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Nonlinear dynamics of homeothermic temperature control in skunk cabbage,
Symplocarpus foetidus
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Certain primitive plants undergo orchestrated temperature control during flowering. Skunk cabbage, Sym-

plocarpus foetidus, has been demonstrated to maintain an internal temperature of around 20 °C even when the
ambient temperature drops below freezing. However, it is not clear whether a unique algorithm controls the
homeothermic behavior of S. foetidus, or whether such an algorithm might exhibit linear or nonlinear ther-
moregulatory dynamics. Here we report the underlying dynamics of temperature control in S. foetidus using
nonlinear forecasting, attractor and correlation dimension analyses. It was shown that thermoregulation in S.

foetidus was governed by low-dimensional chaotic dynamics, the geometry of which showed a strange attractor
named the ‘“Zazen attractor.” Our data suggest that the chaotic thermoregulation in S. foetidus is inherent and
that it is an adaptive response to the natural environment.
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I. INTRODUCTION

Thermogenesis, though uncommon in higher plants, is a
phenomenon in which the temperature of specific tissue or
organ is increased by the generation of endogenous heat. The
spadix of the skunk cabbage, Symplocarpus foetidus, has
been shown to produce enough heat to avoid chilling or
freezing injury in cold environments [1-3]. Furthermore, its
temperature has been demonstrated to be controlled surpris-
ingly at a nearly constant level as well as that of warm-
blooded mammals [3-5].

In recent years, a number of studies have explored the
mechanism involved in temperature regulation in S. foetidus
[4-7]. Tt has been shown that the dissipation of mitochon-
drial electrochemical potential by uncoupling proteins in-
creases the rate of respiration, leading to an increase in the
temperature of the thermogenic organ [8]. A time-dependent
thermogenic oscillatory model that acts as a precise thermal
regulator under dynamic environmental temperature changes
has also been proposed [6]. Moreover, the dynamics of ther-
moregulatory responses in S. foetidus have been elucidated
from the relationships between the spadix temperature, the
respiration rate and ambient temperature at equilibrium, as
well as during transient responses to step changes [7]. How-
ever, because of limitations associated with conventional
time series analyses that are particularly susceptible to mis-
interpretation, the precise dynamics of temperature regula-
tion in living systems such as S. foetidus still remains to be
elucidated.

To resolve this bottleneck, we have employed a nonlinear
forecasting technique to detect determinism in natural time
series data contaminated by external noise [9—18]. Forecast-
ing accuracy is low for any stochastic time series analysis,
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irrespective of the number of predicted time steps. Con-
versely, periodic sequences consistently exhibit high predict-
ability. With a chaotic signal or an autocorrelated noise se-
quence, short-term predictability is likely to be high initially,
but the accuracy of any nonlinear forecast would decrease as
the number of predicted time intervals increased [17]. This
technique could also be applied to estimating an appropriate
embedding dimension, which would correspond to the num-
ber of degrees of freedom for the dynamics of a system even
when the observed time series has relatively few points.
Here, an approach that only considers nearby states referred
to as “local linear approximation” [9] was employed to make
effective short-term predictions, instead of detecting a com-
plete formula to describe the entire system. Computation is
simplified with this approach and can be executed efficiently
on a personal computer. Such a practical method for nonlin-
ear analysis allows us to systematically characterize the de-
terministic chaos in the spadix temperature of S. foetidus.

II. EXPERIMENTS

Experiments were conducted on a wild population of S.
foetidus located in damp areas near Kitakami City (38°23'N,
143°23'E) and Shizukuishi Town (39°45’'N, 141°00’E) in
Iwate Prefecture, and in Hakuba Village (36°39'N,
137°50'E) in Nagano Prefecture in Japan. The spadix tem-
peratures of S. foetidus specimens were recorded at 1 min
intervals using an automatic recording thermometer con-
nected to an electronic thermocouple placed on the surface of
the thermogenic spadix [6].

III. METHODS FOR CHARACTERIZATION OF
DYNAMICS IN THERMOREGULATION

To analyze the underlying dynamics of the time series, a
geometric reconstruction was first undertaken in phase space
using a method based on standard time-delay embedding
[19-22]. From a given time series {X,}_, with N data points,
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the following reconstruction vectors were formed in m di-
mensions:

Xn= (Xn7Xn+T""’Xn+(m—1)T)‘ (1)

The integers 7 and m represent the lag time and embedding
dimension, respectively. Here the embedding dimension is
m=3 and the lag time is 7=10, which corresponds to 1/6 of
the dominant cycling period of the thermal oscillation in S.
foetidus.

Next, the correlation dimension, that is an approximation
of the effective number of degrees of freedom or the effec-
tive number of variables involved in the generating process
of the time series, was estimated from the correlation inte-
grals [19-21]. For deterministic time series, the correlation
integrals for the small radius r of the hypersphere in recon-
struction space and the large embedding dimension m behave
according to the scaling relationship

c,, < r, (2)

where D, is the correlation dimension. Using the
Grassberger-Procaccia method [19,20], the correlation inte-
grals are estimated using

1 N-1 N
Cfmz %e("_nxi_xj ). (3)

where O(-) is the Heaviside function, |-|| is some norm, and
X,, are reconstruction vectors. The invariants, D,, is esti-
mated by fitting the scaling relationship given in Eq. (2) to
the sample correlation integral within the scaling region con-
sisting of an r-interval in which the scaling law approxi-
mately holds; the curves C,, versus r on a double logarithmic
scale should be approximately straight and parallel for con-
secutive values of m.
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Finally, the identity of dynamics in the time series of the
spadix temperature was estimated using a method based on
the nonlinear forecasting [9-11] which provides a means for
detecting dynamics in any given time series. First, a library
pattern was constructed using an approach based on the re-
construction in an m-dimensional space from the spadix tem-
perature series for S. foetidus. This library pattern was used
to make predictions about the behavior of the time series of
the spadix temperature for another S. foetidus (target time
series). For the m-dimensional time-lag vector selected from
the target time series, M(=m+ 1) nearest neighbor vectors,
uk;) (i=1 to M), were selected from the library pattern. The
predicted values p time steps into the future, o (T+p), were
calculated using the following equation:

M
2 exp(=d)v (k;+p)
0(T+p)=—"— : )
21 exp(—d;)

where d; is the distance between v (k;) and ¢ (T) in Euclidean
space. Forecasting accuracy is determined by calculating the
correlation coefficient between the actual [v(z)] and fore-
casted [©(7)] time series (t=1-N, where N is the number of
data points in the target time series). If the forecasting accu-
racy was high, the underlying dynamics of the target time
series would be the same as that of the time series from
which the library pattern was composed.

IV. FEATURES OF THERMOREGULATORY DYNAMICS

The spadix temperature (7) of S. foetidus is maintained at
approximately 20 °C during flowering despite decreases in

FIG. 1. (a) Time series of spadix temperature
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(T,) of S. foetidus and air temperature (7,) ob-
tained in Shizukuishi Town in Iwate Prefecture,
Japan. The inset shows the T series (including
approximately 3000 data points corresponding to
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air temperature (7,) [Fig. 1(a)]. In addition, distinct complex
oscillations in T, were observed [Fig. 1(a)]. This oscillatory
rhythm is characterized by the dominant cycling period of
approximately 60 minutes and is different from other known
circadian and biological rhythms [6]. Generally, oscillations
in the time series are regarded as an effect of the dynamical
behavior of the system that generates the time series. Hence,
the underlying dynamics in the thermoregulatory system of
S. foetidus could be identified by a detailed analysis of a T
data series using the method of nonlinear forecasting analy-
sis [9-18] during homeothermic stage of the spadix [inset in
Fig. 1(a)]. Figure 1(b) shows the correlation coefficient (R)
between observed values and forecasted values for one time
step into the future for the above time series. The correlation
coefficient, corresponding to the forecasting accuracy, was
0.94. These findings indicate that a deterministic law derived
from the behavior of past values governs thermoregulation,

even in the future. The variation in the correlation coefficient
between observed and forecasted values, which indicates
how the forecasting accuracy varies with an increase in the
number of prediction time steps, is presented in Fig. 1(c).
The decrease in the correlation coefficient with the increase
in the prediction time step as shown in Fig. 1(c) is a charac-
teristic feature of deterministic chaos. However, as is the
case with a chaotic signal, the forecasting accuracy of auto-
correlated noise signals is known to decrease with the in-
crease in the number of prediction time steps [14].

To solve this problem, Elsner’s method [14] was em-
ployed to distinguish between deterministic chaos and auto-
correlated noise. In this method, the logarithm of 1-R for
deterministic chaos should be linearly proportional to the
prediction time step, p, and linearly proportional to log;o(p)
for the autocorrelated noise [14]. Computational results for
scaling of the correlation coefficient in Fig. 1(c) are given in

FIG. 3. Dimension analysis and the attractor
for the T, time series of S. foetidus [inset of Fig.
1(a)]. (a) The correlation coefficient between ac-
tual and forecasted values is shown as a function
of the embedding dimension m. The correlation
coefficient is saturated at an embedding dimen-
sion of m=3 indicating that the optimal embed-
ding dimension is 3. (b) The reconstruction of the

T, series of S. foetidus [inset in Fig. 1(a)] in a
three-dimensional space (corresponding to the
embedding dimension of m=3) shows the char-
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acteristic cylindrical structure of a strange attrac-
tor. (c) Correlation integrals and local slopes for
embedding dimensions ranging from 2 to 16 for
the T, series of S. foetidus [inset of Fig. 1(a)]. The
values between the two dotted lines were used to
estimate the correlation dimension. The correla-
tion dimension, which is the saturated value of
the local slope, is approximately 2.63.
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FIG. 4. Comparison between the underlying dynamics of 7 series of S. foetidus from Kitakami City and Shizukuishi Town in Iwate
Prefecture, as well as Hakuba Village in Nagano Prefecture in Japan. Comparison with air temperature dynamics is also presented to better
illustrate our strategy. From the top to the third row, predicted values from the 7 series of S. foetidus from Shizukuishi Town, Kitakami City,
and Hakuba Village versus the observed values for the 7 series observed in S. foetidus from other locations and various air temperatures are
shown, respectively. The predicted time series from air temperature versus the observed time series in S. foetidus specimens from other
locations is shown in the bottom row.

Figs. 2(a) and 2(b), which show plots of log;,(1-R) against These results indicate that the 7 data series of S. foetidus are
p and of log;o(1—R) against log,y(p), respectively. As shown  chaotic and thus that the thermoregulatory system in this
in Fig. 2(a), the semilog plot of 1—R against p was linear, plant could be represented using nonlinear dynamics.

whereas the log-log plot shown in Fig. 2(b) was nonlinear. To further understand the structure of nonlinear dynamics
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governing thermoregulation in S. foetidus, the dimension and
attractor were analyzed for the 7 series in S. foetidus. No-
tions of the dimension and attractor are connected to the
number of degrees of freedom for dynamics and the dynami-
cal behavior of the system generating time series, respec-
tively. Figure 3(a) shows the variation in the correlation co-
efficients as a function of the embedding dimension m
corresponding to the dimension of the reconstruction space.
As shown in Fig. 3(a), the correlation coefficient was found
to be saturated when m=3. This implies that the optimal
embedding dimension for reconstructing the phase space is
m=3. We therefore reconstructed the T series in Fig. 1(a) in
a three-dimensional space [Fig. 3(b)] using a lag time of 10
sampling intervals which corresponded to 1/6 of the domi-
nant cycling period of the temperature oscillation (ca. 60
min). The trajectory shown in Fig. 3(b), termed the attractor,
exhibited a unique cylindrical shape and was similar to the
Shil’nikov type [23]. We named this attractor the “Zazen
attractor,” since the common name for S. foetidus in Japanese
is “Zazen-sou” (Zen meditation plant). The correlation di-
mension for the geometrical structure of the reconstructed
attractor was then estimated using the Grassberger-Procaccia
method [19-21] [Fig. 3(c)]. The estimated correlation dimen-
sion appeared to become saturated at a value of 2.63, which
is highly consistent with the embedding dimension of m=3
described above. These data again suggest that homeother-
mic temperature control in S. foetidus is regulated by low-
dimensional chaotic dynamics.

We then compared the thermoregulatory dynamics of
plants from different geographic locations. If the dynamics
for the system are unique, correlation between individual dy-
namics should be high. In Fig. 4, the effects of the variations
in ambient air temperatures on the 7 series in S. foetidus are
also shown. Although correlations between the dynamics of
air temperature and thermoregulatory systems in S. foetidus
are low (0.17+0.12), the correlation between the ther-
moregulatory dynamics in S. foetidus from different sites
was significantly higher (0.97+0.03). These findings are
consistent with experimental analyses of thermoregulation in
S. foetidus [6], in which it was proposed that the thermoregu-
lation system in S. foetidus is primarily affected by changes
in spadix temperature and not directly due to variation in the
external environment. These results strongly suggest that the
thermoregulatory system in S. foetidus is governed by a
unique and inherent dynamics that is independent of the en-
vironment and locations of specific individual plants.

PHYSICAL REVIEW E 72, 051909 (2005)

Unlike a previous approach that employed linear dynam-
ics [7], our data have clearly demonstrated that homeother-
mic temperature control in S. foetidus is governed by low-
dimensional nonlinear dynamics. The biological components
responsible for these chaotic characteristics, and how S. foe-
tidus utilizes these dynamics for thermoregulation, however,
remain to be determined. Nonetheless, it is clear that com-
putation of thermogenesis in the spadix of S. foetidus ap-
proximates that of a classical proportional-integral-derivative
(PID) temperature processor [24-26], and that this informa-
tion is used to direct the level of heat production effectively.
Given that chaotic dynamics are relatively robust and there-
fore resilient to contamination by external noise compared to
those of linear systems which can become easily perturbed
[17], the nonlinear thermoregulation observed in S. foetidus
appears to be an adaptation to the marked environmental
temperature fluctuations that characterize the species’ natural
environment.

V. CONCLUSIONS

We demonstrated the presence of chaotic dynamics that
generated distinct complex oscillations in time series of the
spadix temperature of S. foetidus using nonlinear forecasting.
The thermoregulatory system in S. foetidus is described by a
strange attractor, termed the ‘“Zazen attractor,” with a corre-
lation dimension greater than two, but less than three. Fur-
thermore, we compared dynamics among S. foetidus plants
from different geographic locations and found that the pat-
tern was inherent and independent of where they originated
from and the environment. It is concluded that S. foetidus
employs a unique algorithm for regulating spadix tempera-
ture with nonlinear dynamics.
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