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Granular packings sheared in an annular channel: Flow localization and grain size dependence
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We investigate experimentally a quasistatic flow of glass beads in an annular channel, in which particles are
packed and sheared from above under a constant normal load. The experiments utilize techniques of refractive-
index-matched fluorescent imaging to determine the motion of individual particles and the velocity fields inside
the sheared packing. We demonstrated in a previous paper [Phys. Rev. E 70, 031303 (2004)] that an ordering
transition has a significant impact on the velocity profile. Here, we report the effects of layer thickness, channel
width, and particle size on the internal velocity field. For very thin layers, the grain velocity exhibits a linear
vertical profile. As the layer thickness increases, a strongly nonlinear velocity profile emerges, with particle
motion that is largely localized to a narrow region (shear band) near the driving surface. Once the packing has
reached its steady state, the velocity field is insensitive to the size of grains being used—the velocity profile
does not scale with grain size. However, the vertical decay of grain velocity becomes significantly steeper as
the horizontal width of the channel decreases. In addition, we demonstrate that changing the direction of
shearing generates an anomalous mobility of grains in the deep interior that is sensitive to particle size. The
transient grain motion is accompanied by an abrupt volume compaction and a gradual recovery as the shearing
proceeds. Reviewing results from this and other works reveals that the velocity profiles of granular shear flows
are often geometry specific. We present a heuristic continuum model that qualitatively captures the shear

banding observed in this geometry.
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I. INTRODUCTION

Continuously flowing granular particles, such as flowing
sands, seem to behave like fluids in a macroscopic sense.
However, in comparison to ordinary fluids that are well de-
scribed by the Navier-Stokes equations, the current under-
standing of granular flows is rather incomplete. This is espe-
cially true for slowly creeping or quasistatic flows, where
particles are nearly in static equilibrium and are sustained by
simultaneous contacts with multiple neighbors. Experimen-
tally, there are few observations of grain motion inside three-
dimensional (3D) dense packings. On the theoretical side, it
has been a long-standing challenge to establish constitutive
relations for the flow of packed grains whose interactions
cannot be reduced to binary collisions as is conventionally
done for granular gases.

One commonly observed but poorly understood property
of creeping grains is the phenomenon of shear banding [1],
i.e., the fact that the velocity of grains tends to be largely
localized within a narrow region where the velocity field
exhibits a strong spatial variation by many orders of magni-
tude within just a short distance. A particularly interesting
question is what determines the length scale of the observed
flow localization. One may be tempted to normalize the spa-
tial coordinates of the velocity fields by the grain size. But so
far neither a common functional form nor a universal spatial
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scale is found to be consistent with different experiments and
computer simulations [2-18], for which we sample a few in
Sec. IV and in the Appendix.

In this paper, we use the flow of packed granular particles
in an annular channel as an example, to illustrate that grain
size is not necessarily the dominant length scale for the ve-
locity fields. Rather, the steady-state velocity field can de-
pend substantially on geometrical factors such as the thick-
ness and the width of the packing. Once the packing has
reached the steady state, the velocity field is insensitive to
the size of grains being used. In addition, we investigate the
behavior of the packing in response to the change of shearing
direction, which extends previous findings from two-
dimensional granular flows [19] or grain motion observed at
the free surface of a Couette cell [20] to the interior of a 3D
granular packing. We find that the grain size does affect the
response to the change of shearing direction.

It is possible that a sheared packing in its steady state can
be modeled as a fluidlike continuum with its flow fields de-
termined by the assumed local rheology and the confining
geometry. We illustrate this possibility by presenting a heu-
ristic model that qualitatively captures the shear banding ob-
served in the annular channel, with the precaution that par-
ticle size may still be an important parameter in modeling
transient flows. This paper extends our previously published
works [21,22] that focused on the problem of shear-induced
ordering of granular packings.

II. APPARATUS—A BRIEF DESCRIPTION

In this section, we briefly summarize the main features of
our experimental system, which have been described in de-
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FIG. 1. Cross section of the annular shear cell, with the inset
showing a schematic side view and the coordinates.

tail in Refs. [21,23]. As shown in Fig. 1, the apparatus con-
sists of an annular channel with a rotating top that shears the
glass beads from above while particles are packed under a
fixed normal load. The typical diameter of the glass beads is
d=(0.68+0.03) mm, with the exception of some experiments
where glass beads of diameter 1.0 mm or 2.0 mm are also
used for comparison. The width of the annular channel is
28.5d and the circumference is about 800d. The filling height
is variable from a few particle diameters to 50d. Cylindrical
spacers can be installed in the channel to effectively narrow
the channel for the purpose of comparisons. The glass beads
are driven by a rotating ring-shaped upper boundary to which
a monolayer of 0.68 mm glass beads has been glued. The
bottom boundary can be adjusted to be (i) a monolayer of
0.68 mm beads, (ii) smooth, or (iii) bumpy—by gluing a
mixture of particles of different sizes. Internal images are
generated by the use of laser sheet illumination in presence
of a fluorescent interstitial fluid whose refractive index
matches that of the glass beads. The small gaps (<d/2) be-
tween the upper boundary and the sidewalls allow the fluid
to flow through freely but prevent particles from leaving the
region below. Therefore the vertical displacement of the up-
per boundary reflects the change of the total volume of the
granular packing. The upper boundary constantly imposes a
vertical load with a minimum of 1.3 Kg g. Please see Ref.
[21] for further details.

III. EXPERIMENTAL RESULTS

In our experiments, the glass beads are driven over a wide
range of driving speeds (0.12d/s—12d/s). Over this entire
range of driving speeds and under the typical normal load
(1.3 Kg g), the granular packing is entirely in the creeping or
quasistatic state, as is estimated in the Appendix of Ref. [21].
The fluid drag even at the maximal speed is estimated to be
negligible compared to the typical contact force between
grains. The negligibility of the fluid drag is also consistent
with the experimental fact that the velocity profiles are in-
sensitive to two decades of change in driving speeds [22].
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FIG. 2. (Color online) Vertical profiles of steady-state velocity
for different states of order and with different boundary conditions.
Velocities are normalized by the speed of the upper boundary near
z=0. The symbol d represents the particle diameter 0.68 mm. For
the 24-layer crystallized states, the data marks also indicate the
average height of particle centers for each layer. The statistical
variation over different sampling periods (corresponding to about
102d of displacement accumulated locally) is about 30%, labeled as
6 at the lower right. For the crystallized state, the spatial decay of
particle velocity is significantly steeper than that of the disordered
state. (The triangles and squares represent disordered-state velocity
profiles measured during the same experiment but at two different
vertical planes that are, respectively, 1/4 and 1/3 of the channel
width from the sidewall.)

The primary effect of using the interstitial fluid, as opposed
to using just dry particles, is perhaps the lubrication on the
grain-grain and grain-wall contacts. We speculate that, in
constructing a theory or simulation for quasistatically driven
grains, the lubrication effect can be incorporated simply as a
change in frictional coefficient in grain-grain and grain-wall
contacts.

A. Steady-state velocity profiles

First, we briefly review the effect of crystalline ordering
presented in our previous papers [21,22]. We show in Fig. 2
the vertical profiles of time-averaged velocity for different
final states, produced by the use of different bottom bound-
ary conditions and shearing protocols discussed in Ref. [21].
Note the strong shear banding (localization of velocity field)
in both ordered and disordered states, as indicated by the
decay of velocity from the top to the bottom by many orders
of magnitude. Our measurements show that the downward
decay of the mean velocity in the crystallized state is signifi-
cantly steeper than in the disordered state and that, once
ordered, the packing exhibits a velocity profile that is largely
insensitive to different conditions of the bottom boundary,
except for the lowest layers of particles. (The lowest layers
of particles appear to slide more on a smooth bottom than in
other cases. Further examples are shown in Fig. 4.)

We extend our previous investigations and demonstrate in
Fig. 3 the velocity profiles for packings of different geo-
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FIG. 3. (Color online) Vertical profiles of the steady-state veloc-
ity in sheared packings of different sizes. Velocities are normalized
by the speed of the upper boundary at z=0. The particle diameter d
is 0.68 mm. (a) Dependence on thickness: Different labels represent
particle velocity profiles at different packing thickness, whereas the
curves labeled as L-n represent the hypothetical linear relation
(V))/U=|1-z/H| with H being the total height of an n-layer pack-
ing. For thick layers, the profile approaches a master curve
(V)1U=0.798 exp[0.103(z/d)—0.023 75(z/d)*] which has a qua-
dratic function of z in its exponent. Note that for thin layers, the
velocity profile deviates substantially from the initial segment of the
master curve, illustrating the effect of a finite depth. In the extreme
case of just five layers, the particle velocity profile almost coincides
with the linear relation (curve L-5). (b) Dependence on the channel
width. Note that decreasing the channel width produces steeper
velocity profiles.

metrical parameters—thickness and width. In Fig. 3(a), the
thickness of the packing is varied by filling the channel with
different amounts of glass beads. The packings form crystal-
lized states of 5, 8, 12, 18, and 24 layers, respectively, after
being sheared for a long time with the monolayer bottom
boundary condition. For a packing as thin as five layers of
material, the velocity profile is almost linear (see the refer-
ence curve L-5). As the thickness is increased, the velocity
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FIG. 4. (Color online) Vertical profiles of steady-state velocity
for particles of different sizes. The time-averaged velocities (V,) are
normalized by the speed of the driving boundary and plotted against
vertical position z. All experiments are performed with a smooth
bottom boundary. Horizontal positions of data labels indicate the
heights of individual layers, with the exception of the data repre-
sented by crosses (which is partially disordered). The quadratic
master curve (see Fig. 3) is shown in light gray. The height z=0
represents the height of the driving boundary. Theoretical velocity
fields of ordinary fluids in the same channel, with three different
assumed positions of the lower boundary (z=—10 mm, —15 mm and
—20 mm), are averaged over the channel width and plotted as func-
tions of z for comparison. The upper portion of the velocity profiles
show that the spatial decay rates of particles of different sizes are
similar, and are generally steeper than that of an ordinary fluid
driven in an annular channel of the same width. The inset shows
that the measured particle velocity profile does not scale with par-
ticle size d.

profile progressively deviates from the linear relation, as can
be seen in Fig. 3(a) by comparing the data points with the
corresponding curves showing the hypothetical linear rela-
tions for thicker packings. The velocity profile for thick
packings eventually approaches a limiting master curve,
which can be well fitted by a quadratic function of z on this
semilog plot (see caption).

In the experiments shown in Fig. 3(b), installation of a
transparent cylindrical spacer within the annular channel di-
vides it into two channels with widths that are narrower by
factors of 2 and 4 than the original one. The ordered state
ceases to exist in the narrowed channels. The grain velocity
in these disordered states also depends in part on the hori-
zontal position (see Fig. 4 of Ref. [22]); therefore the veloc-
ity profile also depends on the imaging plane. The vertical
profiles shown in the graph are measured along vertical
planes that pass through the center of each channel, where
grains move the fastest. Figure 3(b) indicates that decreasing
the channel width generally produces a steeper velocity gra-
dient, despite the fact that disorder favors weaker gradients
(Fig. 2). This observation suggests that sidewall resistance
should play an important role in determining the velocity
field, as we emphasize in Sec. IV B.

Figure 4 shows the measurements of the time-averaged
velocity fields using different sizes of monodisperse spheri-
cal glass beads. The data points here include experiments
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FIG. 5. (Color online) Vertical profiles of steady-state velocity
for particles under different normal loads. The effective weight of
the grains immersed in the fluid is 0.0875 Kg g. The time-averaged
velocities (V,) are insensitive to the change of normal force by a
factor of 4. (Conditions: 0.6 mm particles; 18-layer ordered state in
the 28.5d-wide channel; driving speed=12d/s. The dotted line rep-
resents the master curve from results of thicker packings, as shown
in Figs. 2-4.)

using three different particle sizes with a comparable number
of layers (14 or 15), as well as the profile of a 24-layer flow
as a reference. We find that the velocity decays of packings
composed of different particle sizes follow roughly the same
trend in terms of physical distance from the driving surface.
Even though particle diameter d may seem to be a conve-
nient length to nondimensionalize coordinates, the inset
shows no clear advantages of doing so in these cases. In
addition, we include in the graph the hypothetical profiles for
ordinary fluids in the same channel for three sample thick-
nesses. These curves are obtained by solving the correspond-
ing Laplace equation in a rectangular geometry and then av-
eraging across the channel [23]. All curves have a primary
decay length 7' =(W,/m) set by the channel width W, Note
that either for the ordered flows shown here or for the disor-
dered flows (Fig. 2), the velocity decay of granular flows is
generally steeper than what is expected of an ordinary fluid
driven in the same channel.

All experiments shown in Fig. 4 are performed with a
smooth bottom boundary, so that the lower portion of the
grain velocity profiles also exhibits an additional feature:
near the smooth bottom, these profiles tend to somewhat flat-
ten, presumably because the smooth bottom allows the grains
to slide more easily. In the extreme case of 2 mm beads, the
lowest six layers slide almost as a solid block—see Sec.
IV B for further discussions.

We change the normal load by adding extra weight on top
of the upper boundary up to roughly four times the typical
load (1.3 Kg g), and find no detectable change in the velocity
profiles, shown as Fig. 5. The weight of the grains, which in
these cases is 0.0875 Kg g when immersed in the fluid, is
expected to cause a small gradient of normal stress, with the
fractional change of stress inversely proportional to the im-
posed normal force. The observed invariance of the velocity
profile therefore implies that a fractional change of normal
stress of the order of 10~! due to grain weight is insignificant,
compared to the effect of the channel width [Fig. 3(b)] and
the internal state of ordering (Fig. 2).
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B. Response to change of shearing direction

The behavior of grains in response to the change of shear-
ing direction provides further insight into quasistatically
driven granular flows. As shown in Fig. 6, we investigate the
response to the change of shearing direction by first driving
the boundary steadily in one direction (for more than 10%d of
total translation), stopping the motion, then restarting the
boundary motion in the reverse direction. As soon as the
driving boundary starts to move in the reverse direction, the
grains in the interior exhibit a short period of anomalous
mobility [Figs. 6(b) and 6(c)], compared to the motion in the
steady state [Fig. 6(a)]. Figures 6(d)-6(f) show the average
motion of particles over the course of time #, accompanied by
the measured change of total volume: The amplitude and the
duration (scaled by |Uy|) of the anomalous mobility are
roughly independent of the driving speed for the two decades
of |Uy| being used, as shown in Figs. 6(d) and 6(e). (In the
curves representing grain velocities, the small spikes are due
to measurement noise. The grains are completely static when
the driving boundary is at rest.) Figure 6(f) shows the verti-
cal displacement of the upper boundary, which indicates the
change of total volume in response to the shear reversal. The
granular packing first exhibits a step compaction accompa-
nying the anomalously mobile period, then shows a more
gradual recovery as the shearing continues in the reversed
direction. The full recovery to the prior volume requires a
large total displacement of the driving boundary (about
10°d-10%d, see Refs. [21,23]); this phenomenon indicates
that the state of the packing continues to evolve far beyond
the brief period of anomalous mobility. Both the crystallized
and the disordered packings exhibit similar behaviors in re-
sponse to the reversal of boundary driving.

In addition, inspecting the images at high frame rates re-
veals that the initiation and stopping of the grain motion in
the entire bulk as thick as 24 layers are effectively instanta-
neous; there is no detectable propagation delay beyond the
time resolution corresponding to the boundary motion of
about 0.1d. The observation of the rate-independent, nearly
instantaneous transient motion inside the granular packing,
combined with the steep compaction and gradual recovery, is
consistent with the picture of quasistatic jammed solids:
upon reversal of the shearing, the packing first unjams then
rejams with its anisotropy readjusted to reflect its new direc-
tion of shearing.

Interestingly, we find that the degree of this anomalous
mobility in response to the change in shearing direction de-
pends sensitively on the grain size: by progressively increas-
ing the particle size, this anomalous mobility can be substan-
tially suppressed. For example, using 14 layers of 2 mm
particles, we find that this phenomenon becomes undetect-
able, while the cases of 0.68 mm particles with either a com-
parable layer number or physical thickness in the vertical
direction exhibit the anomalous transient motions shown in
Figs. 6(a)-6(c) and 6(¢e). The implication of this particle size
effect is further discussed in Sec. IV A. In addition, the total
thickness also affects the degree of this anomalous transient
motion: in the case of 0.68 mm particles, about 13 layers or
more is required for the effect to become detectable [23].
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FIG. 6. (Color online) Time-resolved response of individual particles in an internal slice, upon the change of shearing direction, and the
corresponding change of total volume. The thickness of the packing is equivalent to 24 layers of particles. (a)—(c) The trajectories of
individual particles captured at a vertical internal slice within a period corresponding to 12d of boundary displacement, during the steady
shearing (a), immediately following the reversal (b), and during the next period (c). The upper edges of the images coincide with the
approximate position of the driving boundary. (d)—(f) The typical shearing protocol (d), the velocity of grains at mid-height (e), and the
corresponding change of total volume (f). |Uy| stands for the steady-state driving speed. Prior to the time =0, the packing has been steadily
sheared by the upper boundary in the positive direction with a total displacement more than 10*d. Graph (e) shows the averaged velocity of
60 particles in a horizontal slice at mid-height, as a function of time. Data from experiments using two driving speeds differing by a factor
of 100 (12d/s and 0.12d/s) are overlaid to show that the amplitude of the anomalous mobility and its duration (scaled by the boundary
displacement) are insensitive to the change of driving speed. Graph (f) shows the vertical displacement of the upper boundary %(t), with |Uy|
being 12d/s; the curve indicates an abrupt compaction of total volume followed by a gradual recovery.

IV. DISCUSSION

A. Effects of particle size in experiments

We have demonstrated that, while the vertical decay of
velocity depends sensitively on the channel width [Fig. 3(b)]
and the state of internal ordering (Fig. 2), the velocity gradi-
ent is insensitive to change of particles size by a factor of 3
(Fig. 4). These observations suggest that the time-averaged
flow field of the packing in its steady state may be under-

stood as the behavior of a continuous effective medium, with
its cross-sectional profile determined mainly by specifying
the conditions imposed at the boundary—in analogy to the
case of fluid driven in a finite-sized channel. While this con-
jecture does not preclude particle size as a parameter in a
general theory, we expect that the particle size does not affect
the steady-state velocity field significantly. In Sec. IV B, we
present a heuristic theory for the steady-state velocity profile
that does not depend on particle size.
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In contrast to the steady-state velocity field developed af-
ter a prolonged shearing, the particle size does affect the
transient response following a change of shearing direction.
We pointed out in the previous section that increasing the
particle size can suppress or eliminate the anomalous mobil-
ity shown as Figs. 6(a)-6(c) and 6(e). In this sense, treating
the granular packing as merely a continuous fluid-like me-
dium regardless of its grain size is insufficient. It may not be
surprising that at a small distance scale, especially when the
boundary driving involves reversals that induce the relax-
ation and reestablishment of the grain contact networks, the
particle size is relevant, whereas at a large distance scale the
“granularity” of the medium can be smoothed out by aver-
aging: At a large distance scale, which is by definition how
the steady-state velocity field is determined, the packing
flows more like a fluid, with its velocity field primarily con-
trolled by the geometrical factors of the system. This behav-
ior may be analogous to the common observation that, in the
most general sense, whether a deforming medium should be
described as an elastic solid or viscous fluid depends on the
scale of deformation (or the time scale).

B. A heuristic model for the steady-state velocity profile

The shear banding of granular flows, i.e., the localization
of shear within a narrow band in which the local shear rate
(and the velocity itself) varies by orders of magnitude, is a
commonly observed phenomenon. But questions such as
what determines the location of the shear band and what
parameters control the length scale of the velocity variation,
i.e., the width of the shear band, do not seem to have a
simple answer that fits all contexts. The experimental results
by Mueggenburg [11] suggest that the occurrence (and loca-
tion) of a shear band in granular materials driven between
two parallel boundaries can be highly sensitive to a slight
asymmetry in its experimental setup. Recent experiments by
Fenistein et al. using a split-bottom Couette cell [15] have
also demonstrated that a shear band does not necessarily oc-
cur near the boundary of the packing: depending on the ge-
ometry of the shear cell, a narrow shear band in the form of
a curved surface in the interior of a granular packing can be
generated and sustained indefinitely. In the Appendix, we
sample more experiments and theories of granular flows in
different geometries, plus relevant computer simulations not
limited to granular flows, to illustrate the wide spectrum of
mechanisms that result in shear banding [2—18]. These inves-
tigations show that the velocity profile of sheared granular
packings is often geometry specific. It is therefore not sur-
prising that, among all existing results including ours, there
has been neither a common functional form of the velocity
profile, nor a universal characteristic length scale in units of
the grain size d, which sometimes appears to be just a con-
venient choice of parameter to normalize the spatial coordi-
nate but implies no particular universality.

In what follows, we describe a heuristic model that seems
to capture the shear banding of the steady-state velocity field
in our geometry. Motivated by the observations that the ve-
locity decays more strongly with depth in the narrower chan-
nels (Fig. 3), and that the velocity decay is insensitive to the
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change of particle size (Fig. 4), we base the model on the
balance established between the shear resistance at the side-
walls (particle-wall friction) and the internal shear stress
(friction between particles), accompanied by simple rheo-
logical assumptions. The slowly deforming granular packing
is modeled as a continuous effective medium with no explicit
reference to the particle size.

For illustrative purpose and mathematical simplicity, we
restrict our discussion to the ordered state, because in this
case particles are interlocked horizontally as semirigid sheets
so that the velocity field V, depends only on the height z but
not on the position across the channel. The notation o,
stands for the shear stress at each height. Both the velocity
and stress discussed here are coarse grained and time aver-
aged. The z axis points vertically upwards, with z=0 repre-
senting the driving boundary at the top, and the shear rate
¥=V.(z). The shear resistance exerted by the sidewall per
unit area is represented by o™!(z). Also for illustrative pur-
poses, the present discussion is restricted to a channel with
an infinite depth so that the simple condition V,(-%)=0 can
be assumed, even though generalization to the finite-depth
case is feasible when appropriate boundary conditions gov-
erning the grain-wall interactions at z=0 and z=-H, are
given.

By considering the stress balance for a stationary state, we
have

Z

[0:(2) = op]Wy =2 f o2 dz’ (1)
0

in which oy=0,(0), and W, represents the channel width.
We have assumed that the friction on the smooth sidewall
o"¥(z) is sufficiently small that, for an extended range of
height 0 > z>—|Z.|, the change in the shear stress o .(z) with
respect to z is not too large. More specifically, we assume
that

-1zl
2] oz )dz' | < |ooWy| (2)

0

for an extended region [—|Z:|,0], so that o,,(z) within this
region is expected to be always greater than the yield stress
[24]. We are only interested in the velocity field V,(z) within
this region.

As a first approximation, one may assume that the grain-
wall friction can be approximated by a height-independent
constant, 0"¥(z) = o, so that the right hand side of Eq. (1)
is just a linear function of z. Then a sharp shear band
emerges if one further assumes that the internal shear stress
0,.(z)=f(7y) depends only very weakly on the local shear rate
7, in the sense that a small decrease of o, requires a de-
crease in y by orders of magnitude. This assumption can be
expected to be true for most frictionlike materials, especially
packed grains. In principle, an arbitrarily sharp shear band
would occur as a result of assigning an arbitrarily weak rate
dependence to the shear stress of the material inside the
channel.
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Although the occurrence of a sharp shear band does not
demand a specific functional form of f(y), in what follows
we use a logarithmic function to represent the weak rate
dependence [25], i.e., 0. =f(¥) = o[ 1 + a In(¥/ ¥,)] where «
is a small positive constant, to illustrate one possible way of
producing the strongly localized velocity profile. Solving Eq.
(1) with the constant-sidewall-resistance approximation and
the logarithmic representation of f(y) gives an exponential
shear-banding profile

Vi(2) = V,(0)exp| ———— (3)

a
5 (oo/o) Wy

2

when the boundary condition V,(-%)=0 is imposed.

A quantitative comparison of theoretical predictions to the
experimentally measured nonexponential profiles (Figs. 2—4)
would require further improvements of the model (as dis-
cussed in the next paragraph) and some estimates of the ma-
terial parameters [26]. Nevertheless, this simple exponential
solution illustrates some important features: (i) The channel
width W, affects the spatial scale of the velocity decay; this
is qualitatively consistent with the our measured velocity
profiles with narrowed channels [Fig. 3(b)]. (ii) Increasing
the factor o,/0; would decrease the velocity gradient. The
use of the interstitial fluid is likely to increase this factor
because o represents the tangential force as beads slide
against the glass walls and should be more sensitive to fluid
lubrication than oy, of which we expect a substantial portion
is contributed by force components that are normal to the
local contact surface between grains of the packing and the
particles glued on the driving surface. In our experiments,
the dramatically longer timescale for the crystallization of
dry than that of fluid-immersed particles, reported in Ref.
[22], is consistent with this interpretation.

To reproduce the observed nonexponential profiles shown
as the downward bending curves on the semilog plots (see
Fig. 3 for a curve fitting), improvements of the model are
needed. There is no unique approach, and an accurate answer
may require a combination of them, for example: (i) modi-
fying the functional form of f(y)—see endnote [25]; (ii) in-
troducing a slip-speed dependence for the sidewall resistance
o"¥(z)—see endnote [27]; and (iii) including the effect of
the vertical variation of normal stress (due to weight of
grains) on o,(z) and a™¥(z), and subsequently its effect on
the sidewall friction.

Note that the nonlinear vertical decay of velocity field by
orders of magnitude is a characteristic of the channel geom-
etry in which the sidewalls provide substantial resistance,
regardless of whether granular particles or ordinary Newton-
ian fluids are being used. (The flow field for ordinary fluids
in this geometry can be determined by finding the stationary
solution of the Navier-Stokes equation with no-slip boundary
conditions [23]. For both granular flows and ordinary fluid
flows, the primary decay length is expected to be propor-
tional to the channel width W,.) However, the granular decay
length is much shorter than the fluid decay length (see Fig.
4), a result that is captured by the heuristic model as a con-
sequence of the weak rate dependence f(7y). The weaker the
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rate dependence of the shear stress, the sharper the resulting
shear band. (See, for example, the effect of a small « on the
delay length derived from our heuristic model.)

In this model, the sidewall interaction breaks the symme-
try between the upper and lower boundaries (discussed in the
Appendix with greater detail) and causes the shear band to
occur in the vicinity of the top boundary. Nevertheless, grav-
ity (the weight of grains) causes some gradient in normal
stress and thereby may also contribute to the asymmetry and
shear banding. However, the observed invariance of velocity
profile with respect to substantial changes in normal force
(Fig. 5) suggests that the change of internal normal stress
along the height of the packing, estimated to be at most 10%
of the imposed stress, is secondary to the effect of the side-
wall resistance. The asymmetry induced by the normal stress
gradient is therefore ignored in the simplest version of our
model.

Further discussion of the model can be found in the thesis
work listed as Ref. [23]. Here, we conclude with two addi-
tional remarks: (i) The horizontal coherence, which is char-
acteristic of the ordered state that occurs for a range of pack-
ing thickness and channel width with suitable bottom
conditions, allows a one-dimensional ordinary differential
equation (ODE) model depending only on the height z. For a
disordered state in which the velocity field exhibits gradients
in both the vertical and horizontal directions, a full 3D treat-
ment with partial differential equations (PDEs) would be re-
quired. This complication should be taken into account in
predicting flow fields in the limits of very wide or very thick
channels, where the horizontal coherence is expected to
break down and only disordered states can exist. (ii) Our
model applies to an upper portion of the packing limited by
[-|Z:|,0] defined in Eq. (2). For very thick packings, the
internal shear stress may go below yield stress at locations
lower than some critical depth so that the lower portion of
the packing becomes a rigid block. This may explain the
solid block observed at the lower portion of the packing
composed of 2 mm particles shown in Fig. 4. Interestingly, a
solid block motion has also been observed in the 2D simu-
lations by Thompson and Grest [28]—however, an important
difference is that our experiments are performed at low
speeds and with a heavy normal load so that the entire pack-
ing is uniformly in a quasistatic state, whereas in their simu-
lations some upper portion of the layer can be in a collisional
state contrasting the slowly creeping (or even static) lower
portion.

V. CONCLUSION

In this work, we use a packing of glass beads in an annu-
lar channel to investigate quasistatic flows of granular mate-
rials. The internal velocity fields are determined over a wide
dynamical range; the transient behavior in response to the
reversal of driving motion is also studied. The velocity pro-
files exhibit effects of the system geometry: In the limiting
case of a very thin packing, the grain velocity exhibits
merely a linear dependence on location between the driving
boundary to the static bottom. For sufficiently thick pack-
ings, the grain velocity exhibits a strongly nonlinear profile
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or shear band that reflects not only the internal state of or-
dering but also the effect of channel width. However, the
steady-state velocity profile is insensitive to the change of
particle size. These observations, accompanied by analyses
of other previous studies, show that the grain size is not
necessarily the dominant length scale for determining the
velocity fields of a granular flow and that the system geom-
etry can dominate instead. This may explain why a universal
decay length cannot be found by simply normalizing the spa-
tial coordinates in all granular flows with the grain size.

We show that an anomalous mobility of individual grains
in response to changes of shearing direction can be detected
inside the deep interior of a three-dimensional granular pack-
ing, reflecting the rearrangement of internal grains to adapt
to the new shearing direction. Furthermore, our simultaneous
volume measurements demonstrates that the anomalous mo-
bility is accompanied by an abrupt compaction and subse-
quently a gradual recovery, which may be regarded as a sen-
sitive indicator of the slow evolution induced by prolonged
shearing.

Our experiments, as well as the continuum heuristic
model, suggest that the nonlinear spatial decay of the veloc-
ity field is a characteristic of channel flows, regardless of the
materials (grains or fluids) being driven. Nevertheless, the
phenomenon that the observed grain velocity profile exhibits
a much steeper spatial decay than what is expected for an
ordinary fluid driven in the same channel can be attributed to
a particular non-Newtonian property which is perhaps unique
to granular materials—the insensitivity of shear stress to the
local strain rate. In a steady state, the slowly deforming
granular packing in the channel can be modeled as an effec-
tive continuum that is insensitive to the particle size. On the
other hand, we find from our experiments that the transient
mobility in response to changes of shearing direction exhib-
its a considerable dependence on the grain size.
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APPENDIX: SHEAR BANDING IN THEORIES
AND EXPERIMENTS

In this section, we review shear banding from both theo-
retical and experimental points of view. The purpose of this
section is to illustrate the diverse factors that generate a shear
band, thereby causing velocity profiles to vary from system
to system.

On theoretical grounds, the simplest model system for
sheared grains appears to be a two-dimensional (2D) collec-
tion of grains steadily sheared between two parallel identical
walls, with no other interactions except grain-grain and
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grain-wall contacts. Since the model system is symmetrical
along the midplane between the two shearing walls, the sim-
plest time-independent treatment would predict a velocity
profile that is antisymmetrical in an inertial frame that co-
moves with the grains along the midplane. Aside from a
simple linear profile that would obviously satisfy such sym-
metry, examples of nonlinear solutions exist in the literature,
e.g., Ref. [2]. Any time-independent, nonhysteretic treatment
of this type would preclude the localized one-sided shear
banding that is commonly seen in experiments.

There are molecular dynamics (MD) simulations that gen-
erate a one-sided shear banding, where the midplane symme-
try is broken in one way or another. The initial condition
often generates the required symmetry breaking and the
shear banding in computations that simulate how a collection
of grains evolve. In the constant-normal-stress simulations
listed as Ref. [3], grains are initially all static with respect to
one boundary: depending on the stress level, the system can
develop either a smooth nonlinear velocity profile or abrupt
shear bands in the interior. There are also similar examples in
the constant-volume simulations listed as Refs. [4—6], while
related work reported in Ref. [7] provides an example in
which one boundary is gradually pushed inwards. Notably,
the shear banding in constant-volume simulations often ex-
hibits some rate dependence: For instance, in Ref. [4], a
simulation of athermal particles, shear banding occurs only
when the shear rate exceeds a threshold set by the sound
speed of the colliding particles, whereas the shear banding of
thermal particles in Refs. [5,6] occurs only at low driving
speeds. Another frequently encountered symmetry breaking
factor is a body force such as gravity that points towards one
of the boundaries. The shear banding in theories and simula-
tions under a constant stress reported in Ref. [9] requires
gravity, and the velocity would show a linear profile when
gravity is turned off [10]. In addition, in comparing different
simulations and experiments, it is important to keep in mind
that the situation of a collection of grains under a heavy
constant stress and a slow shear rate (like our quasistatic
flows) can be fundamentally different from that of constant-
volume simulations in the low-speed limit [8].

Physical experiments on granular flows often involve
static confining walls that exert some drag on the flowing
grains. The drag can be an important or even dominant factor
that breaks the symmetry and controls the shear banding pro-
file. One recent experiment utilizes a symmetrical setup with
a stack of independently movable slats, such that grains are
sheared between two parallel plates moving at different
speeds, while the confining walls freely conform to the
granular packing [11]. The grain velocity profile as the shear-
ing starts is found to be nonunique and sensitive to the state
of packing; the observed velocity field ranges from a linear
relation with position to a sharp shear band only a few par-
ticle diameters wide. However, it is also found that a shear
band consistently develops at the faster moving wall in this
apparatus as the shear strain accumulates, illustrating that a
small residual asymmetry such as the small mechanical vi-
bration in this experiment can have a profound effect that
controls the shear banding.

Granular flows in a conventional Taylor-Couette cell
[12—14] have an intrinsic asymmetry along the principal gra-
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dient of velocity. This curvature effect can be a controlling
factor for shear banding. Based on the macroscopic balance
of angular momentum, the steady-state local shear stress
(a'¢,) is inversely proportional to the square of the distance
(r) from the apparatus axis. It is therefore not surprising that
a large velocity gradient tends to accumulate around the in-
ner cylinder, where the shear stress is relatively large so that
materials “yield” more easily. Ref. [2] gives an example
showing that including the effect of curvature in a theory can
reproduce the one-sided shear banding observed in experi-
ments. In a real experiment, other relevant factors such as the
static bottom, the upper free surface, and the weight of grains
can further complicate the problem. Experiments using a
modified Couette cell with a split-bottom design illustrate the
profound effect of the bottom [15]. The locus of the shear
band in Ref. [15] has been reproduced successfully by theo-
rists [16] using a variational principle based on the minimi-
zation of frictional dissipation. (But note that in this particu-
lar theory the shear band is defined as a zero-width surface,
leaving the velocity decay profile within the shear band ir-
relevant.)
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Gravity-driven granular flows on an inclined channel
formed by parallel vertical sidewalls usually consist of a thin
rapidly flowing surface layer and a creeping bulk region be-
low. The velocities of grains near the sidewalls have been
measured using very wide channels [17] or narrow channels
[18]. Both the sidewall resistance and the gradient of normal
stress caused by the self-weight of the pile can be important
in controlling the measured velocity profile. Interestingly,
Ref. [18] reports that the thickness of the rapidly flowing
surface layer scales approximately with the distance between
the sidewalls. This observation is somewhat related to our
experiments using different channel widths (Fig. 3), except
that our measurements focused on resolving the profile of the
slow creep, while in the model discussed in Ref. [18] the
region below the rapid flowing layers is treated as a solid.

This review of previous work suggests that the profile of
velocity decay in experimental granular shear flows depends
strongly on the system geometry. It may explain why simply
rescaling the spatial coordinates by particle size does not
lead to a universal profile in different experiments.
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