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We study the formation and dynamics of interfacial waves on a perfect dielectric ideal fluid layer of finite
depth, wetting a solid wall, when the region above the fluid is hydrodynamically passive but has constant
permittivity, for example, air. The wall is held at a constant electric potential and a second electrode having a
different potential is placed parallel to the wall and infinitely far from it. In the unperturbed state the interface
is flat and the normal horizontally uniform electric field is piecewise constant in the liquid and air. We derive
a system of long wave nonlinear evolution equations valid for interfacial amplitudes as large as the unperturbed
layer depth and which retain gravity, surface tension and electric field effects. It is shown that for given
physical parameters there exists a critical value of the voltage potential difference between electrodes, below
which the system is dispersive and above which a band of unstable waves is possible centered around a finite
wavenumber. In the former case nonlinear traveling waves are calculated and their stability is studied, while in
the latter case the instability leads to thinning of the layer with the interface touching down in finite time. A
similarity solution of the second kind is found to be dominant near the singularity, and the scaling exponents
are determined using analysis and computations.
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I. INTRODUCTION

Liquid films are used in numerous technological applica-
tions such as coating and cooling processes—see, for ex-
ample �1–6�, where it is observed that the presence of waves
on the interface can enhance the cooling ability of the system
by an order of magnitude. There have been numerous studies
of falling film problems at both small and intermediate Rey-
nolds numbers, which aim to derive long wave nonlinear
evolution equations for the interfacial motion—see the re-
views by �7,8�. The effects of a vertical electric field have
been added recently by �9,10� when the Reynolds numbers
are small �see also �11��.

In the present work we concentrate on inviscid flows with
the aim of establishing a fundamental understanding of the
nonlinear processes involved in classical water wave theories
when gravity, surface tension and electric field effects com-
pete. To this end we assume that the fluid layer is a perfect
dielectric of constant permittivity �p�0 and that of the air
above it has constant permittivity �0. The effect of an electric
field on dielectric liquid sheets has been studied analytically
using a long wave theory in �12,13� for symmetric nonlinear
undulations; further asymptotic and full numerical simula-
tions based on boundary integral methods have been carried
out in �14,15� for symmetric and antisymmetric traveling
waves of arbitrary amplitude and wavelength. It was shown
in �14� that the long wave theory performs very well as com-
pared to the direct simulations, thus lending additional sig-

nificance to the study of such nonlinear models. The orien-
tation of the background electric field with respect to the
unperturbed interface plays an important role on the ensuing
dynamics. For example, when the field is horizontal �that is it
acts in the plane of the unperturbed liquid-air interface�, it
provides a dispersive contribution to the linear dynamics and
as found in the inviscid study of �12�, a large initial distur-
bance is required to cause film rupture in finite time. When
viscosity is present and the field is horizontal, a disjoining
pressure must be included to allow for rupture �see �13��.
The situation is quite different when the field is vertical to
the interface; the electric field can now provide energy to
certain ranges of wavenumbers and either enhance an exist-
ing instability, or allow for instability when none is present
to begin with. This is true for both viscous �9,10� and invis-
cid problems, the latter being the subject of the present study.
The physical mechanism by which an instability is produced,
is connected with the drop in pressure induced by the electric
Maxwell stresses just below an interfacial protrusion. This
lowers the pressure relative to regions away from the distur-
bance and causes more fluid to be drawn in the vicinity of
the perturbation, thus enhancing the instability. Our objective
is to follow such initial dynamics into the fully nonlinear
regime and in particular to identify regions in parameter
space, which support nonlinear traveling waves or lead to
rupture in finite time.

The outline of the article is as follows. In Sec. II the
mathematical problem is formulated, nondimensionalized
and its linear stability determined. In Sec. IV we carry out an
asymptotic analysis invoking a long wavelength approxima-
tion and choosing scalings to retain gravity, surface tension
and electrostatics; this leads to a system of coupled nonlinear
and nonlocal evolution equations for the interfacial shape
and the leading order horizontal velocity in the liquid layer.

*Electronic address: depapa@oak.njit.edu
†Electronic address: peterp@oak.njit.edu
‡Electronic address: h010@uea.ac.uk

PHYSICAL REVIEW E 72, 051601 �2005�

1539-3755/2005/72�5�/051601�9�/$23.00 ©2005 The American Physical Society051601-1

http://dx.doi.org/10.1103/PhysRevE.72.051601


In Sec. V we address the evolution equations numerically in
two canonical cases: �i� For sufficiently weak fields nonlin-
ear traveling waves are constructed and their stability inves-
tigated by solving appropriate perturbed initial value prob-
lems and �ii� for sufficiently strong electric fields where a
band of unstable waves enters, we solve the initial value
problem and present the generic evolution towards finite-
time touchdown. In the latter case we also establish scaling
laws for self-similar structures near the singular event. In
Sec. VI we present our conclusions and comment on future
work.

II. GOVERNING EQUATIONS

Consider a liquid layer of undisturbed thickness d lying
on a horizontal plate electrode which is held at zero voltage.
Using a Cartesian coordinate system fixed at the plate, we
denote the plate by the x axis �y=0� and the undisturbed
surface of the liquid layer by y=d. A constant electric field
acts in the normal direction and the potential V far from the
plate approaches V0y, where V0 is a constant. The bounding
interface of the liquid layer is free to move and is defined by
y=S�x , t�. We denote regions 1 and 2 by 0�y�S�x , t�, and
y�S�x , t�, respectively. The fluid in region 1 is assumed to
be a perfect dielectric with permittivity �p�0, while region 2
is assumed to be hydrodynamically passive and of permittiv-
ity �0 �for example, region 2 could be air and �0 the permit-
tivity of air—consequently in the formulation �p is the di-
mensionless permittivity ratio between regions 1 and 2�. The
geometry of the problem is sketched in Fig. 1.

The governing equations are the Laplace equations for the
fluid potential � and the voltage potentials V�1�, V�2� in re-
gions 1 and 2, respectively, along with electric field and
stress boundary conditions at the moving interface �see, for
example �12,14��. Variables are made dimensionless as fol-
lows: Lengths are scaled by d; pressures p are scaled by the
hydrostatic value �gd �� is the fluid density and g the accel-
eration due to gravity�; velocities are scaled by �gd�1/2, the
fluid potential � by �gd3�1/2, and time t by �d /g�1/2; finally,
voltages V are scaled by V0.

The dimensionless governing equations are
Region 1

Vxx
�1� + Vyy

�1� = 0, �1�

�xx + �yy = 0. �2�

Region 2

Vxx
�2� + Vyy

�2� = 0. �3�

There is a no penetration boundary condition at the solid
boundary

�y�x,0,t� = 0, �4�

and at infinity the voltage matches the imposed value,

V�2� � y, y → � . �5�

The boundary conditions at the free surface y=S�x , t� be-
come

Vx
�1� + SxVy

�1� = Vx
�2� + SxVy

�2�, �6�

�p�Vy
�1� − SxVx

�1�� = Vy
�2� − SxVx

�2�, �7�

− p1 + p2 +
Eb

�1 + Sx
2�
�1

2
�1 − Sx

2���p�Vy
2 − Vx

2��1� − �Vy
2 − Vx

2��2��

− 2Sx��pVx
�1�Vy

�1� − Vx
�2�Vy

�2��� =
�Sxx

�1 + 	2Sx
2�3/2 , �8�

�y = St + �xSx. �9�

The boundary conditions �6�–�9� represent continuity of
tagential electric fields at the interface, continuity of the nor-
mal component of the displacement field ���V� there, con-
tinuity of the normal stress at the interface, and the kinematic
condition. The parameters Eb and � are an electric Bond
number which is the ratio of electric to gravitational forces,
and an inverse Bond number which is the ratio of capillary to
gravitational forces, respectively,

Eb =
�0V0

2

�gd3 , � =



�gd3 . �10�

The parameter 
 is the surface tension coefficient.
It is useful to eliminate the pressure difference p1− p2 by

using the Bernoulli equation

FIG. 1. Schematic of the problem.
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�t +
1

2
��x

2 + �y
2� + y = − p1 + const., �11�

evaluated at y=S, and the normal stress balance �8�, to obtain

�t +
1

2
��x

2 + �y
2� + S − 1 +

Eb

�1 + Sx
2�
�1

2
�1 − Sx

2���p�Vy
2 − Vx

2��1�

− �Vy
2 − Vx

2��2�� − 2Sx��pVx
�1�Vy

�1� − Vx
�2�Vy

�2���
=

�Sxx

�1 + Sx
2�3/2 +

Eb

2
�1 − �p

�p
� . �12�

Prescription of initial and streamwise boundary conditions
�e.g., periodicity in x� completes the general mathematical
problem to be addressed for interfacial deviations of arbitrary
wavelength and amplitude �see �14,15� for the horizontal
electric field problem�.

III. LINEAR STABILITY THEORY

The following is an exact solution of the governing equa-
tions and boundary conditions �overbars are used to denote
unperturbed values�:

S̄ = 1, �13�

�̄ = 0, �14�

V̄�1� =
1

�p
y , �15�

V̄�2� = y + const. �16�

The constant in �16� can be set to zero without loss of
generality—the equations and boundary conditions contain
derivatives of the voltage alone. The base pressure distribu-
tions in regions 1 and 2 can be determined by substituting the
solutions �15� and �16� into the normal stress balance condi-
tion �8�. Denoting the pressure in region 2 by its ambient
value pa, we find

p̄1 = pa +
1

2
�1 − �p

�p
�Eb. �17�

Linear stability is analyzed by writing

��x,y,t� = �Aeikx+i�t cosh�ky� + c.c., �18�

V�1��x,y,t� = V̄�1��y� + �Beikx+i�t sinh�ky� + c.c., �19�

V�2��x,y,t� = V̄�2��y� + �Ceikx+i�te−ky + c.c., �20�

S�x,t� = S̄ + �
0eikx+i�t + c.c., �21�

where c.c. denotes complex conjugates and the quantity ���
�1 is a linearization parameter. Substitution of �18�–�21�
into the governing equations and linearization with respect to

� leads to the following dispersion relation after some alge-
bra:

�2 = k tanh�k� + �k3 tanh�k� − Eb
�1 − �p�2

�p

k2

1 + �p coth�k�
.

�22�

In the absence of an electric field, Eb=0, the dispersion re-
lation �22� is that for gravity capillary waves on a finite depth
fluid layer; the waves are dispersive and have velocity c
where

c2 = �2/k2. �23�

The electric field term is always negative �k is positive with-
out loss of generality� and hence destabilizing. In Fig. 2 we
show the dependence of the wave speed c2 with wave num-
ber k for fixed values of �=1 and �p=2, as Eb increases from
zero. It can be seen that for nonzero but moderate values of
Eb the waves remain dispersive; in addition there exists a
wave number of zero group velocity. As Eb increases further,
however, we find a unique value of Eb above which instabil-
ity sets in. In Fig. 2 this value of Eb is between 10 and 15,
and can be found by solving the following nonlinear alge-
braic equations for the neutral values kc ,Ebc:

c2�kc,Ebc� = 0,
�c2

�k
�kc,Ebc� = 0. �24�

Note that the neutral wave corresponding to k=kc has zero
phase velocity and group velocity.

IV. LONG WAVE ASYMPTOTICS

We look for nonlinear solutions characterized by typical
wavelengths which are long in comparison to their nonlinear
amplitudes. Introducing a small parameter 	, we write

S�x,t� = 	H�x,t�, H = O�1� , �25�

and seek asymptotic solutions of the governing equations in
the limit 	→0. The analysis that follows is similar to that of
Papageorgiou and Vanden-Broeck �14� who derived long
wave evolution equations in the case of a horizontal electric
field. The fact that the electric field is acting vertically and is
a linear function of y in its base state �as opposed to a linear
function of x in �14��, can be dealt with in an elegant way by
introducing conjugate harmonic functions. The function
Vx

�1�− iVy
�1� is analytic in z=x+ iy and satisfies Vx

�1�=0 on y
=0. We define the complex conjugate harmonic function
Wx

�1�− iWy
�1� where

Wx
�1� = − Vy

�1�, �26�

Wy
�1� = Vx

�1�. �27�

It follows, then, that Wx
�1�− iWy

�1� is analytic in z and satisfies
Wy

�1�=0 at y=0. Similarly, starting with Vx
�2�− iVy

�2� which is
analytic in z, we obtain the analytic function Wx

�2�− iWy
�2�,

where

Wx
�2� = − Vy

�2�, �28�
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Wy
�2� = Vx

�2�. �29�

The far-field condition Vy
�2�→1 as y→�, is replaced by

Wx
�2�→−1 as y→�. Making the substitutions �26�–�29� into

the governing equations �1�–�3� and the boundary conditions
�5�–�7� and �12�, provides the following equivalent problem:

�2� = 0, �2W�1,2� = 0, �30�

�y�x,0,t� = 0, Wy
�1��x,0,t� = 0, �31�

Wx
�2� → − 1 as y → � . �32�

The boundary conditions at the free surface y=S�x , t� be-
come

Wy
�1� − SxWx

�1� = Wy
�2� − SxWx

�2�, �33�

�p�Wx
�1� + SxWy

�1�� = Wx
�2� + SxWy

�2�, �34�

�t +
1

2
��x

2 + �y
2� + S − 1 +

Eb

�1 + Sx
2�
�1

2
�1 − Sx

2���p�Wx
2 − Wy

2��1�

− �Wx
2 − Wy

2��2�� − 2Sx�− �pWx
�1�Wy

�1� + Wx
�2�Wy

�2���
=

�Sxx

�1 + Sx
2�3/2 +

Eb

2
�1 − �p

�p
� . �35�

The kinematic condition �9� remains unchanged and will be
used later.

Using overbars to denote undisturbed states as before, an
exact solution to the new system is given by a flat interface
and

W̄x
�1� = −

1

�p
, W̄x

�2� = − 1, �36�

so in terms of the conjugate harmonic functions the field is
horizontal in its undisturbed state. We introduce a stretched
normal coordinate in region 1

Region 1 x unchanged, y = 	Y , �37�

Region 2 x unchanged, y unchanged, �38�

with Y an order one variable. The appropriate asymptotic
expansions are

W�1� = −
1

�p
x + 	W1

�1� + O�	3� , �39�

W�2� = − x + 	W1
�2� + O�	3� , �40�

� = �0 + 	2�2 + ¯ , �41�

S = 	H1 + ¯ . �42�
Introducing the region 1 stretched variables into the govern-
ing Laplace equations �30�, and applying the boundary con-
ditions �31� at the solid surface y=0, gives the following
leading order solutions

W1
�1� = ��x,t� , �43�

�0 	 �0�x,t� , �44�

�2 = −
1

2
Y2�0xx. �45�

Using these solutions in the electrical boundary conditions
�33� and �34� and noting that, to leading order, for region 2
variables the interface is at y=0, gives the following asymp-
totically correct conditions �see �14� for details�:

FIG. 2. Linear dispersion relation �22� as Eb

varies. Here �=1 and �p=2.
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�W1y
�2��y=0 = �1 − �p

�p
�H1x, �46�

�W1x
�2��y=0 = �p�x. �47�

The leading order contribution to the Bernoulli equation �35�
is considered next using the solutions �43�–�45�. It is conve-
nient to differentiate �35� with respect to x first and to also
use condition �47� to eliminate �W1x

�2��y=0 in favor of �x; the
resulting asymptotically correct equation that retains inertia
is

�0xt + �0x�0xx + + 	H1x + 	Eb��p − 1��xx = 	�H1xxx.

�48�

A second equation involving �0 comes from the kinematic
condition �9� which is of order 	 at most and involves a
contribution due to �1 also. This is

H1t + ��0xH1�x = 0. �49�

It remains to determine the function ��x , t� in order to close
the system. To achieve this we need to solve for the voltage
potential in the elliptic region 2 and use boundary condition
�46�. One way to determine � is to consider the function
F=W1x

�2�− iW1y
�2� which is analytic in z=x+ iy, and to apply

Cauchy’s theorem to this function over a rectangular contour
bounding region 2 with the upper part of the contour located
at y=y0. As y0→� then F→0, and the contributions over
the vertical parts of the contour vanish due to periodicity �for
presentation purposes it is easier to apply the theorem on a
region −��x�� and apply periodicity at the end�. Taking
the limit y→0 gives

PV

−�

� W1x
�2���,0� − iW1y

�2���,0�
� − x

d�

= i��W1x
�2��x,0� − iW1y

�2��x,0�� , �50�

where PV denotes the principal part of the integral. Taking
the imaginary part of �50� and using the fact that W1x

�2��x ,0�
=�p�x �see �47��, together with the result �46� to eliminate
W1y

�2��x ,0�, gives

�x = − �1 − �p

�p
2 � 1

�
PV


−�

� H1x

� − x
d� . �51�

Substituting this into the Bernoulli relation �48� and writing
u=�0x gives

ut + uux + 	H1x + Eb�1 − �p

�p
�2� 1

�
PV


−�

� 	H1xx��,t�
� − x

d��
= 	�H1xxx. �52�

The nonlocal term in �52� is the Hilbert transform operator
defined by

H�f� =
1

�
PV


−�

� f���
� − x

d� , �53�

and on periodic domains it takes the form

Hper�f� = 

0

1

cot„��� − x�…f���d� . �54�

Some well-known properties of these transforms used below
are their symbols in Fourier space and the commutation
property between the transform and derivatives, i.e. �H�f��x

=H�fx�. Finally we cast the two evolution equations in terms
of the original variables �equivalently, scale 	 out of the
problem� to obtain the evolution system

ut + uux + Sx + Eb�1 − �p

�p
�2

H�Sxx� = �Sxxx, �55�

St + �uS�x = 0. �56�

Next, we show that the dispersion relation of the system
�55� and �56� is identical to that of the full problem when the
limit k�1 is taken in �22�. Writing u�x , t�= û exp�ikx+ i�t�,
S=1+ Ŝ exp�ikx+ i�t�, linearizing with respect to hat vari-
ables and using the fact

H�eikx� =
1

�
PV


−�

� eik�

� − x
d� = i sgn�k�eikx, �57�

gives the dispersion relation

�2 = k2 + �k4 − Eb�1 − �p

�p
�2

k3. �58�

This is identical to the small k expansion of �22� that keeps
the leading order contribution from each of the three terms in
�22�.

It remains to formulate the asymptotic model into the
computational format of traveling waves. We write

u = c + U,
�

�t
	 0, �59�

to find

cUx + UUx + Sx + Eb�1 − �p

�p
�2

H�Sxx� = �Sxxx, �60�

cSx + USx + UxS = 0. �61�

The speed for linear waves follows by linearization of �60�
and �61�, or equivalently from �58�, as

c2 =
�2

k2 = 1 + �k2 − Eb�1 − �p

�p
�2

k . �62�

The term independent of k is due to the inclusion of gravita-
tional effects which were absent in the study of Papageorgiou
and Vanden-Broeck �14�. A mentioned earlier, a vertical field
induces instability at sufficiently large values of Eb since c
can become complex then. In what follows we consider trav-
eling waves when Eb is below such a threshold and also
address the dynamic problem in the linearly unstable regime.

V. NUMERICAL SOLUTIONS

The numerical solution of �55� and �56� is carried out
using a pseudospectral method in space and a standard four-
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stage Runge-Kutta method in time. Spectral accuracy is
maintained at all times during a computation by determining
the time step and the number of spatial modes adaptively
according to the evolution of the spatial spectrum of the
solution. Details pertaining to our code can be found in
�12,13�. The initial conditions are S�x ,0�=S�x�+h0 cos�x�
and u�x ,0�=U�x�+u0 sin�x�, where S�x�, U�x� are either the
computed traveling wave solutions or the flat film base state
�S=1, U=0�, and h0, u0 are prescribed perturbation ampli-
tudes. To validate our code we propagated traveling waves
�see below� over long time intervals and confirmed that the
observed wavespeed matched that of the wave used as initial
data in the simulation. All our numerical results were ob-
tained with �=1 and �p=2.

A. Traveling waves and their stability

When Eb is less than Ebc, the flat film state is linearly
stable and dispersive, and nonlinear traveling waves are pos-
sible. For Eb�Ebc, however, traveling waves �if they exist�
are unstable and as shown later, lead to the formation of a
dry spot in finite time. In this section we consider Eb�Ebc.

Traveling wave solutions of the evolution equations �60�
and �61� are calculated numerically by using a Newton itera-
tion procedure. The unknowns are the values of U and Sx at
the nodes of a regular grid, and these are used to construct
approximations of U, Ux, Sxxx and Sx at another set of grid
points which are shifted by half a mesh spacing with respect
to the original grid. Also, Sxx is approximated by a four-point
difference formula on the original grid. The Cauchy principle
value integral �53� is evaluated using a trapezoidal rule with
summation over the shifted grid nodes. The value of S at the
shifted grid nodes is found by integration of Sx using as
initial condition S�0�=�, where � is the traveling wave am-
plitude. The resulting set of nonlinear equations is solved by
Newton’s method. For details of the method we refer to �14�.

Figure 3 shows interfacial traveling wave profiles of in-
creasing amplitude. It is observed that the wave speed de-

creases as the amplitude increases; in addition, for the largest
amplitude used �1.45�, the minimum film thickness is less
than 0.01 and the local geometry near the minimum is wedge
shaped. Our computations indicate that there exists a critical
amplitude above which the traveling wave interface touches
down, that is the minimum thickness becomes zero.

The stability of traveling waves is considered next. We
solve the initial value problem for �55� and �56� with initial
conditions given by traveling waves computed as described
above. In Fig. 4 we show the evolution up to a computational
time of 50 units, for the traveling waves with unit amplitude
�solid line in Fig. 3�, and no added perturbation. It is seen
that the wave propagates without changing shape or speed
and hence is stable in this sense. When a perturbation of
amplitude h0=0.1, u0=0, is added to the interfacial traveling
wave, the motion evolves dynamically with a quasiperiodic
oscillation of the amplitude and corresponding horizontal ve-
locity �not shown here�. Evidence of this nonlinear stability
is presented in Fig. 5 which depicts the minimum film thick-
ness as a function of time up to 50 time units. Computations
with other traveling wave profiles produce similar results, as
long as the perturbation h0 is sufficiently small. We have ran
cases with large initial perturbations in the linearly stable
regime, namely Eb=5, h0=0.8 cos�x�, u0=0 and Eb=1.25,
h0=0.9 cos�x�, u0=0, in order to discover if touchdown can
occur in the linearly unstable regime for large initial condi-
tions. In both cases the response of the system is to produce
persistent interfacial oscillations without rupture �the mini-
mum film thickness is larger than roughly 0.2 and 0.1, re-
spectively�. It is possible, however, that rupture can occur if
the initial conditions are carefully chosen by including a
large initial perturbation in u0 also. The question of the
modulational stability of the nonlinear traveling waves to
perturbations larger than that of the underlying period, is the
subject of current work. It is interesting to note that the re-
lated problem in �12� exhibits such modulational instabili-
ties.

FIG. 3. Interfacial traveling wave profiles with speed
c=−0.825053 �dotted line�, c=−0.73347 �solid line�, and
c=−0.31799 �dash-dot line�; Eb=5.

FIG. 4. �Color online� Stable unimodal wavetrain of amplitude 1
and speed c=−0.73347 under zero initial perturbation; Eb=5.
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B. Time dependent solutions

The initial value problem is solved next when Eb�Ebc;
all computations have Eb=16 and initial perturbations h0
=0.1 and u0=0. The evolution to rupture of the interface is
shown in Fig. 6, and the horizontal velocity at the last com-
puted time t=1.747076591, is shown in Fig. 7. Numerical
experiments with other initial perturbations lead to similar
results. It is evident that the interface touches down in a
finite time and the corresponding velocity becomes infinite
near the touchdown points. It is possible to describe the dy-
namics near the singular time t= ts and singular point�s� x
=xs, in terms of the following similarity solutions:

S�x,t� = �ts − t��f� x − xs

�ts − t���, u�x,t� = �ts − t��g� x − xs

�ts − t��� ,

�63�

where the exponents ��0, ��0, ��0 and the scaling func-
tions f and g are to be determined. Substitution of the ansatz

�63� into the governing equations �55� and �56�, and a bal-
ance of most singular terms, provides two balance equations
for the three unknown exponents; the similarity solution is
therefore of the second kind with the exponents related by

� = � − 1, � − 1 = � − 3� . �64�

The first expression comes from the dominant balance ut
�uux�Sxxx and the second from St��uS�x. In order to de-
termine the exponents we need to use the numerical results
and extract information up to the singular time. Our calcula-
tions indicate that the minimum of S, Smin say, goes to zero
linearly as ts is approached. Plots of Smin against time are
shown in Figs. 8 and 9; the latter plot considers the behavior
near the singular time and superimposes a least squares lin-
ear fit. The fit is in turn used to estimate the singular time,
t= ts by extrapolation. This linear behavior implies that �
=1 and then expressions �64� yield

FIG. 5. Stability of unimodal interfacial traveling wave of am-
plitude 1: h0=u0=0 �solid line�, h0=0.1, u0=0 �dashed line�;
Eb=5.

FIG. 6. Interfacial profile from initial conditions with h0=0.1,
u0=0; Eb=16.

FIG. 7. Velocity profile near the time of pinching from initial
conditions with h0=0.1, u0=0; Eb=16.

FIG. 8. Evolution of the minimum interface height from initial
conditions with h0=0.1, u0=0; Eb=16.
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� = 1, � =
1

2
, � = −

1

2
. �65�

Further numerical confirmation of these exponents has been
carried out by consideration of the evolution of the maxi-
mum value of the velocity, umax say. The evolution of umax is
shown in Fig. 10 which clearly shows the blow up in a finite
time. To confirm the blow up rate of �ts− t�−1/2, we show in
Fig. 11 the log-log plot of umax against the time distance from
the singularity, and estimate the slope to be −0.47, in reason-
able agreement with the exact value of −0.5. We also note
that according to the result �65�, Sx and Sxx remain bounded
near the touchdown point and this is supported by the calcu-
lations also. It is straightforward to obtain the nonlinear
ODEs describing the scaling functions f and g, and this is not
pursued further here. We note, however, that the shape of the

interface near the singular space-time point, is parabolic; this
can be seen from the form of the interfacial scaling function
S��ts− t�f��� where �= �x−xs� / �ts− t�1/2 for large �. In this
limit and far from the singular point, S is expected to behave
quasistatically with respect to the fast time scale over which
the singularity is taking place. This in turn implies that f
��2 for ����1, yielding a locally parabolic shape as viewed
from outside the self-similar region. An analysis of the ODEs
describing the scaling functions produces an identical result
as well as the decay of the velocity scaling function accord-
ing to g��−1 for large �.

These estimates are consistent with Eq. �64� and the ap-
proximation is expected to improve in computations which
proceed to much smaller values of Smin—our computations
possess only two decades of data due to the small time step
and large number of modes required to resolve the singular
structures.

VI. CONCLUSIONS

We have studied the nonlinear stability of a perfect dielec-
tric liquid layer wetting a solid substrate electrode held at
constant voltage. A second electrode is placed laterally far
away so that the motion is driven by an initially piecewise
constant vertical electric field which is uniform in the hori-
zontal direction. Two regimes were identified: �i� Eb�Ebc
which provides linearly stable dispersive waves, and �ii� Eb
�Ebc which induces a band of unstable waves centered
about a finite wave number k=kc. The objective of this work
is to follow initial dynamics into the nonlinear regime in
both cases. This has been achieved by derivation of a
coupled system of evolution equations for the interfacial po-
sition and the horizontal fluid velocity, valid for long waves.
These equations are studied for traveling waves in case �i�
where it is found that larger amplitude waves travel slower
than smaller amplitude ones. Numerical computations indi-
cate that these waves are stable to small perturbations of the

FIG. 9. �Color online� Final stage of the evolution of the mini-
mum interface height from initial conditions with h0=0.1, u0=0;
Eb=16. The dashed line indicates the least-squares fit to the com-
puted data.

FIG. 10. �Color online� Evolution of the maximum horizontal
velocity in the fluid layer from initial conditions with h0=0.1,
u0=0; Eb=16.

FIG. 11. �Color online� Final stage of the evolution of the maxi-
mum horizontal velocity in the fluid layer from initial conditions
with h0=0.1, u0=0; Eb=16.
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same wavelength as the traveling waves. When the vertical
electric field induces a linear instability, our numerical com-
putations provide strong evidence for interface touchdown
�and local velocity blow up�, according to a similarity solu-
tion of the second kind. The computations were used to ex-
tract scaling exponents. These are different from the work of
�12� even though the governing equations are very similar
and the main balances near the singularity are the same. This
can be attributed to the existence of a second kind similarity
solution which is sensitive to the different effects of the elec-
tric field and gravity in the present problem prior to the sin-
gularity, even though these become higher order effects near

blow up. This work provides a computationally tractable
model for singularity formation which can be of value to
direct numerical simulations in the future.
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