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Orientational correlations and the effect of spatial gradients in the equilibrium steady state

of hard rods in two dimensions: A study using deposition-evaporation kinetics

Mahendra D. Khandkar and Mustansir Barma

Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005, India

(Received 25 January 2005; revised manuscript received 18 May 2005; published 28 November 2005)

Deposition and evaporation of infinitely thin hard rods (needles) is studied in two dimensions using Monte
Carlo simulations. The ratio of deposition to evaporation rates controls the equilibrium density of rods, and
increasing it leads to an entropy-driven transition to a nematic phase in which both static and dynamical
orientational correlation functions decay as power laws, with exponents varying continuously with deposition-
evaporation rate ratio. Our results for the onset of the power-law phase agree with those for a conserved
number of rods. At a coarse-grained level, the dynamics of the nonconserved angle field is described by the
Edwards-Wilkinson equation. Predicted relations between the exponents of the quadrupolar and octupolar
correlation functions are borne out by our numerical results. We explore the effects of spatial inhomogeneity in
the deposition-evaporation ratio by simulations, entropy-based arguments, and a study of the additional terms
introduced in the free energy. The primary effect is that needles tend to align along the local spatial gradient of
the ratio. A uniform gradient thus induces a uniformly aligned state, as does a gradient which varies randomly
in magnitude and sign, but acts only in one direction. Random variations of deposition-evaporation rates in

both directions induce frustration, resulting in a state with glassy characteristics.
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I. INTRODUCTION

An assembly of particles interacting via hard-core repul-
sion serves as a useful model for studying simple fluids,
colloids, liquid crystals, and many other soft matter systems.
The analysis of such model systems helps in understanding
the features of real systems, such as their phase behavior and
structural and dynamic properties. An important role is
played by the anisotropy of shape of the constituent particles,
which can range from thick elongated platelets to thin rods.
Some examples of systems in which the constituent particles
show anisotropy are certain types of colloids, liquid crystals,
and protein molecules. In particular, rodlike particles are
found in suspensions of the tobacco mosaic virus [1], nem-
atic liquid crystals [2], and, recently, carbon nanotube gels
[3]. All these systems show very rich and characteristic phase
behavior.

Rodlike particles have been modeled theoretically as el-
lipses [4], rectangles, and spherocylinders [5-7] with varying
aspect ratios, a limiting case being infinitely thin hard rods or
needles [8]. These systems exhibit a number of interesting
entropy-driven phase transitions which have been studied in
two and three dimensions, usually using simulations with
number-conserving dynamics. On the other hand, there are a
number of physical processes that involve adsorption (depo-
sition) and desorption (evaporation) of particles, which do
not conserve particle number, and which are important for
some monolayer growth processes. Adsorption and desorp-
tion are also important in the binding and unbinding of
ligands with microtubules, the interaction of proteins with
DNA [9,10], and many catalytic reactions. Finally, in recent
experiments on assemblies of long objects (rice grains, thin
metal rods) on a vibrating plate [11], individual particles
jump off and return to the plate, leading ultimately to a state
with interesting patterns. These considerations motivate us to
study the deposition and evaporation of hard objects with
rigid boundaries on a substrate. While a deposition-only sys-
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tem, of the type studied in random sequential adsorption [9],
can end up in a nonevolving jammed configuration, with the
addition of evaporation, the system eventually reaches an
equilibrium steady state with a density governed by the rates
of deposition and evaporation [12—17]. While most of these
studies have focused on the kinetics of approach to steady
state, in this paper, we are interested in the properties of the
steady state itself. Specifically, we study the patterns formed
due to deposition and evaporation of infinitely thin hard rods
(needles) on a two-dimensional (2D) substrate. Needles are a
limiting case of rodlike particles in the systems mentioned
earlier. Though not directly applicable to any physical sys-
tem, this is an important limiting case; the limit of zero width
simplifies the problem by eliminating the aspect ratio as a
parameter. The hard-core constraint is enforced by rejecting
any deposition event that results in an overlap of needles.

It is useful to recall some known facts about a system of
hard needles with no externally imposed spatial inhomoge-
neities. This system shows a transition from a low-density
orientationally disordered (isotropic) state to a high-density
ordered state with nematic correlations. This transition,
whose existence was pointed out by Onsager [18], can be
viewed as an outcome of the interplay between orientational
and translational entropy of the needles; the ordered
(aligned) state is preferred at high density since alignment
leads to an increase of translational entropy, albeit at the cost
of orientational entropy. The nature of the orientational or-
dering is dimension dependent. In three dimensions, orienta-
tional long range order (LRO) sets in. A state with LRO
would break the continuous symmetry of rotations, and is
thus not expected to occur in 2D, even though the Mermin-
Wagner theorem cannot be generalized to this system [19].
Indeed, the simulation study of Frenkel and Eppenga [8] on a
system with a fixed number of needles confirms the absence
of LRO in 2D, and finds a phase with power-law decays of
orientational correlations, quite analogous to the XY model
[20].

©2005 The American Physical Society
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FIG. 1. (Color online) (a) The variation of p (number of rods per
unit area) with x shows a change of behavior for « in the range
20-25. This is more prominently depicted in the inset which shows
the variation of p/(k—1). (b) Variation of p with z/A2. The inset
shows the initial portion of the curve.

On a coarse-grained scale, the local orientation at location
r and time 7 is specified by an angle field 6(r,7). The orien-
tational correlation functions of interest are defined as

ge(r,1) = (cos{€[ O(r,1) — 6(0,0)]}) (1)

where € is an even integer, and 6 and 6+ 7 represent the
same state. Quadrupolar correlations are probed by €=2,
whereas higher values of € correspond to higher multipolari-
ties. From numerical simulations, we find power-law decays
in both space and time: g,(r,0)~ 7" and g,(0,t) ~t Pt for
both €=2 and 4. Our results for the static correlations con-
form to the Kosterlitz-Thouless theory for the onset of cor-
relations, while our results for the dynamics show that their
decay in time is governed by the Edwards-Wilkinson equa-
tion. We also study spatial variations of the deposition rate,
and find strong effects on the nature of the ordering. We
consider several types of variations: (i) a sharp change across
a linear interface; (ii) a smooth linear gradient; (iii) a random
variation of rates in one direction; and (iv) random variation
of rates in the plane. We find that the qualitative effect of
spatial variations is to induce alignment of needles in the
direction of the gradient, an effect with an entropic origin. In
(i), the effect dies down slowly with increasing distance from
the interface, but in cases (ii) and (iii) it results in a state with
overall alignment along the direction of variation of the
deposition rate. The random variation in (iv) induces frustra-
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tion and the result is then a state with glassy features such as
strong initial condition dependence and slow relaxation.

II. MODEL AND PROCEDURE

In our model, infinitely thin hard rods (needles) are added
to a 2D substrate with area A with a constant attempt rate,
and simultaneously removed randomly from the substrate
with a specified rate. In a deposition attempt, the location of
the centre of mass of the needle is chosen at random on the
substrate, and the orientation angle is chosen at random as
well. Let I'; be the rate of attempted depositions per unit area
per unit angle interval. An attempt is successful only if the
depositing needle in question would not overlap with exist-
ing needles on the substrate; otherwise it is rejected.

During evaporation, a needle is chosen at random from
those present on the substrate and then removed. If the total
rate of such removals is R, we may associate a removal rate
I',=R,/2mA per unit area per unit angle interval. The ratio

Iy

K=T (2)

e

of deposition to evaporation rates is the control parameter in
the problem. As we show below, « is related to the fugacity
z=eP* of an equilibrium grand canonical system.

The model under consideration can be thought of as de-
scribing the adsorption and release of needlelike gas mol-
ecules on a substrate in contact with a gas reservoir with
which it can exchange particles. The equilibrium state on the
substrate is then described by the grand canonical (uAT)
ensemble, where u, A, and T are, respectively, the chemical
potential, substrate area, and temperature. Define scaled co-
ordinates s;=r;/L, where r; is the position of the ith particle
on the substrate and L is the linear dimension of the system.
The grand canonical partition function can be written [21] as

Z= 2 —(A/AZ)N f ds, f dsy - J dsy

where A=(27h?/mkzT)"? is the thermal wavelength which
results from integrating over the momentum of needles, and
U is the interaction energy for a configuration in which there
are N needles with scaled center of mass locations

(s1,83,...,8y) and orientations (6;,6,,...,6y). The corre-
sponding equilibrium probability density of a configuration
CE (Sl’SZ’ . ,SN, 01, 02, R 0N) iS [21]
P (C) - li(A/AZ)Ng—BU(sl,sz,. LoSNs01.05,...,0)) (4)
“ ZN! '

For our system of hard-core needles, the interaction energy
U— > when needles overlap, while U=0 when there is no
overlap between any needles. Thus all allowed configura-
tions with fixed N have equal weights.

Deposition-evaporation dynamics involves changes of N.
The evolution from a configuration C to a configuration C’
can be described by the master equation
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FIG. 2. Snapshots of hard-rod configurations at different values of «, (a) 19, (b) 24, (c¢) 32, and (d) 39. The substrate size is 15X 15.

Observe the formation of defects in the configurations (a), (b), and (c).

% = S [P(CYW(C’ — C) = POW(C — C]. (5)
C,

The steady state of Eq. (5), obtained by setting dP(C)/dt
=0, is in fact an equilibrium state if the condition of detailed
balance

No. of blocks
—M=20
M= 18

M=16
—~M=14
~—M=10
—M=8 | 1

27.5 30 325

K

FIG. 3. (Color online) Orientational cumulants U; as a function
of deposition-evaporation ratio « for various subsystem sizes
L=K/M. Note the collapse of the curves beyond «.==25, pointing
to the occurrence of a power-law phase.

225 25

W(C'— C) P, (0)
W(C—C') P,C)

(6)

is satisfied for every pair of configurations C and C’ that can
be reached from each other. Now, let C denote an N-needle
configuration and let C’ be the (N—1)-needle configuration
obtained from C by removing a particular needle. Using Eq.
(4) in Eq. (6), we see that I';/T",=zA/A>N. Thus, the steady
state of deposition-evaporation dynamics is described by the
grand canonical equilibrium state with

= pA2 (7)

where p=N/A is the areal density of needles.

In our Monte Carlo studies we varied the control param-
eter « in the range 1 to 40 and monitored the resulting den-
sity and orientational correlations. We used an L XL sub-
strate (with L=15 and 25) where L is in units of needle
length. For each value of k we made multiple runs, allowing
up to 107 Monte Carlo time steps for equilibration. The
Monte Carlo time ¢ is defined as the number of attempts
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FIG. 4. (Color online) Log-log plots of (a) g,(r,0)

=(cos{2[6(r,1) - 6(0,1)1}) and (b) 5(0,7)=(cos{2[6(r, 1) 6(r,0)]})
showing the static and temporal behavior, respectively, of g,(r,1).
Data are shown for systems of sizes 15X 15 and 25X 25, and dif-
ferent values of k. The distance r is in units of rod length and time
t is in Monte Carlo time steps.

divided by L?. Averaging was done over 10 sets of indepen-
dent runs and 1000 configurations from each run after equili-
bration.

Figure 1(a) shows the variations of the density with x,
while Fig. 1(b) shows p plotted against z/ A?>=pk. The inset
in Fig. 1(a) shows a marked change in the dependence of
p/(k—=1) on k for k in the range 20-25. As we shall see,
there is a transition to a phase with power-law decay of ori-
entational correlations beyond xk=k.=25, as illustrated by
the representative configurations shown in Fig. 2 for differ-
ent values of x. We turn to a quantitative study of orienta-
tional ordering in the next section.

III. ORIENTATIONAL ORDERING

A. Order parameter

For a system of N hard rods in 2D, the nematic order
parameter g is given by
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FIG. 5. (Color online) Log-log plots of (a) g4(r,0)

=(cos{4[6(r,1) - 6(0,1)]}) and (b) g4(0,7)=(cos{4[6(r,1)-6(r,0)]})
showing the static and temporal behavior, respectively, of g4(r,7),
for the same system sizes and values of « as in Fig. 4.

N

9= 2 cos20) ®)

i=1

where 6; is the angle made by the ith rod with the nematic
director, which itself has an orientation ¢ with respect to a
fixed reference X axis. Both ¢ and ¢ can be found by study-
ing the tensor order parameter defined as

1

N
Q= > [2u(Dugli) = 8, 9)

i=1

where u,(i) is the ath component of u(i), the vector speci-
fying the orientation of the ith rod. The eigenvalues of Qg
are =g, and the corresponding eigenvectors pick out direc-
tions along and perpendicular to the director orientation ¢.
Insofar as there is no long-range order in the 2D needle sys-
tem, g vanishes in the thermodynamic limit. In simulations
on finite systems, though, ¢ may appear to be nonzero [Fig.
2(d)], over short times. Tracking the onset of such an appar-
ent value is not a reliable way to locate the transition point.

TABLE 1. « dependence of exponents 7, and B, for €=2 and 4. The estimated error is indicated in

parentheses.

K p mn M4 B Ba K/B
26.0 7.3 0.23 (0.03) 0.87 (0.06) 0.11 (0.04) 0.31 (0.06) 53%x1073
323 9.4 0.098 (0.006) 0.41 (0.02) 0.037 (0.007) 0.16 (0.04) 12.8x 1073
39.0 11.4 0.059 (0.003) 0.25 (0.01) 0.022 (0.003) 0.09 (0.01) 21.4%1073
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(b) 0.

FIG. 6. (Color online) (a) Snapshot of a typical hard-rod
configuration with a single k-, interface. The system size is
25X 15 and «;=30 (left half) and x,=50 (right half). Boundary
conditions: open (along X); periodic (along Y). Notice the differ-
ence in density in the two halves. (b) This plot shows the decay of
the orientational correlation function g,(y)=(cos{2[8(y)—-6(0)]})
calculated for a pair of points in the same vertical strip of
unit width. Curves from bottom to top correspond to different
strips in two halves in the configuration (a). The inset shows
g2(r)=(cos{2[ A(r)—6(0)]}) measured radially for a box of size
6 X 6 which is positioned at the center of each of the left and right
halves of the same configuration. The distances r and y are in units
of rod length.

B. Orientational cumulant of ¢

A better indication of the transition point, and also the
nature of the ordered phase, is provided by monitoring the
probability distribution functions P;(q) of ¢, where ¢ is the
block-averaged value of the local order parameter with the
system divided into blocks of finite size L [22]. A measure of
the non-Gaussian character of P;(g) is provided by the re-
duced fourth order Binder cumulant of g

FIG. 7. A dual-interface configuration in an (80X 15)-sized sys-
tem with periodic boundary conditions in both directions. The
middle half of size 40 X 15 and with x,=50 separates two quarters,
linked at the boundary, each of size 20X 15 and having «;=30.
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FIG. 8. Variation of the density (p) and order parameter (g) with
k for the 1D model which is a limiting case of the 2D «;-x, model
for Fig. 7. As shown schematically in the inset, the preferred orien-
tation of needles is perpendicular to the line.
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where L is the linear size of the subsystem (block). U; pro-
vides a useful diagnostic tool to monitor the ordering in-
duced by varying « [23].

For L<¢, U, is expected to stay close to a fixed point
value U”". Thus, the occurrence of a critical point with &=
can be identified by plotting U, against « for various values
of L, and looking for common intersection point.

We analyzed the Monte Carlo data of our model by moni-
toring U; [Eq. (10)]. The analysis was performed as follows.
We simulated a single large system of size KX K (K=25)
and divided it into subsystems of size L X L, thereby having
total M? number of subsystems with M=K/L [24]. Then, M
was incremented in integer steps starting from 1 and U; was
estimated for those subsystem sizes L where a good analysis
is possible. Consequently, we did not consider very small or
very large values of M. Also, the curve for M=12 lies
anomalously low and was not included. The number of sub-
systems (M) we use for estimating the cumulant range from
8 to 20. Figure 3 shows the variation of U; as a function of
k for various values of L.

Below «.=25.8, the curves are separate and distinct, but
they collapse at k,, indicating the onset of ordering (Fig. 3).
Moreover, the curves seem to stay collapsed for k> k. sug-
gesting that ¢ remains infinite in this phase, i.e., this is a

U, =1 (10)

= S
e

k=27 and open boundary conditions along the X direction. Free
boundaries induce alignment which propagates some distance into
the bulk.
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with a uniform « gradient, with k;=32 and xz=50 at the two ends
respectively. The horizontal alignment induced by the gradient is
evident.

phase with power-law decay of correlations. Corroboration
of this is provided by directly monitoring the correlation
functions as described below.

C. Orientational correlation functions

Let us define a general orientational correlation function
go(r,t)=(cos{€[ O(r,1)— 6(0,0)]}) where ¢ is an even integer.
We studied static and dynamical properties by investigating
g¢(r,0) and g,(0,7). We calculated spatial correlations by
forming circular bins around each rod in turn, computing
g¢(r,0) for each bin, repeating this process for all rods in the
configuration and averaging over all rods (see Fig. 4). The
dynamical correlation function, g,(0,7) was calculated by
coarse graining. The system was divided into a number of
small cells (1 X 1) and an average value of orientation was
assigned to each cell by averaging over the orientations of
those needles whose centers of mass lie in the cell. The value
of g,(0,7) was computed using this average value over each
time frame, and averaging over all the cells (see Fig. 5). The
initial drops of the curves in Figs. 4(b) and 5(b) are sensitive
to the size of the cell used, while the power laws seen at the
larger times do not depend on the cell size.

In the nematiclike phase, i.e., for « beyond k., the corre-
lations decay algebraically g,(r,0)~r~7 and g,(0,f) ~ 1P,
There are pronounced finite size effects which lead to a
flattening of the curves for r=L/2, limiting the range

0.1

2,(y)

0.01

FIG. 11. (Color online) Correlation function in a (25 X 15)-sized
system with a uniform « gradient. Shown is the log-normal plot
2 (y)=(cos{2[6(y) - 9(0)]})—(1% for pairs of points in the same ver-
tical strip of unit width. Curves from bottom to top correspond to
different vertical strips in the order of increasing «. It is evident
from the plots that g,(y) exhibits exponential decay. The distance y
is in units of rod length.
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FIG. 12. (Color online) Dynamical correlation function in the
system of Figs. 10 and 11. Log-normal plots of g,(¢)=(cos{2[ 6(z)
- 0(0)]})—413 as shown, with curves from bottom to top correspond
to different cells with increasing « (refer to the main text for de-
tails). The time ¢ is in Monte Carlo time steps.

over which the power law behavior extends. We found
that the values of the exponents 7, and 3, vary continuously
with k as shown in Table I. The estimations were done
over ten independent sets of configurations, each averaged
over 1000 configurations. For ==k, we observed that
17,=0.23+0.03 close to the predicted Kosterlitz-Thouless
value 0.25. Our results for the static case agree with those
reported by Frenkel and Eppenga [8] for the case of a fixed
number of hard rods on a 2D plane. We confirm that at the
critical point k=k, the mean density is =7 [8].

For x>k, it was observed that exponents obtained
from static correlations g,(r) and g4(r) are related through
m, = 1n,/4. It was also found that the exponents derived from
the temporal correlations g,(r) and g,(¢) are related in a simi-
lar way, i.e., 8,=,/4. Further, the ratios #n,/B,=2.0 for
€=2 and 4, implying that the dynamical exponent z, is 2.
These observations can be understood on the basis of the
simple model discussed below.

In order to model the dynamics we note that the stochastic
evaporation and deposition events change the local value of
the coarse-grained angle field 6 in a noisy, diffusive way. In
the discussion below, we take the angle to be an uncon-
strained variable running from — to +o with (6+n) de-
noting the same needle orientation for integer n. We consider
a simple phenomenological equation

a0
— =KV?9 11
P +& (11)

where ¢ denotes white noise which satisfies

== =— ==
FIG. 13. A typical configuration for a (25X 15)-sized system
with a « gradient achieved by varying the value of x randomly
around 32 in the X direction only. The horizontal alignment induced
by the gradient is evident.
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0.1

()
0.01

FIG. 14. (Color online) Correlation function in a (25 X 15)-sized
system with a random « gradient in the X direction only. Shown is
the log-normal plot g,(y)=(cos{2[6(y)— 6)(0)]}}—q% for pairs of
points in the same vertical strip of unit width. Curves from bottom
to top correspond to different vertical strips in the order of increas-
ing k. It is evident from the plots that g,(y) exhibits exponential
decay. The distance y is in units of rod length.

(§(r,né(r",1"))=Bdx —r")ot-1') (12)
where B is a constant. This is of the same form as the
Edwards-Wilkinson equation [25], which describes the
evolution of a fluctuating interface. In our context, Eq. (11)
follows from the symmetric form of the Frank free energy
F= %K J(V6)%d6 on using the phenomenological Langevin
equation 96/dt=—0F/60+¢. A more complete description
would involve coupled equations for the nonconserved den-
sity and orientational fields. From Egs. (11) and (12) it fol-
lows that

2
d’k ik-r’e—Kkzz’

<l9(1‘+l",t+t’)t9(l‘,t)>=m< ?e
(13)
Setting t'=0 we find that
{[6(r+rx',0) = O(r,1)]*) = b 27 In(r) (14)
’ ’ 327K

which, using the Gaussian property of 6, further implies
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FIG. 16. Snapshots of hard-rod configurations for random bi-
nary distribution of « values 27 and 50 on the substrate of size
25X 25. Representative configurations characterizing two different
states [(a) and (b)] which are reached from different initial condi-
tions, for the same « distribution.

(cos{€[O(r +1',1) = O(r,0)]}) = 7

where 7,=€>B/32m*K. The measured values of 7, can be
used to find K/B, whose value is included in Table I.

Similarly, setting r'=0 in Eq. (13) we find the autocorre-
lation function

(cos{€[O(r,t+1") - O(r,0) ]}y = P (16)

where B,=¢?B/647*K. Thus, for all k> k, the ratio of 7, to
7, (and B, to B,) is expected to be 4; as we have seen above,
our numerical results confirm this. Also, we find the dynami-
cal exponent zgy,= 7,/ B¢ is =2.0.

(15)

T T T
0.28 8 e
kB
< g g B E B opg g
< *= O 5 b p B ooog
< g » ol % g >y
0.1F 4 3 o > E
3 ®o B
_ 3 o B
(D . o
g, 4 4
» <
0.05F *
1 1 1
sx10"  1x10°  2x10°

IV. EFFECT OF INHOMOGENEOUS «

t
FIG. 15. (Color online) Dynamical correlation function in the
system of Figs. 13 and 14. Log-normal plots of g,(¢)=(cos{2[0(¢)
- 0(0)]})—q% as shown, with curves from bottom to top correspond-
ing to different cells with increasing «. The time ¢ is in Monte Carlo
time steps.

In this section, we explore the effects of having a spatial
variation of the deposition-evaporation rate ratio «. In a
physical system, such a variation could arise from the varia-
tion of the chemical potential or substrate temperature from
one spot to another as their local values could influence the
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FIG. 17. (Color online) Evidence for exponential decay of spa-
tial correlations in a system with random binary distribution of «.
The figure shows log-normal plots of g,(r)=(cos{2[ A(r)—6(0)]}).
The parameters are the same as in Fig. 16, and the curves corre-
spond to the different steady states evolved from two different ini-
tial conditions. The distance r is in units of rod length.

local detachment rate, as seen from Eq. (7). As expected,
such changes in « induce a spatial variation of the density;
more interestingly, they have a strong effect on the orienta-
tional order as well. We explore these effects by considering
several types of spatial variations of k.

In parallel to the discussion in Sec. II, let I" ;(x) and I',(x)
denote the deposition and evaporation rates at point x in the
plane, and let x(x)=I",(x)/T",(x). Let C’ be the configuration
reached from configuration C by removing the rod at x,,, and
let P(C') and P(C) be the weights of the respective configu-
rations in steady state. We can check that the condition of
detailed balance is valid when P(C) has the product form
P(C)=I1;z(x;) where z(x;)=A?p(x;) x(x,) is the local fugacity
at the location of the ith rod. If C' is obtained from C by
evaporating the mth rod, then evidently P(C)=P(C")z(x,,).
Recalling that W(C’'— C)=I"y(x,,) and W(C— C")=T",(x,,),
we see that the condition of detailed balance is valid.

Thus the system reaches an equilibrium steady state
which, however, is inhomogeneous in density, due to the
nonuniform position dependence of . The nature of orien-
tational order depends strongly on the the way in which « is
specified to vary over the plane. Below we consider several
types of variations.

(i) A single interface separating low and high « regions,

L
k(x) =k, forx< >

L
Kk(x) =K, forx> 2

(ii) A uniform gradient in x across the substrate,
X
kx)=k|1+a— ).
W =r(1+at]
(iii) Random variation of « in the X direction only,

k(x) = k| + Sk(x),

where Sk(x) <k, is a random function of x.
(iv) A random binary assignment of x on a grid on the 2D
substrate.
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FIG. 18. (Color online) Evidence for a power-law decay of tem-
poral correlations in a system with random binary distribution of «.
The figure shows log-log plots of g(r)={(cos{2[ (1) - (0)]})~g3.
The parameters are the same as in Fig. 16, and the curves are
obtained in the different steady states reached from two different
initial conditions. The time ¢ is in Monte Carlo time steps.

In the first three cases, periodic boundary conditions were
applied in the Y direction and open boundary conditions
along X. In the last case, open boundaries were used in both
directions. In all the cases considered, the ranges of « values
were chosen to be above k., the critical value in the uniform
case. Our findings are as follows.

A. K-k, interface

Here, a uniform value «; operates up to halfway across
the 2D plane along the X direction, while xk=k, (>x;) in the
remaining half. In the vicinity of the interfacial region, the
rods are observed to orient in the direction the of « gradient,
i.e., perpendicular to the interface [see Fig. 6(a)].

This can be understood on entropic grounds. That ar-
rangement of rods is favored which maximizes the entropy.
By symmetry, the preferred average orientation of rods
should be either (a) parallel or (b) perpendicular to the inter-
face. Consider those rods in the high « half, whose centers
lie very close to the interface (within half a rod length) so
that part of such rods can reach into the low density side.
Small variations in the angle of each rod would contribute to
the entropy, but these are limited by the presence of other
rods. A horizontal average alignment allows the rods to
sample a less dense environment, and thus be subject to
fewer constraints, on one side. Thus, option (b) would be
preferred over (a). The effect of interface-induced horizontal
alignment is felt for some distance away from the interface
on both sides. This is evident in Fig. 6(a), which shows a
steady state configuration in a system of size 25X 25 (in
units of rod length), with ;=30 and x,=50. However, for a
large enough size, the system reverts to a power-law phase in
the region far from the interface as observed in the uniform «
case. The correlation function decays as a power law in the
bulk, away from the interface, as shown in Fig. 6(b).

We also considered the case with two values of «, using
periodic boundary conditions in both directions which leads
to two interfaces (Fig. 7). The figure shows an
(80X 15)-sized system with periodically linked left and right
quarters with «;=30, while the middle half has «,=50. Evi-
dently, this system too shows interface-induced horizontal
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alignment. This geometry admits of an interesting limit
where the entropy-driven alignment is particularly clear. On
shrinking the width of the central region to zero, at the same
time taking the limit x;—0, we obtain a 1D model as a
limiting case. In this model, deposition and evaporation
moves are allowed with needle centers constrained to lie on
the line. Needles are found to orient preferentially perpen-
dicular to the line (see the inset in Fig. 8). The reason is
evident. If the mean orientation of the director is perpendicu-
lar to the substrate, needles have the largest leeway to make
angular excursions about the mean, i.e., the rotational
entropy is then the largest. The variation with x of the
density and order parameter g={cos2¢) where ¢ is the
angle made with the direction perpendicular to the line, is
shown in Fig. 8.

A similar effect should also lead to rods getting aligned
horizontally if they are close to an open boundary in the 2D
system. That this is so can be seen in Fig. 9, which shows a
system with uniform =27 and open boundary conditions
along the X direction.

B. Uniform « gradient

This case is related to the discussion above, as the linear
increase in k may be viewed as a continuous succession of
interfaces from one end to the other. Since each interface
induces an alignment of rods across it, this results in overall
alignment of the rods in the system (see Fig. 10). Note that
the alignment is not an outcome of spontaneous breaking of
orientational symmetry, as the gradient in « singles out a
direction in space. We checked that the horizontal alignment
is not tied to the aspect ratio of the container by simulating a
system size 10X 40, and observing overall horizontal align-
ment of rods in the steady state.

Figure 10 shows a steady state configuration in a system
of size 25X 15, with « varying linearly from a value
k=32 at the left end to a value kz=50 at the right end. In
our simulations, the system was equilibrated for 10’ Monte
Carlo steps and 10* postequilibration configurations were
used to calculate averages. We studied the spatial and dy-
namical behavior of the orientational correlation function
g2(r,1)=(cos{2[ 6(r,1)- 6(0,0)]}). Since the system is inho-
mogeneous along the X direction, the substrate was divided
into vertical strips, each having width of a rod length, and
each strip was studied separately. The Y density of needles
inside each strip was uniform though the density varies
from strip to strip. We monitored the correlation function
g2(y)=(cos{2[ 8(y +y,) — O(yo)1}) (see Fig. 11), and found that
g-(y) decays exponentially to a nonvanishing constant value
qo which differs from strip to strip. For the system under
study, q% varies in the range 0.68—0.77 over the strips.

The dynamical correlation function, i.e., g,(r)
=(cos{2[ 6(r)- 6(0)]}) was calculated by coarse graining. The
system was divided into number of small cells (2 X 2) and an
average value of orientation was assigned to each cell by
averaging over needles in it. The plot of g,(¢) is shown in
Fig. 12 for cells at different values of X. Each curve shows
an exponential approach to a nonzero constant value. The
behavior of both the spatial and dynamical orientational parts

PHYSICAL REVIEW E 72, 051717 (2005)

of the correlation functions indicates a phase with overall
orientational alignment.

C. Random variation of r(x)

We have seen that a uniform gradient in « results in an
orientationally ordered state. However, the argument for or-
dering does not depend on the gradient being constant in
magnitude or sign. Thus, if « varies randomly (with x> k)
along the X direction but is uniform along Y, the resulting
state once again should exhibit horizontal alignment with
needles aligned along the X direction. The resulting state can
once again be viewed as a continuous succession of inter-
faces and should display overall alignment.

Figure 13 shows a steady state configuration obtained
with a quenched random variation of «(x). The system was
simulated by varying « randomly around a value of x such
that k= Jk(x)> k,, where Sk(x) denotes random variations
along the X direction. We used k=32 and o«x=2.0. The cor-
relation functions g,(y) and g,(¢) behave similarly to the uni-
form gradient case (see Figs. 14 and 15). Thus, this case also
yields a phase with overall orientational alignment.

D. 2D random binary distribution of « values

In this case, the fugacity is set inhomogeneously in a
quenched disordered fashion, so that the tendency to align
locally along gradients results in competing patterns of order,
i.e the system is frustrated. The resulting state has glassy
features and contains domains of different orientations (see
Fig. 16) [26].

In our simulations, we divided the substrate of size
25X 25 into a grid of unit length squares. Each square was
randomly assigned a « value either 27 or 50 (both greater
than «,). The random « gradient across square edges gener-
ates local disorder, which can disrupt the orientational order
and result in destruction of orientational alignment on the
scale of the system size. The effect of quenched random
disorder due to orientational randomness of cross links in a
system of nematic elastomers has been studied earlier [27]
and the model was reported to have spin-glass-like behavior.
In our model, the disorder emerges from the randomness in
the spatial distribution of « values. We find that the spatial
correlation g,(r) decays exponentially to zero (Fig. 17)
whereas the dynamical part g,(7) seems to decay in an alge-
braic manner to a nonzero value (Fig. 18).

The behavior is suggestive of a glassy system which is
disordered in space but relaxes slowly in time. Moreover, it
was also found that with same quenched disorder arrange-
ment, different initial conditions lead to different states.
Typical configurations in each of these states are shown in
Fig. 16, which is a glasslike feature.

V. CONTINUUM DESCRIPTION

As discussed above, our simulations show that a spatially
inhomogeneous deposition-evaporation ratio « can induce
nematic order and other interesting orientational patterns in
the equilibrium state of a system of hard needles. It is inter-
esting to ask whether these effects can be captured within a
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phenomenological coarse-grained description based on in-
cluding symmetry-allowed terms in the free energy. In the
context of liquid crystals, such an approach has proved suc-
cessful in studying large distance phenomena, including the
effects of walls and other inhomogeneities [2]. Below we
sketch such a description for our system of interest [28].
Besides showing that gradients in the deposition-evaporation
rates lead to orientational ordering, the treatment suggests
the occurrence of local splay.

Let us define a nematic director field 7(r) to describe the
local coarse-grained value of the orientation of needles [evi-
dently, 7(r) and —7i(r) describe the same configuration]. In
the absence of externally imposed inhomogeneities, spatial
variations of 7i(r) lead to a free energy described by the
Frank form [2]

Fyg= f dzr(%(v )+ %[ﬁ X (V X ﬁ)]2>. (17)

The two terms describe, respectively, contributions of splay
and bend to the free energy; there is no contribution from
twist in 2D.

Inhomogeneities in deposition-evaporation rates lead to
spatial gradients Vk, which imply additional terms in the
free energy. These terms consist of scalars involving V« and
i1, respecting invariance under 7« —i. Two such scalars are
obtained by replacing the gradient operator by Vk in the
terms in Eq. (17) to get

Fy= f d%%[(vx-ﬁ)zh f dzrg{[ﬁ X (Vie X A)J}.
(18)

In addition to these terms, which are quadratic in V«, one
can also construct scalars which involve V« linearly [29]

FL:fdzr%VK-[ﬁ(V~nA)]+fd2r%VK-[(ﬁ~V)ﬁ].

(19)

Symmetry considerations alone do not suffice to determine
the values of the coefficients K, K3, Jy, J3, Ly, and L;. Their
density dependences can be found on noting that a change in
k induces a change in density, thereby influencing the elastic
energy. To incorporate this, we replace 7 in Eq. (17) by
[p(r)ii/ py] where p(r) and p, are the local and average den-
sities, respectively. The Appendix contains the resulting form
of the free energy F, and the values of the coupling con-
stants.

Let us turn to the consequences of the new terms. With a
uniform spatial gradient, Vk=ax [case (ii) above], F, in-
duces overall alignment of needles. To see this, consider
Fy+F;. Evidently, F is minimized by any arrangement in
which 7 is uniform in space while F; is orientation depen-
dent. Writing 77=X cos ¢+ sin ¢, we find

F;=a?(J, cos® ¢+ Jysin® ¢b). (20)

Fy+F; is minimized by having an aligned state, either with
¢=0 (if J3>J;) or with ¢p=m/2 (if J3<J,). Our numerical
results, supported by the entropic considerations given
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above, show alignment in the direction of the gradient, im-
plying AJ=J;—J, is positive.

Now consider the effect of F;. Setting Vk=ax in Eq.
(19), we find

J
F;=—a(L, + Ls)sin ¢ cos ¢&—¢
X

+ a(L, cos® ¢ — Ly sin® <;S)%ZS (21)

(Fg+F;) can be minimized on noting that each of the L; and
L5 terms is an eigenfunction of the Frank elastic matrix. The
result is

J -L L

9 =—2" cos? b+ =3 sin? o, (22)
dy K K

1% L, L

(9—;?:(;11+é)cos¢sin ¢. (23)

These terms describe a spiraling tendency of the director in
space.

The full problem involves minimizing F;+Fg+F;. If F),
is dominant, the director is primarily aligned along the gra-
dient implying ¢ is small. Equations (22) and (23) then re-
duce to d¢p/ dy =—L,/ K, which describes a spiraling director;
further, F; restricts angular excursions to be at most
po1/\VAJ. Thus the predicted state is one with overall
alignment along the gradient, but with local splay structures,
each with a small opening angle =2 ¢,. This picture is borne
out by our simulations.

For case (iii) in which «(x) varies randomly, we see that
F,;=0a*(J, cos® ¢+J; sin” ¢)) where o is the spatial average
of the mean squared gradient. As for case (ii), the free energy
is minimized by having a state with alignment along the
gradient, as observed in our simulations, provided J;>J;.

In case (iv), the gradients that appear in Eq. (18) are ran-
dom in direction leading to frustration in the arrangement of
needles. Equations (17)—(19) provide a starting point for a
theoretical description of the glassy state.

VI. CONCLUSION

In summary, we have studied orientational ordering in a
2D grand canonical system of hard rods using deposition and
evaporation moves. The control parameter is the ratio « of
deposition and evaporation rates, which controls the density.
The system with uniform « displays a transition from an
isotropic phase (for k< k,) to a phase characterized by alge-
braically decaying static and dynamical orientational corre-
lations for x> k.. Further, the values of the critical expo-
nents and the behavior of the orientational cumulant are
consistent with Kosterlitz-Thouless theory. The numerical re-
sults for the dynamical correlation functions are described by
a phenomenological Edwards-Wilkinson equation for the
nonconserved orientational field.

Our principal results pertain to the behavior induced by
having a position-dependent «, and hence a space-varying
density of rods. An anisotropic variation of x (say along the
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X direction only) results in needles aligning along the « gra-
dient. This was understood by first considering the effect of
an interface separating regions with two values of «. En-
tropic considerations lead the needles to align normal to the
interface, i.e., along the gradient. From another point of
view, k gradients lead to additional terms in the Frank-like
free energy and these in turn imply orientational ordering.
Finally, in a system with quenched disorder corresponding to
spatially random «, we found indications of orientationally
frozen states with glasslike characteristics. It would be useful
to have a better characterization and understanding of this
glassy state.

The mechanism behind gradient-induced orientational or-
dering is simple: spatial variations of « induce variations in
needle density; and an average alignment of needles along
the gradient is preferred as this leads to an enhanced entropy
of rotational excursions around the mean. In effect, the «
gradient thus behaves like an external field acting to produce
nematic order, ultimately due to the strong coupling between
spatial and orientational degrees of freedom in the needle
system. Gradient-induced ordering effects should be present
in three-dimensional systems as well. In 3D, the Onsager
mechanism for nematic long range order would predict or-
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to lead to a nonzero value of nematic ordering for all values
of k, and to enhance its value for x> k.. It would be inter-
esting to test this prediction, and have a quantitative measure
of gradient-induced ordering in 3D.
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APPENDIX

To incorporate the effect of spatial variation of the den-
sity, we write [p(r)i/py] in place of the director 7 in the
Frank free energy Fg of Eq. (17). The resulting expression
F, for the free energy can be written as

Fp=f (2 — (V- pi)? +2—pg[pn><(V><pn)]2)

Al
dering for values of a uniform « exceeding a critical value (D)
k.. The addition of a uniform « gradient would be expected =~ The expansion of the integrand involves ten terms:
|
2 Ky 5 2 K3 5) 50 2
2p sin® ¢ + —4 % |p? cos® ¢ |(deplox)? + Fp cos” ¢+ Fp p” sin” ¢ | (9l dy)
Po Po
) 2 | Ko K 5) 2 2
+ 2 cos® ¢+ | —5p* |sin ¢ |(dplax)* + 5 sin” ¢ + p° |cos” ¢ |(dpldy)
2py 2py
-K LS . Ki[K; , .
+| == 2p sin ¢ cos G(dplax)(dpldx) + —2 —2p" | [2p sin ¢ cos ¢(de/dy)(dpldy)
i 2P0 2py\2pg
K K -K K
+ —12 - =0 }2 sin ¢ cos G(dplax)(Ipldy) +{ + (—34 )}2;)2 sin ¢ cos (APl dx) (Il dy)
2P0 2Po 2Po
K K ).
+ 2 sin® ¢ — —4 cos? ¢ [2p(del3x)(9pldy) + | — cos® p+ | —p* |sin® ¢ [2p(dplax) (Il dy).
2p} Po 2pj 2P0
|
In case (ii) where « varies linearly with x, the density K, 5 K; , 5
gradient is nonzero only along the X direction, and vanishes Ji(p) = ?[g(l))] . Jilp)= EP [Z(p)]". (A2)
0 o

along Y, so the terms involving dp/dy do not contribute. We
can then read off the density dependence induced in the elas-

tic constants in terms of the original Frank’s constants as
K, K; ,
Ki(p)——p> and Ki(p)=—3p

Po Po

Now, comparing the third term of the expression with Eq.
(18) and writing dp/ dx=al(p) where {(p)=dp/ Ik, we have

Similarly, grouping the fifth and the tenth terms together and
comparing with Eq. (19), we obtain

Li(p) = S2p¢(0), L3(p)=(_ %pz)ng(p). (A3)
0

Po
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