. MODELS

We consider a one-dimensional aggregation model that
includes a nucleation barrier, elongation by monomer addi-
tion, and fission (Fig. 1). The same kind of Kinetics was
considered by Collins et al. in the form of moments of the
full polymer kinetic equations, but not in the explicit length
resolved form considered here [9,10]. The assumption that
monomer (rather than oligomer) addition dominates and the
need for fission are underscored by the data we seek to de-
scribe on yeast prions [9,10]. We shall distinguish the model
quantitatively from a nonfission based model later in the
paper.

A nucleation event occurs very rarely and is composed of
two normal [psi~] proteins interacting in such a way that a
misfold occurs and they bind together; this two prion aggre-
gate is called a [PST*] dimer. The actual size of the nucleus is
not a critical parameter in our model, as long as the nucle-
ation process is much slower than aggregation. Once an ag-
gregate has been created, it can elongate by monomer addi-
tion. Our model does not consider fusion between two
oligomers. The rate of fissioning becomes important only
when an oligomer of large enough size arises. After an oli-
gomer has fissioned into smaller pieces, the individual pieces
can grow and fission. When a fission leads to a monomeric
product, we assume that it returns to the properly folded
state. This process leads to a steady state distribution of
oligomer sizes and a pure exponential growth. It continues
until the monomer concentration begins to dwindle
significantly.

We note that the lag time for the in vitro growth of yeast
prion-like proteins is reproducible in experiments, and shows
a weak dependence on monomer concentration. Hence, it is
not likely that it can be associated with pure nucleation (at
least at low initial monomer concentration), which being a
rare event will lead to a distribution of time scales as well as
a rather strong dependence on monomer concentration, de-
pending on the size of the nucleus. We will assume that the
lag time arises from the growth of misfolded material to an
observability threshold. This assumption is valid if the nucle-
ation time scales, which are long compared to other micro-
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scopic time scales, are still shorter than this latter time scale.
It is also valid when a small number of nucleated seeds exist
at the time of the preparation of the experimental samples.
As shown elsewhere, a weak concentration dependence to
lag time can derive from rapid equilibration of monomer
concentration with nonfibrillar oligomers [11,12]; this model
is not supported in the current context, and we shall discuss
this later in this section.

A. Kinetic model

Our first approach is to use kinetic equations to describe
the aggregation process [15,16]. In order to use the rate equa-
tions, one must assume a large number of monomers. The
kinetic rate equations for our model are as follows

4 N-1 N-1
n
—1=—2pm,cn%—2p+n12 ni+2pf2 n;, (1)
dt i=2 i=2
J N-1
ny
=Pt = 2Dy = pyy + 20 2 (2)
i=3
J N-1
n
—E = 2p g = 2pmny — (k- Dpay+2p, >
dt i=k+2
(3)
dn
=X =2p,ny g = pAN = Dy, 4)

dt

where n; is the monomer concentration, n;, is the concentra-
tion of k-mers, and N is the longest oligomer kept in the
calculation. The parameters p,,., p,, and p, can be adjusted
to change the rate of nucleation, fusion, and fission, respec-
tively. Since one of these parameters can be absorbed into
the definition of the time #, we will set p,=1. Furthermore,
we will set the initial monomer concentration to unity. The
equations listed above form a system of N-coupled differen-
tial equations which cannot be solved analytically because of
the nonlinear terms.

An analytical solution is possible if n; can be assumed to
be a constant and 7, and higher are much, much smaller than
the monomer concentration. Then the set of equations be-
come linear and can be solved by several techniques, such as
a Laplace transformation. This is not a bad approximation,
for, as we will see, during much of the growth process the
monomer concentration is nearly constant. Only at the end,
the monomer concentration begins to dwindle and the
amount of misfolded monomers saturates. It is useful to de-
fine the zeroth and first moments of the aggregate size dis-
tribution as

AZZI’Z[, (5)

051915-2



ONE-DIMENSIONAL MODEL OF YEAST PRION AGGREGATION

N
M= i%n, (6)
=2

where A is the number of polymer aggregates and M is the
total number of monomers in aggregate. Since the overall
number of proteins is conserved, the rate of change of M is
given by

am __dm 7)

dt dt
whereas the rate of change of A is given (ignoring the cutoff
N) by the equation

dA )
_t :pnucn% — P +Pf2 (i=3)n,. (®)

d i=3
If we ignore the terms depending on n, and assume n; is a
constant, we get two linear coupled equations,

dA
o const + pM —3pA, 9)

am
o const + (2p,n; = 2ppA. (10)

We set p,=1 to set the unit of time. Anticipating M>A,
which means that the mean aggregate size is much bigger
than unity. The above equations mean that the M and A both
grow exponentially as e, with X given by

A= \s"2p_f-(n, -pp = \r’/2pfn1. (11)

During the exponential growth, the mean aggregate size is
given by

=\/—. (12)
If we further assume that the lag time is given by the time it
takes for the misfolded proteins to reach a detectable thresh-
old My, then the lag time is given by

1 Mr
C(”l)2

, , (13)
\2psm,

tlug -~

where C is a constant and the n; dependence inside the loga-
rithm comes from the prefactors. We will see that these re-
sults are confirmed by a complete numerical integration of
the differential equations. Thus, this model demonstrates
the requisite r-lag dependence seen in the experimental
data, namely the inverse square root dependence on the
monomer concentration, up to logarithms, shown in Fig. 2.
We note that the fit in Fig. 2 is not sensitive to the logarith-
mic terms.

Kinetic model results

A numerical integration approach was used to study the
full set of equations. We used the fourth order Runge-Kutta
algorithm for solving differential equations and to obtain
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FIG. 2. Lag time (1;,,) Vs initial monomer concentration [r;(0)].
The crosses are data from Collins et al. in Ref. [9]. The continous
curve is a fit to the equation tlagzao[nl(O)]‘”2 log a,/n(0), with
ap=9.22 min*(uM)"? and a,=1.80 X 10°uM, following Eq. (13).

length distributions and growth curves for the system.

In Fig. 3, we show plots of log(M) as a function of time.
We have chosen a set of parameters yielding mean lengths in
the 105s—100s and displaying manifest exponential growth in
M(r) vs t plots. It is evident that there is a regime where
log(M) varies linearly with time, implying a pure exponen-
tial growth. This region of exponential growth is not limited
to just a few chosen parameter values, but can be achieved
over a wide range of p, values. In Fig. 3, we plot the total
number in aggregate vs time, now on a linear scale. The
sigmoidal growth is now evident as the exponential increase
tapers off when the monomers begin to deplete. This is also
consistent with the experimental results [9].

As discussed earlier, the mean length of the aggregates
has a simple inverse square-root dependence on the rate of
fission. Thus by tuning the rate of fission, it is possible to
obtain mean aggregate lengths (see Fig. 4), which appear
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FIG. 3. Log[M(zr)] vs time, with parameter values n,(0)=1, p,
=1, pue=1073. The linear regions illustrate regions of pure expo-
nential growth. M(z) vs time illustrating sigmoidal growth is shown
in the inset. Note that time is in units of 1/[n;(0)p.].
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FIG. 4. Length distribution, n; vs length L,
from the kinetic equations during the exponential
growth phase, compared with the Weibull distri-
. bution, Eq. (14).
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qualitatively consistent with those observed experimentally
displaying lengths in the tens of hundreds (see especially
slide 9 at Ref. [10]). In Fig. 5, this mean length is plotted vs
time for a different fission rate p, We see that the mean
aggregate length is constant during the exponential growth.
In Fig. 6, we show the variation of the exponential growth
rate with p, compared with the analytic calculations. One can
see that they agree closely. Note also that p, values of order
10~ will give the lengths seen in vitro.

We can also determine the distribution of aggregate sizes
in our calculations. The concentration of aggregates of dif-
ferent sizes relative to the initial concentration of monomers
are shown in Fig. 4 for a given value of the fission parameter
(py=4%107) at three different times during the exponential
growth phase of the simulation. Clearly, the distribution is
fairly stable during the exponential growth phase, further
strengthening the argument for a simple steady state. These
length distributions are well fitted by a Weibull distribution
given by the relation,
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FIG. 5. Mean length vs time for different p; n,(0)=1, p,=1,
Puue=1078. The plateau corresponds to the constant mean length
during the exponential growth phase. Note that time is in units of
1/[n;(0)p,].

(14)

apg-1 ag
Ny
ap\a; ag

Apart from an overall normalization, the two key parameters
of the distribution are the mean a; and the power law at
small x set by ap— 1. This distribution is found to be ubiqui-
tous in nature [17]. For example, a dropped piece of coal will
have shattered pieces that follow an asymmetrical distribu-
tion with more pieces on the smaller end. Our model follows
a similar idea (i.e., taking a larger length and shattering it
into smaller lengths) and a similar distribution. In our simu-
lations, the quantity ay is close to 2 for a range of parameters
studied. During subsequent times, the peak of this curve
shifts to the left as saturation occurs and the only process left
is to fission. (The shift in peak at later times are not shown
here.)
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FIG. 6. Exponential growth rate N vs p; compared with simple
square-root dependence predicted by Eq. (11) for different param-
eter values, n,(0)=1, p,=1, p,..=107%
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B. Comparison to nonfissioning micelle model

The coupling of the observation of weak concentration
dependence with exponential growth strongly supports a
model dominated by fissioning of aggregates constructed by
monomer addition. Indeed, centrifugation studies confirm
that monomers are the dominant species in the in vitro me-
dium, and examination of the aggregation kinetics suggests a
critical nucleus of small size [9].

It is thus important to contrast with other models for
which a weak concentration dependence can be derived. No-
tably, the work of Lomakin ef al. [11,12] considers kinetics
with monomer growth of polymers as well as micellar oligo-
mers composed of M monomers of concentration 7, which
may or may not be off pathway. This model may be of rel-
evance to other in vitro studies of yeast prion aggregation
[18] for which there is evidence of oligomer formation and
growth and a weak concentration dependence to the lag
time. If the oligomers are off pathway, then assuming an
equilibration with monomers leads to a buffering of the
monomer concentration assuming an initially high input con-
centration and sufficiently rapid equilibration. There is a
crossover or critical concentration n” for this dictated by the
equilibrium constant K ,, between monomers and micelles
(KM=nM/n{M) given by

n' = (MK )M, (15)

Lomakin et al. argue that for a total equilibrated protein con-
centration ny obtained prior to fibril growth,

nr=n;+ Mnyy, (16)

M
o n
=n1+n(—i> . (17)
n

From these equations, it is clear that there is an approximate
two-state behavior provided M > 1. For ny<n", then ng
~n, and aggregation kinetics can be strongly concentration
dependent. However, for n;=n", then n,~n", that is, the
micelles buffer the monomer concentration. This would lead
to a weak dependence of fibrillar growth upon subsequent
increase of initial monomer concentrations.

There are two routes by which this model can be applied
to the data of Collins et al. [9,10]. First, if the fibrils are
formed from monomer addition to the micelles without re-
sulting fission of fibrils, then one will expect a quadratic
growth in time [19,20] to the total number of aggregated
proteins, namely

1
M) = Epin%thz, (18)
1 M 1o
=S ) e, (19)

which is very weakly dependent upon n,;(0) provided n,(0)
~n;=n", but varies strongly as n;(0)*** in the opposite
limit. Solving for where M(t,,,)=M . characteristic of the ob-
servability threshold yields
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1 2M (n" )M

P+ (nl)M .

tlag = (20)

For ny(0)<n”, t,,, varies as n,(0)"1*M?2) at odds with ex-
periment [9], while for n;(0)=n" and M > 1, 1,,, is approxi-
mately independent of n,(0) [it will decrease weakly with
increasing n;(0)].

Second, if the micelles are off pathway, then their princi-
pal impact on the fibrillar aggregation is on buffering. As-
suming a critical fibrillar nucleus of length p, which equili-
brates with the monomers via a constant K,,=n,/nf, the same
considerations of aggregation kinetics as in the preceding
paragraph give a lag time given by

1 [ oM, on
P+ Kp(nl)p'

For n,(0)<<n", this varies as n;(0)""*”? is at odds with
Collins et al. [9], while it is approximately independent of
n,(0) for ny(0)=n" and p>2. For small nuclei (p=2-5,
say), the dependence can be relatively strong on 7;(0) even
in this limit.

Hence, via either on-pathway or off-pathway micelles, in
this model there is a route to weak dependence of lag time
(defined as the threshold for observation) upon initial mono-
mer concentration requiring n;(0)=n" and M ,p>1. How-
ever, there are several problems in connecting this to the
experiments of Collins er al. First, exponential growth is
unambiguously observed, indicating that fission of fibrils oc-
curs. The micelle model of this subsection has no fission.
This highlights the important role of fission for the prion
phenomenon. Second, in these experiments, the starting so-
lution contains almost entirely monomers and not micelles.
This implies that even if micelles form, one is always in the
limit of n,(0)<n", leading to strong concentration depen-
dence. Third, the width of the fibrils obtained in this experi-
ment is apparently monomeric, which is not readily compat-
ible with growth by monomer addition to micelles, and
rather must be obtained by addition to a critical fibril
nucleus. The data suggest that this critical fibril nucleus is of
length p <6, not consistent with the assumption p> 1.

Hence, we do not believe that the micelle based model
can explain the data of Collins et al. [9,10].

Ligg =

C. Stochastic model

In this section, we develop a stochastic treatment of the
model, similar to a model proposed by Poschel et al. [21].
Our main motivation is to be able to treat species with small
numbers, in which case the continuous deterministic ap-
proach will break down. As we will see, the stochastic ap-
proach largely agrees with the deterministic model for the
parameter values considered here for aggregate quantities
[e.g., M(2)]. However, for distributions there can be substan-
tial stochastic noise at short times. Another advantage of the
stochastic approach is that it can be readily extended to study
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TABLE 1. Propensities of stochastic processes.

PHYSICAL REVIEW E 72, 051915 (2005)

Fusion propensity for monomer addition Fission propensity for monomer

Nucleation Higher order Higher order
propensity Chain length 2 Chain length 3 fusion term Chain length 2 Chain length 3 fission term
ZnueN1(n=1) 2g,.N\N, 2g,NiN3 &> 2g/N3

two-dimensional aggregates as well as the problem of mul-
tiple prion “strains,” in which case the treatment of a small
number of heteroaggregates would be important to model the
extent to which strains breed true.

The Gillespie algorithm provides an exact way to treat the
stochastic problem of chemical reactions [22]. In our case,
the polymers of different lengths are the different chemical
species. The processes of nucleation, monomer addition, and
fission are assumed to be stochastic. In other words, the
number of polymers of different length at time ¢, only define
the propensities (or normalized probability) for the different
reactions to happen at that time. Once a reaction takes place,
the number of polymers is altered and the propensities are
changed. The Gillespie algorithm is a Monte Carlo treatment
that deals with the stochastic process by using a pair of ran-
dom numbers at each step, one to decide which event will
occur next and another to decide how long will it be until the
next event takes place. This process can be repeated to fol-
low the dynamical behavior of the system.

Our model has the corresponding propensities

SN (N = 1) +2g N\ 2 N+ g,>, (i—= )N, (22)
i=2 i=2

where g,,., g, and g are, respectively, the nucleation, fu-
sion, and fission parameters in the stochastic model. In our
model, each propensity was assigned a bin in an array. A
random number generator decides which bin is selected.

Table I illustrates physically the propensities at a given
time. A normalized random number generator selects which
element in the array will occur and the time it took to create
that event. After an event occurs, the corresponding propen-
sities are updated and the process is repeated.

In order to compare the results achieved from the continu-
ous to stochastic model, a mapping of the Gillespie param-
eters to the kinetic parameters is required. For this, we need
to develop an approximate equation satisfied by the mono-
mer concentration in the stochastic simulations and compare
it with the rate equations. In the stochastic case, one has a
master equation that relates the probability distribution asso-
ciated with a different number of polymers at time ¢+dt to
those at time . We will make a mean-field approximation for
different kind of k-mers, namely (N;*N,)=(N,)*{(N). Thus,
we can consider the approximate master equation, which
only tracks changes in the monomer number. We arrive at the
equation,

o0

PNy t+df) = PyND| 1= g Ny (ny = 1)dt — g,N, >, Nidr
=2

—2g; > Nidt | +2P,(Ny - 1,0)g, >, Ndt
i=2 i=3

+P1(N1 —2,f)ng2df+ Pl(Nl + 1,t)g+N1

XX, Nidt + P{(Ny +2,0) 2Ny (Ny = 1)dt,
i=2

(23)

where N, is the number of monomers, P,(N,,t+dt) is the
probability to have N; monomers at a later time f+dt.
P (N, ,1) is the probability to have N; monomers at time 7. It
is multiplied by the probability that no reaction occurs in
time dt that changes N;. The rest of the terms represent the
probability to have a different number of monomers at time ¢
but then a reaction happens in time dr leading to N; mono-
mers at time ¢+dft.

Now using the definition of the derivative, one can rear-
range the equation and multiply both sides by N; to get the
average rate of change of N,. After shifting some indices to
get every probability to have the form P;(N,) and using the
appropriate volume element (denoted by V) to normalize the
counts to a concentration, one arrives at the equation for the
mean number of monomers,

1 dn ) - &w
— L= _2g, n =2n, 2 n+2% D0, (24)
Vg+ dtgil ! =2 V =2

By comparing with the rate equations discussed before, we
obtain the parameter mapping

p.=1, (25)

Puuc = 8nuc> (26)
=& 27

Tkinetic = g+Vtgillespie' (28)

Results stochastic approach

After achieving the parameter mapping, we studied the
stochastic models with 10° initial monomers. The numerical
results are shown in the next few figures. In Fig. 7, the
growth of the aggregate material is shown on a logarithmic
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FIG. 7. Log[M(r)] and M(z), shown in the inset, vs time ob-
tained by the Gillespie algorithm with N;(0)=10%, g,=1, g..
=1078 for different fission rate & Note that time is in units of 1/g,.

and on a linear scale. It is evident that they are in excellent
agreement with the corresponding calculations for the kinetic
model. In Fig. 8, we show plots of the mean length as a
function of time, and in Fig. 9, the corresponding distribution
of length scales during the exponential growth phase. It is
again evident that there is a steady state during the exponen-
tial growth and the mean lengths reach a plateau value. The
stochastic effects are much larger in the distribution and in
the mean length, but the overall results agree well with the
kinetic model. The fits to the Weibull distribution are again
good with comparable parameters. The differences between
the kinetic and stochastic Weibull parameters (a, and a,) are
less than 10%. This shows that for 10° monomers and for
mean aggregate lengths up to a few hundred, the dominant
species still occur in large enough numbers so that stochastic
effects do not change the results in a significant way.

II1. DISCUSSION

In this paper, we have used a deterministic kinetic and a
stochastic Monte Carlo approach to model the dynamics of

300
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FIG. 8. Mean length vs time in units of 1/g, for different fission
rates gy obtained by the Gillespie algorithm. The parameter values
are N;(0)=10°, g,=1, g,,,=107%.
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FIG. 9. Length distributions at different times during the expo-
nential growth phase obtained by the Gillespie algorithm for gf
=400 and fitted by the Weibull distribution.

yeast prion growth. For the parameters relevant to in vitro
experiments, where mean aggregate size is of order 100s of
monomers, and the number of monomers is larger than 106,
the two approaches agree well with each other, showing that
stochastic effects are not dominant. The studies confirm that
the key experimental features of the growth of yeast prions
can be well captured by these nucleation-growth-fissioning
models. They lead to an exponential and/or sigmoidal
growth, an inverse square-root dependence of the lag time on
the monomer concentration, and aggregate sizes that depend
on the rate of fission. We predict that the aggregate size
distributions should be Weibullian, reflecting the importance
of fissioning in the growth process. We also predict, for suf-
ficiently large times, that the steady state aggregate length
will drop as fissioning converts large aggregates to those of
minimal size. We have argued that models in which mono-
mers equilibrate with micelles but do not fission [11,12],
which are capable of producing lag times having a weak
concentration dependence for a sufficiently high initial
monomer concentration, are in fact not appropriate for the
data of Collins et al. [9,10].

We note that the in vitro aggregation work of Serio et al.
[18] appears to come to different conclusions than that of
Collins et al. [9] and may be ripe for a discussion in terms of
the micelle models. We do not understand the discrepancies
between these two sets of experiments.

We note that the results on yeast prions discussed here
and recent work on mammalian prions stripped of their GPI
membrane anchors [23,24] suggest that a fundamentally dif-
ferent mechanism for fission is at play for the latter proteins
vis-a-vis yeast. In the recent experiments, transgenic mice
expressing the cellular prion protein without the residues
necessary for the GPI anchor are exposed to anchorless in-
fectious prions; in time course experiments, prion aggregates
are produced which retain infectivity. However, the infected
mice with anchorless PrP¢ do not show clinical symptoms.
Moreover, the time course data {see Fig. 1(c) of Chesebro
et al. [24]} show two remarkable characteristics: (i) they are
nonsigmoidal in shape, with the infectious prion content at
long times significantly exceeding that of infected wild type
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mice at death, (ii) the time scales to reach the levels of in-
fectivity characteristic of wild type mice at the correspond-
ing infectious dose are quite long. Indeed, the time course
data can be fit roughly by a quadratic in time curve charac-
teristic of nonfissioning aggregation to an initial concentra-
tion of infectious seeds. Evidently, the binding of cellular
mammalian prions to the membrane is critical to the fission-
ing process, while for yeast prions fissioning of aggregates
in vitro is observed [9].

In the future, we hope to extend this model to study yeast
prion strains, where we expect the stochastic treatment to be
the key to dealing with rare heteroaggregates. An under-

PHYSICAL REVIEW E 72, 051915 (2005)

standing of this process should lead to insights into the im-
portant problem of strain dynamics in mammalian prions.
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