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We study the phase behavior of physically cross-linked asymmetric copolymer networks where the compo-
sition of the minor component is small ��10% �. The effects of the degree of cross-linking and monomer-
monomer interactions on the microstructure of the network are considered. Two cases of cross-links are
considered: �1� cross-linking of the majority component only, i.e., inhomogeneous cross-linking, and �2�
cross-linking between all types of monomers with equal probability. It is found that for a given set of param-
eters, both the degree of physical cross-linking and competing �segregating� interactions between the mono-
mers can each be used to induce microphase segregation, or the aggregation of the minor component into
ordered microdomains. The type of cross-linking is found to affect the final morphology of the gel while
interactions enhance the degree of segregation.
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I. INTRODUCTION

Tailoring the structure and properties of materials on the
molecular level in order to control the structure and function-
ality of materials is leading to important advances in fields
such as chromatography, catalysis, and drug release. It has
become evident that multicomponent polymeric materials
provide a relatively inexpensive and versatile approach for
many applications. In particular, the design of “smart” poly-
mers that undergo spontaneous phase transitions in response
to environmental changes, or that are capable of specific rec-
ognition on the molecular level are attracting increasing at-
tention. As a recent example, a rich phase behavior has been
predicted for triblock polyampholytes that display ordered
micellar structures or network structure, depending on pH
�1�. Such a reversible conformational transition is one of
many examples of functional polymers, that, in this case, is
controlled through differing degrees of association of mono-
mers along the polyampholyte chains.

Another type of smart polymer gels are formed via a re-
cently developed molecular imprinting approach that in-
volves phase inversion of a polymer solution in presence of
an imprinting agent whose subsequent extraction results in a
coagulated imprinted gel that relies on physical cross-linking
to resist deformation under operating conditions �2,3�. As
with conventional imprinting approaches �4,5�, relatively
low imprinting efficiencies �i.e., low capacity of molecule-
specific recognition cavities� are achieved with the phase-
inversion technique. In this application, too, functional poly-
mer blends have been suggested in order to improve the
stability of such physically cross-linked gels �6,7�.

Physical constraints, such as entanglements, and loops,
have long been considered as significant contributors to ge-
lation of polymers �8–10�. Deliberate physical constraints
can also be introduced in the form of weakly associating
monomers in the chain, leading to annealed cross-links. The
addition of attractive “stickers” in various chain architectures
has been shown to produce a rich phase behavior. End-
associating polymers have been considered rather exten-
sively both theoretically �11–13� and by means of computer
simulations �14,15�. Polymers having a number of stickers

along the chain backbone have been studied by Monte Carlo
simulations �16,17� and a theoretical model has been sug-
gested for their dynamic behavior �18�.

In the sticker models, the associating monomers present a
small fraction of the total size of the polymer, such that only
very low degrees of cross-linking are considered. Recently,
Gutman and Shakhnovich �19� considered the problem of a
physically cross-linked random heteropolymer. The model is
general in that all monomers may associate with different
cross-linking potentials that are dependent on the type of
associating monomers. In this work, we build on their model,
but concentrate on physical cross-linking of asymmetric ran-
dom heteropolymer gels where the minor constituent pre-
sents up to 10% composition. We analyze conditions that
lead to microphase segregation �aggregation� of the minor
constituent.

Figure 1 illustrates our model of a cross-linked random
heteropolymer. At high temperatures, it can be envisioned
that the system is well mixed with small fluctuations in the
average local densities of the different monomers, as de-
picted in Fig. 1. As the temperature is reduced, however, and
the critical point is approached, the homogeneous mixed
phase begins to show large fluctuations in the local monomer
concentrations, and beyond the critical temperature two dis-
tinct microphases of the different monomers exist. The
threshold at which the system breaks up spontaneously into
domains rich in one type of monomer is known as the spin-
odal while the process of separation of the monomers into
two phase-segregated domains is the spinodal decomposi-
tion.

The domain size at the spinodal during the decomposition
process can be obtained from light scattering experiments,
where the scattering intensity measures segregation that
physically reflects the correlation between concentrations of
the different monomer types at two points:

Sij�r1 − r2� = ��i�r1�� j�r2�� − ��i�r1���� j�r2�� , �1�

where S is the correlation function, also called the structure
factor; r is the three-dimensional spatial position; �i and � j
are the volume fractions of the two different monomers. The
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spinodal is then the point at which the scattering intensity
diverges.

Such a model of physically cross-linked asymmetric ran-
dom copolymers has implications towards another class of
smart polymers which consists of formation of a permanent
porous structure that is capable of molecular recognition. In
our model, the minor constituent represents, for example, a
covalently-bonded imprinting agent. For such applications,
conditions that disfavor aggregation of the minor constituent
into microphase-segregated domains are beneficial.

The organization of the manuscript is as follows: In Sec.
II we develop the model of a physically cross-linked asym-
metric polymer using the path-integral formulation and ob-
tain an expression for the free energy. In Sec. III we analyze
conditions that lead to transition form a disordered phase to a
microphase segregated phase. In Sec. IV we present some
concluding remarks and briefly discuss the implications of
our model towards molecular imprinting.

II. MODEL DEVELOPMENT

In this section we develop a mean-field model for cross-
linked copolymer networks composed mostly of one type of
monomer, say A, covalently bonded to the functional minor
constituent, B. We model a cross-linked random copolymer
chain made up of a large number of monomers, N, of which
a fraction f are backbone monomers of type A�f �1� and the
remainder constitutes the “imprinting” B monomers. The dis-
tribution of A and B segments is taken to be Gaussian with a

mean �̄= �2f −1� and variance �2=4f�1− f�. For bulk prop-
erties, end-effects can be neglected and such a representation
of cross-linked polymer networks is appropriate �20,21�. The
partition function, Z, of a copolymer chain subject to the
constraint of forming Ncl cross-links �formed from 2Ncl
monomers� can be written using Feynman’s path integral for-
mulation as �22�

Z =
/

Dr�s�exp�−
1

2a2	
0

N

ds
 �r

�s
�2

−
1

2�
I,J
	

0

N

ds	
0

N

ds��VIJ�r�s� − r�s����IJ�
� �

I,J
�
i=1

NIJ 	
0

N

ds	
0

N

ds��IJ��rIi�s� − rJi�s��� , �2�

where a is the monomer size, assumed to be equal for both A
and B. r�s� is the spatial location of the monomer at position
s along the backbone of the chain. The summation and prod-
uct subscripts I and J are over the types of monomers and for
our system are either A- or B-type monomers, contributing
three terms for such binary systems �i.e., I=J=A; I=J=B;
and I=A, J=B�. VIJ is the monomer-monomer interaction
potential between I-type monomer at position r�s� and J-type
monomer at position r�s��. The Kronecker delta, �IJ, is in-
cluded so that only appropriate monomer pairs contribute to
each type of interaction potential and cross-linking pairs. The
product term enforces NIJ cross-links between the different
types of monomers, such that Ncl=

1
2�I,JNIJ. In Eq. �2�, the

cross-link labeled by the index i connects the I-type mono-
mer at position r�s� with J-type monomer at position r�s��,
such that only those configurations that satisfy the con-
straints rIi�s�=rJi�s�� �with i=1, . . . ,NIJ, for I and J=A or B�
are retained in the ensemble.

We assume a Poisson distribution of the cross-links, Pcl,
where the average number of cross-linked monomers is de-
termined by the fugacity of the different monomers, �IJ �20�,

Pcl = 
 e��AANAA

2!NAA!
�
 e��ABNAB

NAB!
�
 e��BBNBB

2!NBB!
� , �3�

where �=1/kBT, kB is the Boltzmann constant, and T is the
temperature. The factorials NIJ! and 2! account for the indis-
tinguishable contacts and monomers, respectively.

The Kronecker deltas in Eq. �2� can be written in terms of
an Ising-type variable �23�, ��s�, which labels the type of
segments encountered at position s, e.g., ��s�=1 for A-type
monomers, and −1 for B. It is also convenient to introduce
the following definitions of effective monomer-monomer po-
tentials:

V0 = 1
4 �VAA + 2VAB + VBB� ,

VD = 1
4 �VAA − VBB� ,

VF = 1
4 �VAA − 2VAB + VBB� = − 1

2	 . �4�

The last definition in Eq. �4� is related to the Flory chi pa-
rameter, 	, which is a measure of the difference in the mag-
nitude of interactions between the different monomers. Co-
polymer systems described by positive values of 	 tend to
microphase segregation �24�.

FIG. 1. Two-dimensional schematic depiction of molecular imprinting using a random copolymer with a small fraction of units repre-
senting the imprinting molecules �bold lines� and remaining units forming a physically cross-linked and entangled polymer matrix. Solidi-
fication of the polymer solution around the imprint molecules occurs quickly using, e.g., the phase inversion technique. Chemical extraction
of the minority groups leaves behind cavities complementary to the shape, size, and functionality of the imprinting monomers. Specific
functionality of the minority monomers may lead to local distribution of the functional groups within the formed cavities.
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We assume that the cross-links are reversible once formed
and may anneal in response to external changes. Thus, the
summation over the distributions of cross-links appearing in
Eq. �3� can be readily carried out using the expansion, ex

=�kx
k /k!,

�Z� =
/

Dr�s�exp
−
1

2a2	
0

N

ds
 �r

�s
�2

−
1

2
	

0

N

ds	
0

N

ds�V0�r�s� − r�s����
�exp
−

1

2
	

0

N

ds	
0

N

ds�„VD�r�s� − r�s�����s�

+ VF�r�s� − r�s�����s���s��…�
�exp
1

2
	

0

N

ds	
0

N

ds�„�0 + 2�D��s�

+ �F��s���s��…�„r�s� − r�s��…� , �5�

where the �’s have analogous definitions as the interactions
in Eq. �4�, but for the respective fugacities, i.e.,

�0 = 1
4 �e��AA + 2e��AB + e��BB� ,

�D = 1
4 �e��AA − e��BB� ,

�F = 1
4 �e��AA − 2e��AB + e��BB� . �6�

Thus, the physical constraints due to the cross-links are re-
placed by an effective attractive interaction with strength
proportional to �. To proceed with the solution of Eq. �5�, we
introduce the following order parameters:


�r� = 	
0

N

ds��r�s� − r� �7�

and

m�r� = 	
0

N

ds���s��„r�s� − r… , �8�

where ���s�=��s�− �̄ measures the fluctuations in the value

of the Ising variable � from the mean value �̄=2f −1. 
�r� is
the density order parameter. The microphase order param-
eter, m�r�, is a measure of the difference between local den-
sities of the different monomers �22,25–27�. In addition, we
define the following effective interactions:

v0�r − r�� = V0�r − r�� + 2VD�r − r���̄ + VF�r − r���̄2

− ��0 + 2�D�̄ + �F�̄2���r − r�� ,

vD�r − r�� = VD�r − r�� + VF�r − r���̄ − ��D + �F�̄���r − r�� ,

vF�r − r�� = VF�r − r�� − �F��r − r�� . �9�

The following expression for the partition function is ob-
tained after rewriting Eq. �5� in terms of the order parameter
fields and the effective interactions, and averaging over the
distributions of cross-links,

�Z� =
/

Dr�s�
/

D
�r�
/

Dm�r�

�exp�−
1

2a2	
0

N

ds
 �r

�s
�2

�exp
−
1

2
	 dr	 dr�„
�r�v0�r − r��
�r��

+ 2
�r�vD�r − r��m�r�� + m�r�vF�r − r��m�r��…�
��

�r� − 	

0

N

ds�„r�s� − r…�
��
m�r� − 	

0

N

ds���s��„r�s� − r…� . �10�

Next, we must average over the monomer sequence distribu-
tion which is fixed after preparation. Averages over quenched
distributions can be carried out using the replica trick, first
introduced in the context of macromolecular networks by
Deam and Edwards �20�. In this approach, the system is rep-
licated m times and the quenched randomness is replaced by
inter-replica interactions so that quenched averages are cal-
culated over m+1 copies of the free energy rather than over
the logarithm of the free energy. To obtain the free energy
expression, we proceed as in Refs. �26,28� and rewrite the
Hamiltonian in terms of effective energy and entropy of the
system,

�Zm� = �
�=1

m

/
D
��r�

/
m��r�

�exp
− �
�

��E�
�,m�� − S�
�,m���� , �11�

where

E�
�,m�� =
1

2
	 dr	 dr�„
��r�v0�r − r��
��r��

+ 
��r�vD�r − r��m��r�� + m��r�vF�r − r��m��r��…
�12�

and

S�
�,m�� = ln��
�=1

m

/
Dr��s�
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1

2a2�
�
	

0

N
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�2

�
/

D�
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�
	 dr �


��r� · 

��r�
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− 	
0

N

ds��r��s� − r���
�
/

D�m
��r�exp�i�

�
	 dr �m

��r� · 
m��r�

− 	
0

N

ds���s���r��s� − r���� , �13�

where we have introduced the delta functions over the order
parameter fields appearing in Eqs. �7� and �8� as path inte-
grals. The effective entropy defines the conformation space
of the network under the constraints of the order parameter
fields.

The effective entropy can be calculated by introducing
external fields conjugate to the density and microphase order
parameter fields �26�

Zm��

�,�m

�� = �
a,�

/
D
��r�

/
Dm��r�

�exp
− �
�
	 dr��


��r�
��r� + ���r�m��r��

+ S�
�,m��� . �14�

We consider a dense network such that the order parameter
fields have small fluctuations. Therefore, a saddle-point ap-
proximation that minimizes the integrand in Eq. �14� can be
used so that the order parameters are determined by


� = − � ln Zp/��

�,

m� = − � ln Zp/��m
� . �15�

In order to calculate �ln Zp�, the average over the sequence
fluctuations is carried out, resulting in

Zm = �
�
/

Dr��s�exp�−
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�
	

0

N

ds
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0
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�2

2 �
�
	

0

N

ds
�
�

�m
��r��s���2� .

�16�

The steps taken for the calculation of the entropy appearing
in Eq. �14� are outlined in the Appendix. The ground state
free energy is obtained by combining the expression for the
entropy with that of the energy in Eq. �12�,

F�
�,m�� = 1
2�

�
�

k

„
��k�v0�k�
��− k�

+ 2
��k�vD�k�m��− k� + m��k�vF�k�m��− k�…

+ �
�

�̃��k = 0� − �
a,�

�
k�0

�̃��k��̃��− k�
a2k2

−
�4

4 �
���

�
k,k��0

�m
��k��m

��− k��m
��k���m

��− k��
a2�k2 + k�2�

− �
�

�
k

��

��k�
��− k� + �m

��k�m��− k�� . �17�

The terms appearing in the first line of Eq. �17� are due to
short-ranged interactions between the different monomers
�the first term is the excluded volume nonspecific interac-
tions that describe the average interactions felt by the mono-
mers, the second term relates the difference in the interaction
values, i.e., vD�VA−VB, while the last term is related to the
Flory two-body specific interactions that are responsible for
microphase separation�, all rescaled by the cross-linking po-
tentials between the different monomers. The last three lines
result from the entropy and reflect how the constraints of
cross-linking and the disordered sequence distribution influ-
ence microphase ordering. The quadratic terms in the auxil-
iary fields correspond to the decrease in entropy due to phase
separation of the different monomers, not accounting for
connectivity and cross-linking. The quartic term that couples
different replicas accounts for the effect the connectivity
constraints between nearest-neighbor monomers on mi-
crophase ordering.

III. RESULTS AND DISCUSSION

In this section, we analyze the nature of the disordered
phase in order to gain information on the stability limit be-
yond which the system drives towards order. Conditions fa-
voring phase separation, which may lead to a distribution of
B-rich regions that are much larger than a single monomer,
can be used to form mesoporous structures once the minority
constituent is removed. On the other hand, such aggregation
should be avoided if these monomers are to act as individual
imprinting agents.

A. Disordered phase

In the analysis of the disordered phase, we can neglect the
quartic terms in Eq. �17� when calculating the free energy,
which determine the physics of ordered phases �26,28�.
Since the remaining terms depend on only one replica index
in either the sequence or cross-links replica space, we con-
sider the replica symmetric solution. In this case, solution of
Eqs. �A7� and �A8� for auxiliary order parameter fields, �


and �m, results in the following expression for the free en-
ergy:

F�
,m� =
1

2�
k
�
v0�k� +

a2k2

2
�
�k�
�− k� + 2vD�k�
�k�m

��− k� + 
vF�k� +
1

�2�m�k�m�− k�� . �18�

Scattering experiments can provide information on the struc-
ture factor of the cross-linked system, which describes the
average correlations between the concentrations of the differ-
ent monomers. If correlations exist, then the intensity shows
a peak at a wavelength corresponding to the typical length
scale of correlation. The structure factor can be evaluated
through transformation of the 2�2 matrix of quadratic
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coefficients of the free energy to give a matrix in terms of the
partial monomer densities, 
A and 
B, expressed in terms of
the replica symmetric order parameters through 
=
A+
B
and m /2=
A�1− f�−
Bf . The resulting scattering matrix is

S−1 =
1

�
�sAA sBA

SAB sBB
� , �19�

where

sAA =
1

2

a2k2

2
+ v0�k�

+ 4vD�k��1 − f� + 4
vF�k� +
1

�2��1 − f�2� ,

sBB =
1

2
�a2k2

2
+ v0�k� − 4vD�k�f + 4
vF�k� +

1

�2� f2 ,

sAB = sBA =
1

2
�a2k2

2
+ v0�k� + 2vD�k��1 − 2f�

− 4
vF�k� +
1

�2� f�1 − f� . �20�

Figure 2 presents a typical plot of the structure factor for a
cross-linked network consisting of a small fraction
��1% –10% � of B monomers. The plot of sAA exhibits a
narrow peak corresponding to a typical scattering length,
while the peak exhibited by the B monomers is broad and
nearly indistinguishable. Although fluctuations in the con-
centration of the B monomers exist, due to the low fraction
of B they remain relatively small.

Divergence of the scattering intensity indicates the emer-
gence of an ordered phase �8�. The different elements of the
structure factor all diverge at the same point �24�, called the
spinodal. For a copolymer system, S�k� diverges when the
fluctuations in the concentrations of the different monomers

become exceedingly high and the disordered phase becomes
unstable, indicating the onset microphase separation of the
different monomers. In addition, the increase in scattering
intensity with increased cross-linking in homopolymer gels
has been attributed to cross-link density inhomogeneities, re-
sulting in regions with high degrees of cross-linking sepa-
rated by regions with a lower density of cross-links �29�. In
our study of a cross-linked binary system, we find that sev-
eral factors can lead to instability of the disordered phase,
even for small fractions of B. First, in Fig. 3 we see that
increasing the degree of cross-linking sufficiently can even-
tually drive the network towards order, or microphase segre-
gation of the different monomers, manifested in a diverging
intensity peak of all elements of the structure factor. Com-
parison of the solid curves ��AA0,�BB=�AB=0� with the
dashed curves ��AA=�BB=�AB0� reveals that cross-
linking of only the backbone monomers �type A� can drive
the system towards the inhomogeneous ordered phase at
lower degrees of cross-linking. Clearly, in the former case
the difference in functionality as well as interactions between
the different monomers provides a greater drive for mi-
crophase segregation. Second, as is already well established
both experimentally and theoretically, we see in Fig. 4 that
increasing distinct interactions between the different mono-
mers leads to microphase segregation which occurs at a par-
ticular wavelength for a given copolymer composition. Un-
like the effect of increasing degrees of cross-linking,
increasing the competitive interactions shifts the peak to
smaller and smaller wavelengths or larger and larger domain
sizes, while for strong mixing interactions, the peak is
smeared since these conditions favor disorder. Comparison
of Fig. 4 with Fig. 3 reveals that interactions play a more
significant role in driving the system towards the ordered
phase than do increasing degrees of cross-linking, as is ap-
parent by the minor difference between two extreme cases of
cross-linking.

FIG. 2. Structure factor elements, sAA �solid curve� and sBB

�dashed curve�, calculated for f =0.01, 	=1, V0=VD=0, �0=1, and
�D=�F=0.

FIG. 3. Effects of cross-linking on the A-A scattering intensity,
calculated for f =0.01, 	=1. Solid and dashed curves correspond to
�AA=�BB=�AB=0,1 ,1.5,1.8,1.9 and �AA=0,1 ,1.5,1.8,1.9, �BB

=�AB=0, respectively.
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The spinodal for various values of f as a function of �
and 	 is plotted in Fig. 5. Increasing the degree of cross-
linking or the segregating interactions will drive the system
towards order, though the homogeneous phase spans a larger
range of these parameters for smaller values of f . As has
been observed by Gallot �30�, for a given composition of the
copolymer, the structure can be changed with a preferential
solvent. However, it appears that for sufficiently weak de-
grees of cross-linking ���1� the spinodal, which is a weak
function of � is reached at a particular value of 	 irrespec-
tive of the fraction of A monomers �the dashed curves in Fig.
5 reveal that the fraction of “imprinting” monomers has a
small effect on the spinodal for the case of cross-linking of
only the majority backbone monomers�.

B. Ordered phase

Formation of ordered mesopores can be achieved through
controlled phase segregation of cross-linked copolymers fol-
lowed by selective removal of one of the components �31�.
We consider the microphase segregated regime in the com-
pact globular state. This state is characterized by a large
number of chain conformations, for which density fluctua-
tions can be neglected, which implies that terms in energy
expression linear in m�k� in Eq. �17� can be neglected. In-
deed, a comprehensive study of the frozen behavior of physi-

cally cross-linked random heteropolymers carried out by
Gutman and Shakhnovich �19,32� using a replica symmetry
breaking scheme �33� reveals that highly nonsymmetric com-
positions �f �0.1� are found in the random goluble state even
for relatively strong Flory interactions.

We consider the spatially homogeneous solution for non-
excluded volume polymer, V0=0, obtained from the single-
replica Hamiltonian. In the compact state, we assume that the
parameters characterizing the state of preparation dominate,
i.e., average monomer density. In this case, the replica sym-
metric form of Eq. �17� reduces to

F�
,m� =
1

2�
k

�
�k�v0�k�
�− k� + m�k�vF�k�m�− k��

+ �̃�k = 0� − �
k�0

�̃�k��̃�− k�
a2k2

−
�4

4 �
k,k��0

�m�k��m�− k��m�k���̃m�− k��
a2�k2 + k�2�

− �
k

��
�k�
�− k� + �m�k�m�− k�� . �21�

Differentiation with respect to 
�k� and m�k� results in
�
�k�=
�k�v0�k� and �m�k�=m�k�vF�k�, respectively. Thus,
the ground state solution of Eq. �21� is


�k � 0� = −
2
�k�v0�k�

a2k2 +
�2

a2k2 �
k��0

m�k��vF�k��m�k − k��vF�k − k�� , �22�

FIG. 5. Spinodal curve as a function of cross-linking and Flory
interactions for various values of f . The spinodal presents the tran-
sition from a disordered �below the curve� to an ordered �above the
curve� phase. Solid and dashed curves correspond to �AA0, �BB

=�AB=0 and �AA=�BB=�AB0, respectively.

FIG. 4. Effects of competing monomer-monomer interactions on
the A-A scattering intensity, calculated for f =0.01, 	=−10,
−2,1 ,1.6. Solid and dashed curves correspond to �AA=�BB=�AB

=1 and �AA=1, �BB=�AB=0, respectively. —�— represents the
relationship between peak wavelength and peak intensity.
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m�k � 0� = − �2m�− k�vF�− k� − �2�
k�


�k��v0�k��m�k� − k�vF�k� − k�
a2k�2 − �2�

k�


�k��v0�k��m�− k� − k�vF�− k� − k�
a2k�2

− �4 �
k�,k�

m�k� − k�vF�k� − k�m�k��vF�k��m�− k� − k��vF�− k� − k��
a2k�2

− �4�
k�

m�− k�vF�− k�m�k��vF�k��m�− k��vF�− k��
a2�k2 + k�2�

. �23�

Equations �22� and �23� are solved self-consistently for m�k�
and 
�k�. Typical plots of the microphase order parameter for
several values of the Flory interaction parameter are shown
in Fig. 6. For the case of cross-links that are independent of
monomer type �solid curves�, at zero interactions but finite
degree of cross-linking there is no phase separation. As ex-
pected, it is seen that stronger segregating interactions lead
to finer decomposition, which would give rise to more dis-
tinct cavities once the B imprinting monomers are removed.
However, when only the majority monomers are allowed to
cross-link �dashed curves�, then microphase segregation is
observed even for an athermal system �	=0�, with a different
periodicity, that is again intensified with increasing segregat-
ing interactions. That is, the type of cross-linking affects the
final morphology of the gel while interactions enhance the
degree of segregation.

Changes in the amplitude of the relative density of the
majority phase and microphase order parameters as a func-
tion of interaction strengths are plotted in Fig. 7�a� and as a
function of cross-linking potential ��0� in Fig. 7�b�. Interest-
ingly, a monotonic increase in the amplitudes of 
 and m in
Fig. 7�a� is observed, indicating a linear dependency of the
tendency toward microphase separation on the segregating
interactions between the different monomers. It is also seen

that increasing the degree of cross-linking leads to an in-
crease in local density fluctuations while the order parameter
remains unchanged. The latter is expected since the cross-
linking potential was assumed to be independent of mono-
mer type. In fact, when �AA is varied for a given interaction
strength fluctuations in the order parameter are seen to in-
crease with the degree of cross-linking �results not shown�.

From the results presented in Figs. 3–7, it can be con-
cluded that control over the degree of cross-linking and the
competing monomer interactions can be used together to
produce porous structures of a specified size beyond the
spinodal. That is, a particular domain size is chosen through

FIG. 6. Periodicity of the microphase order parameter in the
ordered phase for �AA=�BB=�AB=0.75 �solid� and �AA=0.75,
�BB=�AB=0 �dashed� for f =0.01 and different values of the Flory
interaction parameter. Curves showing increasing microphase sepa-
ration are for 	=0, 	=2, and 	=5.

FIG. 7. Changes in positive and negative amplitudes of the rela-
tive density of the majority phase �light gray� and microphase �dark
gray� order parameters for f =0.01 as a function of �a� Flory inter-
actions for �0=1 and �b� cross-linking potential, �0, for 	=2.
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selection of an appropriate solvent typified by certain 	,
while high degrees of cross-linking can be used to quench
the system at this particular domain size.

IV. CONCLUSIONS

We presented a mean-field model of a physically cross-
linked random copolymer consisting of a small fraction of
monomers acting as imprinting agents, which are in principle
removable following gel formation. We examined the effects
of cross-linking and interactions on phase segregation be-
tween the two types of monomers. The disordered phase,
characterized by a relatively homogeneous dispersion of the
minority group, is favored by small or negative 	 �tending
towards mixing interactions� and lower cross-linking densi-
ties. Such conditions are advantageous, e.g., for molecular
imprinting applications since successful imprinting requires
evenly distributed sites. However, in practice, a relatively
rigid network is required in order to preserve the character-
istics of the imprinting agents, which is in general achieved
using high degrees of crosslinking. Therefore, an optimum
between the degree of cross-linking and tendency towards
aggregation must be found. On the other hand, conditions
favoring microphase-segregated configurations are advanta-
geous for controlling the porous structure of the gel, where
the minority monomers present a removable group. In this
case, cavity size can be controlled through cross-linking den-
sity, monomer interactions, and type of solvent.
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APPENDIX

The following details the calculation of the effective en-
tropy appearing in the partition function of Eq. �14�. The
squared term in Eq. �16� can be expanded into symmetric
and nonsymmetric terms in the replica index, �, as follows:

�2

2 
�
�

�m
��2

�� =
�2

2 �
�

�m
�2

�� +
�2

2 �
���

�m
��m

���. �A1�

Letting �̃�=�

�− ��2 /2��m

�2
and rewriting Eq. �17� using �̃�

and Eq. �A1� gives


− a2�
�

��2
+ �

�

�̃��r�� −
�2

2 �
���

�m
��r���m

��r�����

= �
�

���. �A2�

To proceed, Eq. �A2� is transformed to Fourier space, where
k�a�1/2 /61/2 and � is the average block length of the poly-
mer. Perturbation expansion of � for small 
 and m gives
�26�

��N�k�0 = �
�

�̃��k = 0� − �
�

�
k�0

�̃��k��̃��− k�
a2k2

−
�4

4 �
���

�
k,k��0

�m
��k��m

��− k��m
��k���m

��− k��
a2�k1

2 + k2
2�

.

�A3�

The entropy is calculated by expressing Zp, and thus �

� and

�m
� , in terms of m� and 
� using the definition ln Zp=−�N.

The solution of Eq. �15� yields


��k = 0� = 1,


��k � 0� = −
2�


��− k�
a2k2 +

�2

a2k2 �
k��0

�m
��k���m

��k − k�� ,

�A4�

m��k � 0� = − �2�m
��− k�

− �2�
k�

�

��k���m

��k� − k� + �

��k��m

��− k� − k�
a2k�2

− �4 �
k�,k�

�m
��k� − k��m

��k���m
��− k� − k��

a2k�2

− �4 �
���

�
k�

�m
��− k��m,b

� �k���m
��− k��

a2�k2 + k�2�
. �A5�

These expressions can now be used to solve for the entropy
appearing in Eq. �14�.
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