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Ventricular dilation as an instability of intracranial dynamics
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We address the question of the ventricles’ dilation as a possible instability of the intracranial dynamics. The
ventricular system is shown to be governed by a dynamical equation derived from first principles. This general
nonlinear scheme is linearized around a well-defined steady state which is mapped onto a pressure-volume
model with an algebraic effective compliance depending on the ventricles’ geometry, the ependyma’s elasticity,
and the cerebrospinal fluid (CSF) surface tension. Instabilities of different natures are then evidenced. A first
type of structural instability results from the compelling effects of the CSF surface tension and the elastic
properties of the ependyma. A second type of dynamical instability occurs for low enough values of the
aqueduct’s conductance. This last case is then shown to be accompanied by a spontaneous ventricle’s dilation.
A strong correlation with some active hydrocephalus is evidenced and discussed. The transfer function of the
ventricles, compared to a low-pass filter, are calculated in both the stable and unstable regimes and appear to

be very different.
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I. INTRODUCTION

Apart from cognitive processes relying on neurobiological
processes, the understanding of the intracranial machinery
involves processes described by physical quantities. From
Magendie [1] who in 1825 established that cerebrospinal
fluid (CSF) moved by ebb and flow to the observation by
O’Connel [2], around 1943, of the synchronization of CSF
pulsations with cardiac pulses and its sensitivity to arterial
and venous pressures changes, the relevance of physics was
always attested. The characterization of these processes and
their dynamics defines the field of the intracranial dynamics.

The intracranial dynamics is referred to as a set of bio-
logical, chemical and physical processes of different natures
occurring inside the space demarcated by the rigid cranium.
A natural hierarchy between these processes is established by
their proper dynamics (though coupled between them) rely-
ing on different characteristic time scales. For instance, the
dynamics of the cognitive processes is determined by neu-
rons dynamics which is much more faster than the CSF flow
monitored by the cardiac pulses, itself faster than the secre-
tion or absorption process of CSF.

The building of an intuitive and predictive model of the
intracranial dynamics is a challenging problem for both
physicists and physicians. The attention of the physicist is
focused on the obvious applicability of the physical laws to
the intracranial processes, such as CSF and blood flow or
brain matter elasticity. This venture is confronted with a se-
rious difficulty, the complexity of the abovementioned sys-
tem. This complexity reflects itself in many phenomena such
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as the structure of the system, its degree of organization and
over all existence of (auto) regulation processes operating
simultaneously. Achievement of such a purpose depends
mainly on the reduction of that complexity, that is on the
introduction of new concepts or theoretical methods allowing
to bypass the difficulties associated with that complexity. A
survey of the different attempts to circumvent these difficul-
ties is given in the next section. These models might be
classified mainly into two categories, ad hoc models such as
electrical [3] and mechanical analogues [4] of the intracranial
system and models derived from first principles. The most
commonly encountered models belong to the first class to
which a good critical review was devoted by Tenti et al. [5].

Whatever the physical modus operandi, the enterprise to
be carried out profits by the great clinical advances of flow
MRI [6]. Indeed, the development of this technique gener-
ated a great amount of knowledge of the CSF dynamics
thanks to the recent introduction of phase-contrast magnetic
resonance imaging (PCMRI) [7], which provides CSF and
blood flow measurements throughout the cardiac cycle when
used with peripheral cardiac gating. The attitude of the phy-
sician towards these observational data is of course domi-
nated by clinical needs. But this does not prevent a more
subtle understanding of the mechanisms underlying the in-
tracranial processes. In our opinion, this purpose might be
achieved only through an interpretation of observational data
such as flow MRI, within the framework of (bio) physical
model of the intracranial dynamics. The physical description
of the mechanism underlying the intracranial processes is not
the only virtue of a realistic and complete modeling which
should also predict some abnormal behavior to be associated
with some existing pathology. An example of these patholo-
gies of the brain is hydrocephalus, trouble in keeping with
the CSF flow [8]. This physiopathology of the brain consists
in a ventricular enlargement. Many mechanisms for this
trouble have been hypothesized by physicians [9]. Many
models try to account for or describe the physiological ef-
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fects of hydrocephalus with or without luck. It should be
pointed out that the related models are always of the descrip-
tive type (ad hoc models), that is do not contain this patho-
logical behavior as a consequence. No further understanding
of the disease is gained since these models also do not high-
light the underlying mechanisms. Moreover, it is always dif-
ficult to extract order of magnitudes from the models to be
compared to available medical data (and thus confirm or in-
firm some hypotheses) because of the lack of assessment of
some parameters.

It is precisely in this ill-defined framework that we at-
tempted to build up a model of the ventricular dynamics. In
this work we focus on the ventricular compartment. Taking
into account the elasticity of the ependyma as the fundamen-
tal element for regulating the ventricular volume, the CSF
dynamical equations are derived and shown to belong to the
PV models category but with an effective algebraic com-
pressibility of CSF. The model is shown to exhibit a dynami-
cal instability resulting in the intracranial pressure deregula-
tion. A stability criterion involving only well defined
parameters of the system (elastic properties of the ependyma,
geometry of the ventricular area, compliance of CSF) is de-
rived and its relation to hydrocephalus discussed.

II. SURVEY OF THE DIFFERENT TYPES OF MODELS

During the past three decades, a large number of math-
ematical models have been proposed to help physicians to
better understand the complexity of the intracranial hydrody-
namics. The reduction of the complexity of the brain-CSF
system apart from the cognitive aspects might be realized in
several ways. Before commenting on these different models,
it should be noticed that there exists an irreducible anatomi-
cal ingredient common to all types of models: the intracra-
nial system subdivision into well defined (and known) com-
partments. These compartments are the ventricular space
filled with CSF, the parenchyma irrigated with the arterial
blood flow and the subarachnoid spaces surrounding the
brain and filled also with CSF [10]. The difficulties in mod-
elling the system do not arise from the identification of these
compartments but rather from their physical couplings, may
it be direct (with matter transfer) through the Sylvius aque-
duct or more subtle and indirect through the brain strains
modulations (brain’s volume variation under blood flow). It
is clear that whatever the model, the mathematical represen-
tation of these couplings determines the nature of the model,
abstract or intuitive. An abstract model, even if quantitatively
relevant, might lead to severe difficulties in its handling and
could not be useful in diagnosis assistance.

One of the most relevant approach is the handling of elec-
trical analog [11]. It consists in associating with the intrac-
ranial system an equivalent electrical circuit. As was pointed
out in the introduction, this way of modelling is usually ad
hoc, that is the circuit is not derived from a biomechanical
model built up from first principles. Nevertheless, it is clear
that this approach assumes a linear dynamics of the intracra-
nial system and profits by both the simplicity of the laws of
electricity and an interesting intuitive ground. Even if the
assumed linearity seems to be a reasonable assumption, it
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generally suffers a lack of justification. Nevertheless, it is
always possible to introduce non-linearity in these circuits
but their intuitive nature might be lost. Its complexity might
be defined as the number of “parameters,” that is the values
of the constitutive elements of the circuit such as resistors,
coils and capacitances it contains to which must be added the
dimension of the associated vector-states space. The multi-
plication of the compartments (reflecting the structural com-
plexity) and over all of the couplings between them leads to
increasing “complexity” in the naive sense we just gave.

The main interest of this approach relies on the simple
computation of the transfer functions between different parts
of the system (e.g., CSF and blood flow). Usually, the com-
parison to any available data allows for the determination of
some of the parameters but for complex circuits, the residual
parameters leads to an arbitrariness of the model which is not
satisfactory. One of the main restrictions in the use of these
ad hoc electrical analogues relies on the unfaithful corre-
spondence between the parameters of the circuit (resistors,
capacitances, etc.) and the biophysical parameters (objective
parameters: viscoelasticity of the tissues, geometry of the
system, etc.) of the system it “mirrors.” But this restriction is
not essential compared to their heuristic value, that is their
predictive content and their ability to mimic some pathologi-
cal situations of great interest for physicians.

Another way of describing the intracranial dynamics is
incarnated in the so-called pressure-volume models [12]. A
brief survey of these models is given in Appendix A. It
should be noticed that the equations of these models, pro-
vided they are linear, have a direct interpretation in terms of
electrical circuits. Nonlinearities are likely to occur for com-
plex pressure-volume relationships (see, for example, Mar-
marou [13]). The most usual form of these linear models
written for a set of compartments (number N) coupled to
each other by fluid exchange reads

. dp;
Vie{l2,. -,N}C,»Z=—E %‘j(Pi—Pj) +Siore- (1)
J

The parameters C; are the compliances of the compart-
ments, p;(z) the pressure of the fluid within each compart-
ment (these are the dynamical variables), v;; the conduc-
tances associated with the fluid exchange processes between
the ith compartment and all the other ones indexed by j
coupled to it and §,,,. is any time dependent external excita-
tion such as cardiac pulses. In the linear approximation, the
compliances are allowed to depend only on the stationary
values of the pressure. As the conductance matrix [y,] is
usually symmetrical and over all positive, the dynamical sys-
tem described by (1) is expected to be stable. The notion of
stability we refer to here is the structural stability (or insta-
bility) that is in keeping with the control parameters (com-
pliances, conductances, etc.). Laplace or Fourier transform-
ing the last equation makes it very easy to determine the
amplitudes of the pressure variations within the compart-
ments.

The construction of electrical analogues might be system-
atic if we associate to Eq. (1) a graph with a discrete function
on the graph associating to each summit (the compartments)
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1 : Lateral ventricles
2 : Third ventricle

3 : Sylvius aqueduct
4 : Fourth ventricle

Third and lateral
ventricles (1+2)
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Sylvius
aqueduct
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FIG. 1. (Color online) (a) Anatomical structure of the ventricu-
lar system composed of the two lateral ventricles connected with
the third one separated from the fourth ventricle by the Sylvius
aqueduct. (b) Simplification of the ventricular system to a spherical
geometry. The lateral and third ventricles are “collapsed” into a
unique sphere of radius R surrounded by the ependyma treated as an
elastic membrane. That sphere is connected by the Sylvius aqueduct
to the fourth ventricle.

a pressure p; and a flow on that graph associating to each pair
of summits a conductance 7;;. Eq. (1) constrains severely the
nature of the circuit: whatever the electrical interpretation of
the graph, this circuit should be topologically equivalent [14]
to that graph.

III. A MODEL FOR THE VENTRICLE DYNAMICS

A. Simplification of the anatomical structure of the ventricular
system

The model dealt with in this paper is based on a simpli-
fication of the actual structure of the intracranial system. In-
deed, the anatomy of the system, presented on Fig. 1(a)
shows clearly a set of four interconnected ventricles. The
paired lateral ventricles are connected through the foramina
of Monro [15]. The third ventricle is connected to the fourth
via the Sylvius aqueduct. This last ventricle allows a direct
CSF flow into the subarachnoid spaces. The simplification
consists in reducing the lateral ventricles and the third one to
a unique spherical compartment with radius R delimited by
an elastic membrane the ependyma as can be seen on Fig.
1(b). This choice of a spherical symmetry is in fact a first
step towards a more realistic modeling of the ventricular sys-
tem actually in progress. As this complex shape of the ven-
tricular system arises from the inhomogeneous distribution
of the stress field at its boundary, we expect that a deeper
analysis will reveal the irrelevant nature of ventricles” geom-
etry in their pathological behaviours. Nevertheless, this sim-
plification of the ventricles geometry is often met in the lit-
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terature [3,4] since it allows workable models of the
ventricles deformation dynamics.

B. Fundamental equations of the model

The ependyma is treated as a very thin membrane en-
dowed with known viscoelastic properties. We assume a
steady state to exist for this ventricular compartment which
is far from its equilibrium value. More precisely, the steady

value of the radius R is bigger than its equilibrium value R,
in such a way that, in the absence of any excitation, the
ventricle tends to collapse. This spontaneous trend is of
course opposed by the CSF pressure. The existence of such a
nonequilibrium steady state arises from the regulation pro-
cesses within the intracranial system. Each ventricle is
clearly an open system exchanging matter (CSF) with its

exterior. The total CSF mass variation dM/dt=M reads then

1. dv d
p - dt + th(]n P) _[S Ia Y(p pext) (2)
where V() is the volume of the ventricles and p(z) the CSF
density at any time ¢, p and p,,, are respectively the average
pressure in the abovementioned “spherical compartment”
composed of the 3rd and lateral ventricles and in the 4th one,
v the hydrodynamical conductance of the aqueduct, Iy and I,
the volumic CSF secretion and resorption rate in the com-
partment. The time variation of the average density mirrored
in the derivative (d/dr)(In p) arises from the constant tem-
perature compressibility x= (1/p)(dp/dp)s of the CSF itself
(which is rather negligible as shall be seen below). To ac-
count for the matter exchange processes and the displace-
ment of the ependyma we will set

M(t) =M.,[1 + h(1)],

V)=V, [1+e&(n)], (3)

where the index “e” refers to the equilibrium values of the
parameters (mass, volum and density of the CSF). The func-
tion h(f)=(M-M,) /M, is an a-dimensional parameter
which captures the global CSF mass variation due to ex-
change with other compartments and (r)=(V-V,)/V, the
relative deformation of the ventricular area. Equation (2)
then reads

Ve|:XT(1+8)+<Z_8>:|p=15_1a_y(p_pext)' (4)
P

A first interesting approximation of this nonlinear equation
can be derived if we focuse on the dynamics of the pressure
fluctuations around the stationary state (7;R). It consists in
replacing the second term into the square bracket (de/dp)
X(p)=(de!dp),-; leading us to the simplified model

Ve|:XT(1+§)+(Z_8) _:|pz1S_1a_’y(p_pext)~ (5)

p=pr

The linearized scheme we are led to can be classified in the
pressure-volume models category with an effective compli-
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Radius R(®)

FIG. 2. This scheme sums up the notations we used in the de-
scription of the ependyma’s motion. The infinitesimal piece of
ependyma of area d(x) is centered about the point x. The displace-
ment field is radial due to spherical symmetry and results from the
action of the pressure forces of the brain matter and the CSF and the
restoring force due to the elasticity of ependyma’s tissues. In our
model, we neglected the dissipative nature of the membrane
dynamics.

ance associated with the ventricular compartment,

C(ﬁ)=Ve|:XT(1+§)+(@) :|=\_/|:XT+(M> 1
dp /s dp P

(6)

The derivative term in (6) might be considered as an ef-
fective contribution to the compressibility of the CSF which
depends on the elastic properties of the ependyma and its
vibrational dynamics. The nonlinear corrections to the model
are very easy to derive from Eq. (5) by adding the higher
order terms of the expansion of the right-hand side of (4).
More precisely, if we get back to Eq. (5), the corrections to
the linear scheme lead to a modulation of the effective com-
pressibility of the CSF. In fact, the contribution of the deriva-
tive term is the dominating one since CSF is incompressible,
that is y7=0. We will keep this reasonable assumption in our
linear model. The effective compliance then reads

C(p) = 4771?2%; (7)

which corresponds to the usual definition of the compliance.

The complete calculation of the steady compliance re-
quires the adjunction to Eq. (5) of the motion equation of the
elastic ependyma. As can be seen on Fig. 2, the ependyma is
modeled as a thin membrane with thickness submitted to the
action of pressure forces due to the CSF within the ventricles
(pressure p;,), the stress field o}, within brain matter and a
restoring force arising from the elasticity of the membrane.
The simplifying assumptions we made about the spherical
symmetry of the ventricular space allows us to treat the stress
oy, as a pressure (p,,,), that is the associated force due to the
brain is normal to the ependyma. The high symmetry of the
problem simplifies also the form of the displacement field
u(x,1) at any point x of the ependyma at any time ¢ which
appears to be radial that is
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’;(fst) = (R(t) - Re)ﬁ’ (8)

where R(z) is the curvature radius of the spherical ependyma
at time ¢, R, the equilibrium value of that radius, and n the
normal vector at point x. The complete motion equation of
the ependyma and its solution are derived in Appendix B.
The spectra of the variations of the relevant parameters such
as R(z) or the pressure p(z) are dominated by low frequencies
since our system is excited by cardiac pulses. This allows us,
equivalently to neglect the effects of inertia and the viscous
damping as can be clearly seen in Appendix B. It is thus
clear that within this approximation the ependyma’s dis-
placement becomes

R(l) —Re ~ (pin pout) (9)
ok

that is the pressure forces are opposed the restoring force
depending on both the density of the ependyma through the
parameter o and its elastic constants through the parameter k.
More precisely, as the ependyma is treated as a spherical
elastic membrane (thickness [ ), our constant k depends on
the Young modulus E of the ependyma and its Poisson
modulus o, through the relationship [16],

k=127EIM(1 - 07), (10)

where M is the mass of the ependyma. It should be noticed
that the parameter k has the units of a squared frequency. The
pressure p;, in formula (9) is precisely the pressure at the
surface of the ventricular CSF. It is related to the inner av-
erage pressure p through Laplace’s law [17] p—p,,=2I'/R
where the constant I is the surface tension of the CSF that is
the amount of energy to be provided to the confined CSF to
increase its surface by one area unit. We are thus led to a
very important additional relationship

2r
p—pou,=?+0'k(R—Re). (11)

It should be kept in mind that the range of validity of this law
is intimately related to our assumption of a very slow dy-
namics of the system. It is then valid in the steady state.
Equation (10) plays the role of a state equation relating the
pressure within the compartment to its size. The formulas
(6), (7), and (11) are the basic equations of our model. The
last equation allows for the determination of the radius of the
compartment knowing the pressure within. It also allows for
the calculation of the compliance (7). This will be done in
the next section devoted to the consequences of our model
and to the assessment of some parameters.

IV. DYNAMICAL INSTABILITIES
A. Conditions for pressure regulation
The steady compliance in Eq. (7) then reads

_.dR _
C =~ 47R*— = 47R?

—. (12)
dp ko —2T/R?

This equation is derived from Eq. (11) where it is assumed
that the pressure within the brain matter is constant and in-
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dependant from the radius R. We regard this expression as
the compliance of the system because it corresponds to the
coefficient, endowed with the right units, of the pressure de-
rivative term in the dynamical Eq. (5). According to Eq. (12),
it exhibits an amazing algebraic nature arising from the com-
pelling effects of the elastic properties of the ependyma and
the surface tension of the ventricular CSF and will be re-
ferred to as the effective compliance of the system {ventricle
delimited by the ependyma+CSF}. The definition of effec-
tive parameters is an intellectually comfortable point of view
which allows for maintaining the usual meaning of the pa-
rameters and their intuitive content. If we had neglected the
influence on the system of the CSF surface tension I', we
would have been led to an always positive compliance C

=47R%/ ok which can be thought off as that of the “empty”
ventricular compartment. Rewriting Eq. (12) as a function of
that last compliance, readily,

2r
C=Cy|1-—], (13)
R*ok

we are led to the idea that the empty compartment compli-
ance C, is renormalized in the presence of CSE. As told
previously, such a compliance usually thought to be positive,
is in fact algebraic. As this delicate point could legitimately
be considered as schocking by the experienced reader, we
would like to highlight the significance of such an algebraic
compliance and precise what should be meant by “effective
compliance.” It has in fact a dynamical sense in keeping with
the structural instabilities (driven by the control parameters)
its change of sign might induce. Indeed, the expression (13)
shows that we can attribute a compliance C (that is positive)
to the ventricular compartment but alter the elasticity k of the
ependyma which is “softened” by the surface tension of the
CSF, that is endowed with an effective elasticity k.;=k

—2I'/oR? for any value of the radius. The instability coin-
cides here with a negative value of the effective elasticity
that is with the absence of an effective restoring force acting
on the ependyma so that no stationary value of the radius of
the ventricle does exist any more. The system loses then its
ability to regulate the CSF pressure within. We can conclude
that “pathological” behaviors of the dynamics are expected
when the effective compliance becomes negative: it should
remain positive for the intracranial system to be stable, that
is for it to be able to regulate the pressure within the com-
partment under study.

The stability condition requires a minimum value of the
ventricular compartment radius:

_ 2r
R>\—. (14)

ko
This minimal radius coincides with a minimal ventricular
pressure value which prevents the ventricular compartment
from collapsing. It is worth noticing that this minimal radius
value does exist only because of a nonvanishing surface ten-
sion I' of the CSF. In the vanishing I" limit, that is when we
neglect its influence on the system, the dynamics appears to
be always stable, with no lower bound on the radius of the
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FIG. 3. (Color online) Plot of the pressure difference against the
steady value of the radius of the ventricles. The existence of an
unstable branch and a minimal pressure arises from a non-vanishing
surface tension of the CSF. The minimal pressure corresponds to an
infinite effective compliance (rigid limit). Below this pressure are
lying states unaccessible to the system (shaded area).

compartment. It is in striking opposition with the observation
of a finite value of the average radius of the ventricles.

For any given value of the radius, it is realised when the
CSF surface tension is low enough or when the ependyma’s
elasticity is high enough. Indeed, introducing the ependyma’s

mass M =U4WE2, the last condition reads

k> 8al/M(=k,). (15)

There is thus a critical value of the elastic modulus k of
the ependyma, or equivalently of the Young modulus E, be-
low which the system is unstable. Physiopathologies of the
ependyma’s tissues might lead to an alteration of their me-
chanical properties and thus the ependyma’s ability to regu-
late the volume (and the pressure within) of the ventricular
space. The rupture of the ependyma is an extreme injury with
the same consequences. Equation (15) might either be read
in a different way. If an irreversible alteration of the elasticity
of the tissues was to happen in such a way that (15) would
not be valid, a decrease in the CSF surface tension I' below
a critical value I',.=Mk/8m>2El could restore the situation.
According to our approach, the CSF surface tension and the
ependyma’s elasticity are the fundamental parameters con-
troling the intracranial pressure regulation.

It is worth noticing that all these arguments suggest a
strong correlation between these dynamical instabilities and
some pathologies of the intracranial dynamics such as hydro-
cephalus. A simple mechanism arises then from the stability
condition (14): it merely suggests that when the ventricle’s
radius is too small (below the minimal value required by the
biophysical properties of the system), the system will spon-
taneously dilate until it reaches that value to recover its abil-
ity to regulate the intracranial pressure.

The main conclusion we drew about the stability of our
system is illustrated on Fig. 3. We reported on this figure the
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steady (differential) pressure given in Eq. (11) as a function
of the ventricle’s radius. It can be seen that each pressure
value corresponds to two curvature radii, e.g., to the points A
and B. The point A being located on the “unstable” branch
that is to a negative compliance, is not realized contrary to
the state labeled B located on the stable branch. If the system
is released on state A, then any pressure fluctuation within
the compartment is magnified exponentially due to its nega-
tive compliance as indicated by the black arrow on the fig-
ure. For the system to regulate the pressure around its fixed
value, it has to move to the stable steady state B with radius
increasing with the pressure as expected from the stability
condition. At point B, the system is trapped by the pressure
(and ventricle volume) regulation processes. It is clear that
any point of the positive compliance branch corresponds to a
stable steady state of the ventricular system. According to
our view, a ventricle dilation process should occur after a
slow steady pressure increase (due for instance to excessive
CSF secretion). In that case, the dilation process might be
viewed as a transition between steady states of the system.

We intend now to give some order of magnitude estima-
tions. Taking for the CSF a surface tension close to water
[18] at ambient temperature ['~72.8X 1073 Nm™' and a
minimal value of the ventricle’s radius R, ;,=~2 cm [9] leads
to a stability constraint ok >3.6 X 10~ N cm™. If we double
the minimal radius value, the last condition is less constrain-
ing since (ok)n, is four times smaller. It is also possible
from (10) to assess the compliance of the ventricle area.
Indeed, retaining the typical value E=~ 10’ Pa of the ependy-
ma’s Young modulus [4], a thickness =500 um and a Pois-
son ratio 0,~0.5, we are led to the so-called empty com-
partment’s compliance Cy=~0.25 ml/mm Hg. This value
agrees quite well with those encountered in the litterature
[19].

B. Characteristic time in the structurally stable region

We aim here to give a further analysis of our dynamical
model and show that it allows to compute explicitly the re-
laxation time of the ventricular compartment. Equation (5)
provides a complete and realistic model for the intracranial
system only when we incorporate the CSF resorption pro-
cesses. The precise form of the resorption term /, depends of
course on the resorption mechanism [20]. Within the ven-
tricular compartment, we will drop the contribution arising
from the veinous absorption and retain only the tran-
sependyma diffusion. Its permeability to CSF is well known
[21] but it is a dominant process only in extreme situations
such as in some physiopathologies of the CSF flow (e.g.,
Sylvius aqueduct obstruction). As was told previously, the
ependyma is a thin membrane of thickness separating two
compartments—brain tissues and ventricles—allowing to
maintain a radial pressure gradient Ap/ (see Fig. 4). The CSF
flowing through that membrane reads then simply

1uz4wRZDA—lp, (15")
where Ap=p—p, is the pressure difference between the com-
partments and D is the diffusion coefficient proportional to
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FIG. 4. Details of the CSF exchange between the third ventricle
and the fourth ventricle. The direct coupling between these com-
partments holds through the Sylvius aqueduct. A lower amplitude
flow holds through the ependyma which offers the CSF a perme-

ability D or equivalently an effective conductance ye,,=47erzl L.

the CSF permeability of the ependyma. The equation con-
trolling the pressure fluctuations dynamics becomes

R> 47R?
;)P Is+ Ypey+ D——py.

. 4ar
Cp)p+\y+D 7

(16)

The right-hand side describes the pressure within the fourth
ventricle, in the brain and the secretion term as excitation
terms. These terms are of course modulated at the cardiac
frequency but a complete determination of these terms re-
quire to build up a complete model of the intracranial system
taking into account the brain tissues dynamics and the cou-
pling between the compartments. We are interested here only
in the assessment of the characteristic time of the system.
This time 7 deduced from (16) reads

R?
v+ 47TD7

— (17)

1_
T Cef]‘

where C, is the effective compliance given by formula (12).
The last expression can be rewritten after a straightforward
calculation 1/7=(1/7,)$(X) where appears a characteristic
time scale 7y=/lkaD and the function ¢ fourth-order poly-

nomial of the a-dimensional parameter X=R,/ R proportional
to the curvature 1/R of the ependyma, which reads
87I'D 'yl
2 ( Y- >X2 - 4}/ x*
47R,D kol 2@R . Dko
=1+aX?-bX*. (18)

HX)=1+

The meaning of the constants @ and b are made obvious by
this expression. An order of magnitude estimation of the
characteristic time scale is given by the product R,C, [time
constant  of  Eq. (16)]  where  Ru(=1/y)=75
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Fx)=1+ax"-px’ a=0 and b=0

Function &x)~¥,,

Epehdyma's curvature x~1/R

FIG. 5. (Color online) Plots of the function ¢(X) proportional to
the reciprocal relaxation time, against the ependyma’s curvature for
increasing values of the parameter a > 0. Two regions denoted zone
I and 1T are clearly distinguished, corresponding to ¢'(X) positive
or negative. In this case, the function exhibits two extremal values.

% 10° mm Hg s/mm? is the hydrodynamical resistance of
the Sylvius aqueduct with length /~20 mm, a section S,
~7 mm? and the CSF viscosity 7.5~ 107> Pa's. We are led
to a typical time 7,~2X 1072 s which is much shorter than
the heart beat period (1 second).

When the effective compliance is positive, that is in the
structurally stable zone (see Fig. 3), the time 7 should be
considered as the relaxation time of the ventricular compart-
ment, that is the time required for a complete resorption of
any pressure fluctuation (around the steady value). It is inter-
esting to notice that the polynomial (18), apart from the sign
of the quartic term, looks like the so-called Landau potential
(or even Higgs potential) usually met in the theory of
second-order phase transitions [22] of condensed systems.
By analogy, the coefficient of the quadratic term in (18) ex-
hibits a critical value of the conductance of the Sylvius ag-
ueduct y-=8mI'D/kol and we subsequently expect two dif-
ferent dynamical behaviors when y<<7, or y> v, suspected
to hide pathological behaviors. Oppositely, as was pointed
out previously, a vanishing CSF surface tension or the ab-
sence of any transpendymar diffusion process eliminates
these regimes and leads to an obviously stable behavior. The
plots of the function ¢(X) for positive (y> y.) and negative
(y< ) parameter a are given in Figs. 5 and 6, respectively.
As we restricted ourselves to the positive compliance region,
we limited the plots to the range of positive curvatures for
which the function ¢(X) is positive. We divided the first plot
into two regions characterized by the sign of the derivative
¢'(X). These regions are characterized by two remarkable
points, the minimum of @$(X) (X=0) and the maximum of
&(X) (X>=al/2b=R*ka(y—yc) /4y if a>0). When a <0, the
state X=0 is turned into a maximum and the function ¢(X)
decreases monotonously. We will show in the next section
the relevance of this subdivision in the analysis of the relax-
ational dynamics.
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FIG. 6. Plots of the function ¢(X) against the ependyma’s cur-
vature X for the parameter a <0. Only the region II remains and the
associated relaxation time increases with the curvature. Its minimal
value is realized for zero curvature.

C. Relaxational dynamics
1. Pressure fluctuations damping

When ¢(X) >0, the characteristic time of our system for
any steady value of the ependyma’s curvature can be de-
duced form the causal Green function [23] of Eq. (15)

e_(/)(X)t/TO’ >0
h(t;X) = . (19)
0 otherwise

or equivalently from its Fourier transform,
1
H(w,X) = 1/<jw+ —(1 +aX2—bx4)> (20)
70

This last expression is of high interest since it coincides with
the transfer function between the ventricular pressure and the
outer compartment pressure. It is clear from these expres-
sions that the ventricular compartment might be viewed as a
low-pass filter with a cutoff frequency w-¢(X) depending on
the steady curvature of the ependyma. If we neglect both the
CSF surface tension (I'—0) and the transependymar diffu-
sion (D—0), the cutoff frequency reduces to wc
o« koy/4mwR?. Tt is then clear that for “normal” values of the
conductance y and the elasticity k, the cutoff frequency is
high enough. Oppositely, in the case of an aqueduct’s ob-
struction or any abnormal elastic behavior of the ependyma
(low k and 7) the cutoff w, is vanishingly small correspond-
ing to an infinite relaxation time: the ventricles lose their
ability to regulate the pressure. In these limits, it is clear
from Eq. (16) that the only nonvanishing term being the CSF
secretion rate Ig, we expect a ventricle dilation. This point
will be developped in the last section.

2. Stability towards fluctuations

The conclusions of the last section are valid only for a
well defined curvature X. In fact, the relaxational dynamics
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of the system, that is its ability to resorb any pressure fluc-
tuation, is more complex. Indeed, the pressure p within the
ventricles is always associated with some random fluctua-
tions (noise) around its steady value. These pressure fluctua-

tions induce random fluctuations 6X=X-X of the curvature
obeying a stationary probability (density) distribution p(5X).
The efficiency of the regulation processes maintaining the
system around its steady state might be measured by the
variance oy=(8X?)= [*p(5X)8X?d(5X) which should be as
small as possible. In the presence of fluctuations, the Green
function (19) (or its Fourier transform) must be averaged
over the fluctuations [22]

F.T.

(h(t;X)) = J +wp(5X)e‘<’”0>¢<"“'“)d<5X) “ (H(w))

1
- <jw + ¢(x)/ro>' @D

The fluctuations thus lead to a broadening of the steady state
of the system, turning the initial stability problem into the
question of the stability towards fluctuations. The system’s
ability to regulate the pressure will depend on the existence
of this average Green function [24] or equivalently of an
effective relaxation time.

This necessary handling of the average Green function is
justified by the stochastic nature of our dynamical equation
in the presence of fluctuations (random coefficients). It has
non trivial consequences on the dynamical behaviour of our
system and thus on the electrical analogs to be built up (see
the next section). Unluckily, the calculation of the average
Green function is made difficult both by the unknown prob-
ability distribution of those fluctuations and the high order of
the polynomial ¢(X). Nevertheless, there are some workable
limiting cases generating approximations relevant from both
a physical and a clinical point of view. The simplest approxi-
mation consists in dropping the fourth order term in the func-
tion ¢(X). This approximation is valid as far as X<< \JW
that is for high enough curvature radii. The average Green
function reads then

_ [t*® _
<h(t;X)> — e—(z/70)¢(X)f p(5X)g—(t/ro)a5X26—(2z/ro)aX5Xd( 5X) ,
(22)

where it is clear that a should be positive for the integral to
exist whatever the probability distribution. Should it be oth-
erwise, the system is unstable towards fluctuations. In the
stable regime, that is a >0, the precise form of this function
is a very important factor since it determines the electrical
analogs associated with our system. The distribution prob-
ability is the key parameter which seems difficult to extract
from Eq. (22) with a simple procedure.

The modeling of the fluctuations probability density is the
only way to assess the function (22). Thus, assuming a
Gaussian probability distribution centered about the station-

ary curvature X with a width oy, Eq. (22) reads
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ey = 1K) (T

—(u2 2 _ X
’ e (u /2)(1/0’X+2a(t/7'0))e 2a(t/TO)Xudu.
V2moyJ —

(23)

The detailed calculation reported in Appendix C leads to the
final expression,

17\ ) 2
(h(t:X)) = — 2_0) o~ T0pmatX"17y(1+2a0 1 7y) (24)
Oy at

whose long time behavior 77,/ 2a0’§( is not trivial

~t/7y

(1, X))~ rR—C 25)

X (2at/70)l/4'
The frequency dependence of its Fourier transform is then
(H(w)) < 1/ (jor+ 1/ 19)P=¢ B acan(on) /(24 1/ 7(2))5/2 where
the power S=3/4.

The main conclusions to be drawn from this section are
that the system is stable towards fluctuations (regulation of
the pressure fluctuations and well defined stationary state)
only when a>0 as was expected and that the presence of
fluctuations gives rise to new non trivial dynamical regimes.
Though difficult, it should be interesting to extract the exact
fluctuation spectrum from the measurements of the Green
function /4 since its interpretation restricts severely the pos-
sible electrical analogues.

3. Electrical analogues

The linearized dynamics of the ventricular pressure varia-
tions expressed in Eq. (16) suggests very simple electrical
analogues. Indeed, if as usual we interpret the pressure
within the coupled compartments as electrical potential and
the flow I as a current, Eq. (16) can be rewritten as a simple
current balance equation (nodes’ law),

D4mR?
Is=Cp+ Y(p=Pew) + T(p - Db (26)

leading to a simple parallel RC circuit. A supplementary re-
sistance can be added in parallel with the compliance C to
model the dissipative properties of the ventricular dynamics
we neglected in our model (low frequency dynamics). The
coupling of the SAS (pressure p,,,) to the brain (pressure p;)
can be modeled by any additional circuit which is unknown
but might be deduced from a modeling of the global intrac-
ranial dynamics. This circuit is of course very simple but
there are many other ways to generate electrical analogues.
For instance, the ventricular compartment could be regarded
as a filter if the right-hand side of (16) is interpreted as an
excitation (input) and the ventricular pressure as the response
to that excitation (output). The filter is then as was pointed
out in a previous section, a low-pass filter with a transfer
function given by (19). These electrical analogues are simple
and intuitive since their components involve only the rel-
evant physical parameters (D, y, ...). They allow for model-
ing both the normal (healthy) situation corresponding to high
v values (or a>0) and pathological ones such as a severe
obstruction of the aqueduct associated with the vanishing y
limit.
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FIG. 7. (Color online) Plots of the magnitude of the transfer
function against the conductance of the Sylvius aqueduct at differ-
ent arbitrary frequencies. When approaching the “critical” conduc-
tance, this magnitude diverges with a critical exponent 0.25. This
behavior indicates the vicinity of an unstable region.

There is no evidence in such an approach for any insta-
bility since all the coefficients are positive. As was shown
previously in our physical model, instability towards random
pressure fluctuations are evidenced in a stochastic model.
But the electrical analogues to be associated with the sto-
chastic model are not trivial. This is made clear by the Fou-
rier transform of Eq. (25), which at high enough frequency
reads

To 1

U —)_(2/20'2
ox 2ay(y=vc)

)1/46 X(ijO)3/4 (v> o).

(H(w)) =

(27)

This result clearly suggests the use of a nonintuitive electri-
cal circuit (empirical) referred to as a constant phase element
(CPE) [25] associated with an admittance Y(w)e 1/(jo7)®
where the exponent « is usually lying between 0.5 and 1 (in
our case @=3/4). In many situations of condensed matter
physics where it is encountered, it has many causes. In our
model, it originates from the randomness affecting the cur-
vature (Gaussian fluctuation spectrum) or equivalently from
the statistical distribution of relaxation times. The variation
of the amplitude [(H(w))| with the conductance 7 at various
frequencies is reported on Fig. 7. The unstable region is vis-
ible below the critical conductance .. In the vicinity of the
critical conductance (critical point), the transfer function
strongly diverges (signature of the instability).

The main problem with these CPE-based models is the
ill-defined capacitance to be associated with the system. In-
deed, according to (27) a frequency-dependent capacitance
seems unavoidable except if we consider restricted frequency
ranges where the capacitance exhibits constant values likely
to depend on these ranges. The problem is made more acute
when remembering that this capacitance extracted from the
electrical analogue is usually thought of as an assessment of
the compliance of the compartment under study. This cir-
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cumstance illustrates the limitation of any intuitive interpre-
tation of the analogues which might generate any spurious
values of the main parameters of the system. Thus, unlike the
purely deterministic case modeling of the ventricles’ dynam-
ics by CPE seems more relevant since it accounts for any
structural instability (pressure regulation instability) in keep-
ing with specific pathologies of the intracranial dynamics.
Nevertheless, the introduction of these non intuitive circuits
doesn’t allow for a direct assessment of the compliance.

V. RELATIONS TO HYDROCEPHALUS

In this section, we aim at discussing the possible applica-
tions of our model to hydrocephalus [9]. Hydrocephalus cor-
responds to the clinical effects accompanying the ventricles’
distension [26]. A physical approach is rather “poor” to give
a complete description of hydrocephalus: the clinical effects
involve physiological processes whose complexity is out of
the range of physics. We will thus focuse on the dilation
process. In our model, dynamical instabilities are clearly
identified which correspond to a lack of the intracranial pres-
sure regulation. The sudden and uncontrolled pressure in-
crease might lead to the ventricles’ expansion.

A. Kinetic model of the dilation process

A description of the dilation process lacks. It should be
postulated independently of our model. This description re-
quires a kinetic equation ruling the time evolution of the
curvature radius of the ependyma. An empirical law regard-
ing slow dilation is known from the studies carried out by
Milhorat [21] on a population of chimpanzees. The radius
expands in two steps according to nearly linear laws,

R(1) = Ry + Ryt (28)

with a dilation rate R, much smaller in the second step. The
typical values of these rates were about 10% of the total
radius per hour in the first step (lasting 6 hours) and
0.5% per hour during the second step (lasting 40 hours).
Considering the case of an obstructive (y—0) hydroceph-
alus and neglecting the transependymar flow (D—0), the
ventricular pressure p(¢) averaged over a cardiac cycle (we
thus drop the modulated component) evolves according to
the law

dp(1)
Ct)—— =1, 29
(t) o s (29)
where we defined a slowly varying compliance
C(1)4mR*(t)/ ok. The last equation then reads
C(0)p=Ig/(1 +2tRy/Ry) (30)

leading to a slow logarithmic variation of the pressure p(r)
=[Isto/ C(0)]In(1 +1/1,), where we set ty=R,/2R, and C(0) is
the initial compliance. This evolution is reported on Fig. 8
for different arbitrary values of the time scale #,. These
curves strongly resemble those reported by Milhorat with a
slope at the origin I3/ C(0). According to Milhorat’s data
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FIG. 8. (Color online) Obstruction of the aqueduct leads in our
model to a logarithmic (slow) variation of the ventricular pressure.
This prediction is in good agreement with the data reported by
Milhorat [21]. Two different regimes can be distinguished at short
and long times with a slowing down at long times.

Ro/Ry=0.1 h™" leading to a typical time 7y=5 h and the
initial pressure variation rate py20(ml/h)/0.25(ml/mm Hg)
=80 mm Hg/h.

B. Spontaneous dilation in the non stationary regime

We can get a step further by evaluating the way the Green
function (19) is modified in the presence of a dilation. When

the curvature depends slightly on time X=X(r), this function
reads

h(1,X(1)) = e~ oo 1) (31)

Taking into account the slow variations of the curvature, we
obtain the JHp(X(¢"))dt = tp(X(0))

+12/2[0p(X)/ 9X -X(1)]o+- - truncated to second order. The
response function finally reads

expansion

h(, )_((t)) e—z¢(>?0)/70 e—(rZ/er)(w/w?);(O)x_o — e—ate—ﬁtz/z’ (32)

where the index zero attached to the curvature and related
magnitudes indicate initial values and the constants « and 8
are short notations easy to deduce form (32). From (32) we
deduce that in the nonstationary regime (curvature Kinetics),
the stability condition (finite Green function) reads B

=(1/79)Xo(dp/ 3X)>0. Two situations are then possible.
For a>0, if the system is dropped in a state located in the

first zone of Fig. 5 (¢’ >0), we expect X>0(R<0) that is
the system contracts spontaneously. If dropped in the zone II

(¢’ <0), we expect oppositely X <0, that is the system un-
dergoes a spontaneous dilation. Finally, at the point realizing
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the maximum value of the function ¢, that is the shorter
relaxation time, the system should be oscillating (stable
point). For a<0 (e.g., obstruction of the Sylvius aqueduct),
the system is offered only one possibility: spontaneous dila-
tion till the minimal value (X=0) of the relaxation time is
realized (in fact it is never reached). We are thus led to the
following interesting conclusion: Spontaneous dilation of the
ventricles occurs for unstable systems to minimize their re-
laxation time. Moreover, the pathological situations should
be identified with the case a <0 for which no stationary state
exists. For highlighting the strong correlation of this last re-
gime with hydrocephalus, it is worth noticing that the insta-
bility condition should be read in many ways if written as

vka/D < 8T/l. (33)

It is clear that it might be realized in different ways leading
to a naive classification scheme of pathologies. Abnormally
small values of the aqueduct’s conductance 7y correspond to
obstruction (in the physiological sense), total obstruction cor-
responding to a vanishing y. Abnormal elastic behavior of
the ependyma corresponds to small values of the modulus k.
In that case, a normal CSF transfer through the aqueduct is
present but the unability of the system to regulate the intrac-
ranial pressure arises from a too low restoring force of the
ependyma. The last case corresponds to abnormally high val-
ues of the diffusion constant D, that is to an abnormally high
value of the ependyma’s permeability to CSF. A high CSF
flow through the parenchyma (acting as a poroelastic me-
dium) is then expected. In that case the mass transfer be-
tween the subarachnoid space and the ventricular system is
dominated by this transependymar diffusion. This flow is not
totally balanced by the direct transfer through the aqueduct
(too low) and a kind of “closed loop” flow is expected. Fur-
ther calculations to understand quantitavely this unsteady re-
gime are necessary (this requires a modeling of the paren-
chyma structure) but it seems in keeping with the so-called
normal pressure hydrocephalus [9]. These last consequences
suggest a possible unified physical description of hydroceph-
alus.

We would like to conclude this section by computing the
transfer function associated with these pathological situa-
tions. A straightforward Fourier transform of (32) leads to

H(w)= ejodllBlg=olog, (34)

It corresponds to the transfer function of a Gaussian low-pass
filter with a cutoff frequency we=\2|Xy(dp/IX)o|/ 7o
=\2|Xo|agXo|y—v.|. The cutoff frequency thus scales as w,

« (y.—y)"2. A large cutoff should correspond to a fast dila-
tion and a small one to a very slow dilation.

VI. CONCLUSION

To address the problem of ventricles’ dilation as a pos-
sible instability of the intracranial dynamics, we built up
from first principles a model focusing on the third and lateral
ventricles’ compartment excited by its coupling to the fourth
one (CSF exchange through the Sylvius aqueduct endowed
with an appropriate hydrodynamical conductance) and to
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brain matter. The third and lateral ventricles were treated as a
unique spherical compartment of CSF delimited by the
ependyma treated as an elastic closed membrane. The ob-
tained dynamical equation is linearized around a steady state
characterized by an effective algebraic compliance depend-
ing on both the geometry of the compartment, the ependy-
ma’s elasticity and the CSF surface tension.

This model bears some instabilities of different nature
characterized by a lack of the ventricular pressure regulation.
The first one is a structural instability revealed by the change
of sign of the effective compliance which occurs for a CSF
surface tension lower than a critical value proportional to the
ependyma’s Young modulus and its thickness. In the positive
effective compliance region, we were able to compute the
relaxation time of the system identified as a Landau like
fourth order polynomial of the ependyma’s curvature. As in
the Landau theory of phase transitions, the instability is
driven by the quadratic term a proportional to (y— y.) where
v is the Sylvius aqueduct’s conductance. Two different re-
gimes of the relaxational dynamics are predicted according
to the sign of a. The difference in these regimes is evidenced
through the response of the system to random pressure fluc-
tuations, that is the behavior of the causal Green function of
the dynamical equations averaged over the fluctuations dis-
tribution. We have shown that for a >0, the transfer function
is that of a non trivial low-pass filter identical to a constant
phase element suggesting interpretation of the dynamics in
terms of nonintuitive circuits. Oppositely when a is negative,
the system is shown to be unstable towards a spontaneous
dilation of the ventricle which acts as a gaussian low-pass
filter whose cutoff frequency scales as (y-—1)!"?. Finally,
using a simple model for the dilation kinetics inspired by the
data obtained by Milhorat in a population of chimpanzees,
we have established a clear correlation between this last in-
stability and hydrocephalus.

Further studies, and especially a systematic comparison of
our model to MRI data obtained on a human population (to
assess the main parameters of our model), are in progress to
validate this possible interpretation of hydrocephalus as in-
tracranial dynamics’ instabilities.

APPENDIX A

In this appendix we aim to give further details regarding
the models of the intracranial dynamics of the type pressure-
volume usually referred to in the literature. These models
rely on the CSF mass conservation law and the mechanisms
of secretion and absorption of CSF. The balance mass equa-
tion reads,

dV/dt = (CSF formation rate) — (CSF absorption rate)
= IS - Ia’ (Al)

where V(¢) is the CSF total volume at any time ¢ within the
studied compartment, and the terms /g and I, are respectively
the CSF secretion and resorption rate, that is the CSF volume
created or absorbed per unit time. We would like to empha-
size, as was pointed out in the body of the text, that this
equation governs the long-term dynamics of the CSF vol-
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ume. More precisely, it doesn’t take into account the modu-
lation of the CSF due to cardiac pulses (short time or fast
dynamics) since the CSF secretion/absorption process is
characterized by a characteristic time longer (a few hours)
than the cardiac pulses period (a second). It is obtained very
simply by averaging over several cardiac cycles (this proce-
dure averages out the cardiac modulation of the density and
velocity of the CSF) and integrating over the whole compart-
ment volume the continuity equation,

J
div(pv) + ;f; =plls-1,), (A2)

where p is the CSF density at any time (p its average con-
stant density) and the velocity field v captures the pulsatile
nature of the CSF flow generated by cardiac pulses. The
secretion and absorption rates act of course as sources term.
This is a local equation characterizing the fluid flow. Its im-
plication on the global dynamics of the system fluid
+compartment frontier will depend on the boundary condi-
tions imposed to our system. For instance, as is usually the
case, if the compartment is limited by an elastic membrane
(such as the ependyma), the global dynamics might be de-
rived from integrating Eq. (A2) throughout the mobile fron-
tier of the compartment. It thus generates extra terms due to
the elastic deformation of the frontier contributing the time
variation of the pressure within the compartment. A system-
atic implementation of this procedure is very difficult be-
cause the lack of knowledge of the dynamical laws govern-
ing the elastic deformations or the complex geometry of the
membrane. Many authors circumvent these difficulties by re-
taining in these elastic deformations the only associated
variations of the volume of the compartment and introduce
an ad hoc parameter, the so-called compliance C of the fluid
compartment. The parameter C is a measurement of the stor-
age capacity in volume determined by the elastic (or vis-
coelastic) properties of the system. The global dynamics of
the pressure, assumed to be first order (if inertia is neglected)
reads then,

C(P)le—l: + L I{t) + % +8(1), (A3)

R,
where C(P) is the pressure-dependent compliance, P the
pressure within the compartment, R, is any “hydrodynamic”
resistance corresponding to a fluid exchange with any other
compartment with a pressure P, (this might be of course a
blood vessel), I; is the source term and S(z) any excitation
term (e.g., blood pulsatile flow). Equation (A3) represents an
infinity of models since there are many ways to choose the
analytical dependence of the compliance with pressure. A
strictly linear model corresponds to a constant compliance.
But non linear model were also produced by Marmarou [13]
or Sklar [12]. Whatever the precise dependence on pressure
chosen for the compliance, the main problem is unsolved:
there is no systematic method to compute this compliance
which would allow for a deeper understanding of it and its
eventual role in the intracranial dynamics pathologies.
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APPENDIX B

In this appendix we aim at deriving the ependyma’s mo-
tion equation and its solution relating the time evolution of
its radius R(7) to the average pressure p(r) within the ven-
tricles. The motion equation of an infinitesimal piece of
ependyma (see Fig. 2) endowed with a mass dm=0od> (or
superficial mass o) then reads,

SmR = — n&mR —kom(R—R,) + (piy— Pou)d>, (B1)

where k is the elastic constant of the ependyma and 7 is the
viscous damping coefficient. This equation which is trivially
projected onto the normal direction to the ependyma is the
simplest model we can build up. According to this oversim-
plified view, the ependyma might be viewed as a spring with
constant k and damping coefficient 7. Fourier transforming
this equation leads to the simple solution expressed as a con-
volution

1 (™
R0 =R, +— J h(t = t)[pin(t') = poult)]dt’,  (B2)
where h(¢') is the causal Green function of Eq. (B1),
e 1 .
h(t") =f —5 ¢ dwift’ >0 and 0 otherwise.
e —W +tk+ion
(B3)

It is then clear that the Fourier spectra of the pressures
(and the ventricular radius) involved in all these equations
are dominated by low frequencies because of the cardiac
excitation, that is their amplitudes are negligible when the
frequencies are high enough. According to Eq. (B2), the ven-
tricle’s radius spectrum is dominated by low frequencies.
Subsequently, we can restrict ourselves in (B3) to the low
frequency range (w<<\k). Indeed, the Green function can be
expanded as

o) = Loy - [ I g
p - B . e 1)
+o0 /. _2\2 o,
+f (W]Tw) e do+ . (B4)

Substituting this expansion in (B2) and taking into account
the restriction of the pressure spectrum to low frequencies,
we can drop all the terms of the expansion but the first one.
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Within this approximation, Eq. (B2) becomes

R(t)-R,~
(1) - R, -

(B5)

APPENDIX C

In this appendix we calculate the expression obtained in
(23). This equation can be rewritten

B - W(u)
(h(2,X)) = h(1,X) Ny

(C1)

where we set u=(2at/75)X and introduced the function
W(u)=] gme_lezrzch(ux)dx depending on the parameter
1/T2=1/ 0'X2+2at/ Tp- An integration by parts leads to the
new expression

[ 1 0¥
W(u) = —Zf xsh(ux)e_lezrzdx =——.
ul>J,

C2
ul’? ou (€2)

We then have to solve a first order differential equation with

an initial condition \If(O)zy"ETI’. Its solution reads

V(u) = \"’Zm‘xe(”z/ 2r?

2

o 1 YL . S
= VN2 eXp| 2a”— 5
(1/ay* + 2atlmp)'* 7 s Za(rxzi
70
(C3)
1 1
h(t,X)) = —e™'
h(t.X)) (1/ay> + 2atl ) oy
2 2
- g —
Xexp 2612?)(2 2 —atX*7,
O 1+ 2a0'X2—
70
1 1 ~tl7y
= —e
(1/ay> + 2atl ) * oy
t -, 1
Xexp| —a—X"———F—|, (C4)
T 1+2ao0ytlT

from which follows the long time behavior obtained in Eq.
(25).
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