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We report experiments on a vertically vibrated quasi-two-dimensional granular layer of lead spheres show-
ing subharmonic undulations and ripples, which are associated with horizontal dilatation at the impingement of
the bottom wall. By systematically changing frequency and amplitude of external forcing, as well as the
container sizes and layer height, we observed various eigenmodes of undulations, whose selection is deter-
mined by the amount of configuration changes in densely packed particles along the bottom wall. Resulting
enhancement of horizontal stress induces the buckling and bending of the granular layer of successively higher
modes.
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I. INTRODUCTION

Pattern formation on the vibrating granular layer, such as
heap formation and convection, size segregations, bubbling,
and subharmonic standing waves, either in three-dimensional
�3D� or in two-dimensional �2D� systems, has attracted much
attention since the pioneering work of Faraday �1–4�. The
standing waves include archlike deformation �5–8� and sur-
face waves �9–18�, which are designated as “undulations”
and “ripples,” respectively, in our terminology �19–21�, the
latter are local and independent of the container size,
whereas the former have large length scale and can depend
on the system size.

The “ripple” patterns, like square, stripe, and hexagonal
cells, etc. are often and successfully classified on the pattern
diagram in the �− f* plane ���4�2f2a /g and f*� f�h /g,
where f and a are, respectively, the frequency and amplitude
of external forcing, and h is the layer height defined by the
volume of granular material divided by the horizontal cross
section�. The dispersion relation is also scaled by h. A ques-
tion arises whether the same behavior is realized for the lay-
ers with a given height h and different layer numbers
N�h /d �d is the diameter of the particle�. Apparently this is
not the case when the mean layer number N approaches to or
becomes less than unity. In the latter, collision among the
particles becomes very scarce, so that no collective motion is
expected. In fact, we have revealed that the configuration
changes of densely packed particles at the time of impinge-
ment on the bottom wall are essential to the generation of
wave patterns, and that the number of layers that any kind of
pattern is recognized is found to be at least about three, i.e.,
roughly speaking, the lowest layer that is pushed up by the
bottom wall, the second layer that undergoes intrusion of the
lowest one, and the third one that suppresses the complete
free flight of the layers below. This means that the layer
number N and hence the microscopic scale d is important
when we consider the transition of the system from “solid”
to “fluid” phases, but that the macroscopic scale h becomes
dominant, once the wave motion fully develops �19,21�.

Another type of collective motion “undulations” can also
be observed in the same �− f* regions as those of ripples,
which shows that the classification by means of � and f* is

not sufficient in this case. These complexities may be partly
attributed to the presence of other unspecified experimental
conditions, and partly due to the necessity of including par-
ticle size d depending on whether the system is in solidlike
or fluidlike states. Thus when the pattern diagram in the
�− f* plane is plotted, differences in relative oscillation am-
plitude a /d and the relative phase between the layer and the
container, aspect ratios of the container L /d and W /d �L and
W are the sizes of the container in horizontal cross section�,
number of layers N, in addition to the difference of granular
materials, are discarded, which makes it difficult to compare
available experimental data and/or numerical simulations of
different workers. It is, therefore, important to understand the
effect of each factor on the pattern formation of granular
material, and to reduce the number of relevant parameters, or
to derive a proper scaling relation for a given collective mo-
tion. To this end we have examined the characteristics of
quasi-two-dimensional �Q2D� undulations of a thin granular
layer induced by vertical vibration �19–21�. In particular, we
checked the effects of the layer height h and the separation
distance W of the vertical walls whose magnitude changed
down to as small as one particle diameter size, whereas the
other horizontal extension L was kept sufficiently large com-
pared to the wavelength of the pattern �21�. We elucidated
the fundamental characteristics in 2D or Q2D wave motions
of the layer, i.e., “undulations” and “ripples,” and found that
“regular pattern of defects” �5�, “several regions that move
out of phase with each other and are separated by nodes”
�6,7�, “transverse bending” �8�, “array of peaked structure”
�13,15�, “phase bubbles,” “f /2 flat pattern with a kink,” and
“f /4 pattern with kinks” �18� fall into the same category,
which we shall term “undulations” �20,21�. On the other
hand, the pattern forming instabilities observed in a verti-
cally vibrating thin granular layer with 3D geometry
�1,9–12� or those with 2D geometry �13–18� are associated
with “ripples,” the latter being interpreted as vertical cross
section of the former.

Our observation using a high-speed video camera shows
that the particle trajectories of the ripples relative to the con-
tainer are more or less a figure-eight shape, suggesting that
the whole system is in a fluid state, whereas those of undu-
lations are nearly vertical, suggesting that the system be-
haves like bending of a single elastic layer. In the latter, local
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alignment of the particles on the container wall necessarily
induces the horizontal dilatation, which is decisive to the
onset of undulations �21�. There still remains a question how
the higher undulation modes are produced. In this paper we
show our experimental results on the various modes of un-
dulations, behavior of particles at the impingement of the
layer on the bottom wall, and propose a continuum model
that takes account of the amount of dilatation due to configu-
ration change in a particle-size level.

II. EXPERIMENT

We performed experiments on the pattern formation of a
vertically oscillated layer of granular material consisting of
spherical lead particles of mean diameter d=1.0 mm under
atmospheric pressure. The particles were filled to the depth h
in a container of rectangular cross section L and W, which
was mounted on an electromagnetic shaker. We used three
types of container �C1� L=100 mm, W=10 mm, �C2�
L=140 mm, W=3 mm, and �C3� L=30 mm, W=5 mm,
which we had tested in our previous work �21� that Q2D
dynamics on the pattern formation was relevant. The con-
tainer was oscillated with a single frequency, and the patterns
were observed from the side by a high-speed video camera.
A more detailed description of the experimental apparatus is
found in Refs. �19–21�.

We show some examples of undulation modes in Figs.
1�a�–1�j� and that of ripples in Fig. 1�k�. Each undulation
pattern repeated with a frequency f /2, or the pattern which
shifted half wavelength appeared after a time T�1/ f ,
whereas the ripples in this example repeated with f /4. The
container types used were �C1� for Figs. 1�a�–1�g� and 1�k�,
and �C2� for Figs. 1�h�–1�j�. Various undulation modes, in
which a discrete number of arches are formed between the
sidewalls of the container, were recognized and were denoted
by AM and SM �20� as the pattern is antisymmetric and sym-
metric, respectively, with respect to the center of the layer
and M is the number of undulations. In our terminology, the
pattern described in Fig. 3�a� of Ref. �5� belongs to A2.

Figure 2 is an example of the time trajectory of a marker
particle in the lowest layer in undulation mode. In steady
undulations, the layer of particles touches the bottom wall
when it is nearly at rest at its highest position �z�a�, and is
carried downward with the movement of the bottom wall.
The layer of particles is then pushed up by the bottom wall,
where upward momentum is given during the period nearly
equal to T /2. The temporal trajectory resembles that of the
f /4-square/stripe regime described by Bizon et al. �17� or
that of f /4-hexagonal pattern regime or phase bubble de-
scribed by Moon et al. �18�, as far as the timing of collision
�and not the number of oscillations� is concerned.

We show the pattern diagram in the �− f* plane in Fig. 3.
The region of our f /4-ripples agrees with available data
�17,18�, although the latter were obtained in planar pattern
formation. On the other hand, the undulation modes are dis-
tributed in larger � and f* values, but are not well catego-
rized in this diagram.

III. CONFIGURATION CHANGE IN UNDULATIONS

A. Configuration changes at the impingement
on the bottom wall

We show the close up view of the undulation mode in Fig.
4. Particle positions, relative to the frame of reference mov-
ing with the container, are described by the circles. Frame
speed of the high-speed video camera is 1 /1000 s, and five
snapshots are superposed in each picture of Figs. 4�a�–4�c�.

FIG. 1. Patterns observed in vertically vibrating lead spheres of
diameter d=1.0 mm: undulation modes, �a� A1�f =45 Hz,a
=0.61 mm,h=12.0 mm�, �b� S1�f =45 Hz,a=0.82 mm,h
=12.0 mm�, �c� A2�f =50 Hz,a=0.82 mm,h=12.0 mm�, �d�
S2�f =40 Hz,a=1.25 mm,h=13.0 mm�, �e� A3�f =48 Hz,a
=0.83 mm,h=8.7 mm�, �f� S3�f =40 Hz,a=1.26 mm,h=7.8 mm�,
�g� A4�f =45 Hz,a=1.11 mm,h=7.8 mm�, �h� S4�f =50 Hz,a
=0.76 mm,h=6.9 mm�, �i� A5�f =45 Hz,a=0.90 mm,h=6.9 mm�,
�j� S5�f =50 Hz,a=0.90 mm,h=6.9 mm�, and �k� ripples
�f =32.5 Hz, a=1.49 mm, h=7.8 mm�. The sizes of the container
are L=100 mm for �a�–�g� and �k�, whereas L=140 mm for �h�–�j�.
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Thus the discernible circles show particles which remain al-
most at rest over 4 ms. When some particles in the lowest
layer collide with the bottom wall �Fig. 4�a��, they align
along the wall and solidify with closest packing �Fig. 4�b��.
The resulting dilatation in horizontal directions, e.g., the con-
figuration change from Fig. 4�d� and 4�e� yields the horizon-
tal dilatation by 2/�3�1.15 times, inevitably causes undu-
lations of the layer. �Note that this will not be the case in
“ripple” formation, where all the particles above the second
ones can also ascend.� When the particles first collided with
the bottom wall are pushed up to have sufficient curvature,
the compaction in this region is relaxed, so that the density
wave propagates in both directions along the layer �Fig.
4�c��. Similar behavior was reported experimentally by
Douady et al. �5� who described it as “kink-type defect” and
numerically by Moon et al. �18� in their “f /2 flat pattern
with a kink,” where the density waves or a momentum trans-
fer propagation along the layer was shown. As has been
shown previously �21� each particle moves nearly vertically
in the layer, except a slight inclination, at the time of im-
pingement on the bottom wall.

B. Dilatancy and buckling of the granular layer
at the impingement on the bottom wall

We shall consider the horizontal dilatation of the layer
induced by the impingement on the bottom wall. Let us as-
sume, for simplicity, that the particles in the lowest layer
intrude vertically into adjacent particles by the amount �z,
but that the upward motion of the latter is suppressed by the
rest of the particles above the second layer as shown in Fig.
4�f�. Resulting horizontal increment �x is given by

�x =�d2 − ��3

2
d − �z	2

−
d

2
. �1�

The number of particles n initially aligned on the bottom
layer is given by n=L /d, so that the total increment of the
layer �L is �L=2�n−1��x, which is approximately given by

�L � 2�3L
�z

d
, �2�

for n�1 and �z�d. The stress fH acting along the layer is
given by

fH = Ẽ
�L

L
= 2�3Ẽ

�z

d
, �3�

where Ẽ is an effective Young’s modulus of the layer deter-
mined by this relation. �The meaning of Young’s modulus
needs a caution, which we shall discuss later.� If the stress
exceeds a certain threshold value, buckling will occur, and an
archlike structure will be formed between the side walls of
fixed distance L �see Figs. 5�a�–5�c��.

FIG. 2. Time trajectory of a marker particle in the lowest layer
in undulation mode �f =33 Hz, a=1.7 mm, h=5.6 mm; f*=0.79,
�=7.5�. Observation was made for an oscillated monolayer of lead
spheres. Open circles and dotted line show the orbit of the marker
particle, whereas closed diamonds and solid lines show the move-
ment of the bottom wall.

FIG. 3. Phase diagram for undulations and f /4-ripples obtained
in our experiments.

FIG. 4. Particle behavior in undulation mode. Lead spheres of
diameter d=1.0 mm and layer height h=5.6 mm are exposed to
sinusoidal oscillation of frequency f =40 Hz and amplitude
a=1.2 mm �f*� f�h /g=0.96, �=7.7�. Superposition of particle
contours of five snapshots; �a� t=0–4 ms, �b� t=10–14 ms, and �c�
t=25–29 ms. Time interval between �a� and �c� is one period of
external oscillation �=1/ f�. Schematic pictures �d� and �e� show the
configuration changes when the layer collides with the bottom wall,
and �f� horizontal dilatation due to intrusion of the bottom layer into
the second one.
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Let us consider the deformation of an elastic layer of ini-
tial length L, width W, and height h, due to the force F
applied normally to both ends of the layer. The basic equa-
tion of the deformation is �see, for example, Ref. �24��

d2�

ds2 = − 	2 sin � , �4�

where 	=�F / ẼI, and I��Wh3 /12� is the moment of inertia
of the cross-sectional area. Here s is the length of the layer
measured from one of its end, at which the origin of the x
and z axes �taken in the horizontal and vertical directions,
respectively� is chosen. We also introduce �, which describes
the angle tangent to the arc measured from the x axis. By
integrating Eq. �4� we obtain

	s = ± 

0


 d


�1 − k2 sin2 

� F�
,k� , �5�

where we have assumed d� /ds=0 and �=�0 at a certain
position s=s0, and �=0, 
=0 at s=0. Here we have defined

sin��

2
	 = k sin 
, k = sin��0

2
	 , �6�

and F�
 ,k� is the elliptic integral of the first kind. Integration
of the relation

dz

ds
= sin � = 2 sin��

2
	cos��

2
	 = 2k sn�	s�dn�	s�

= −
2k

	

d

ds
cn�	s�

gives us

z =
2k

	
�1 − cn�	s�� , �7�

where sn�	s�, cn�	s�, and dn�	s� are the Jacobi’s elliptic
functions defined by

sin 
 = sin�am�	s�� = sn�	s� ,

cos 
 = cn�	s�, dn�	s� = �1 − k2 sn2�	s�

and 
=am�	s�, called the “amplitude,” is the inverse func-
tion of F�
 ,k�. Similarly by integrating the relation

dx

ds
= cos � = 1 − 2k2 sn2�	s� = 2 dn2�	s� − 1,

we obtain

x =
2

	
�E„am�	s�,k… −

1

2
	s�

=
2

	
�Z„am�	s�,k… + �E

K
−

1

2
		s� , �8�

where E�
 ,k� and Z�
 ,k� are the elliptic integral of the sec-
ond kind and the Jacobi’s zeta elliptic function, respectively,
whereas K�k� and E�k� are the complete elliptic integrals of
the first and second kind, respectively. Note that E�
 ,k� is
not periodic, but the function Z�
 ,k� is singly periodic of
period 2K�k� �25�. Our experiment shows that the other end
of the layer also meets perpendicularly to the side wall at
x=L. This condition requires 	s=2M*K�k�, where odd and
even integers of M* correspond to antisymmetric modes and
symmetric modes, respectively. In both cases Z�
 ,k� van-
ishes at the end point of the layer �i.e., at the sidewall�, so
that the above conditions give

	L = 2M*�2E�k� − K�k�� . �9�

We show examples of the layer shape in Fig. 6, which quali-
tatively agree with those of the bottom contour of the layer in
Fig. 1.

Our scenario is as follows: given the rate of intrusion of
the layer of particles at the impingement �z /d, the dilatation

FIG. 5. �a�–�c� Archlike structure due to horizontal dilatation,
and various phases in multiarches �S3 mode�: �d� t*=0, �e�
t*=0.48, and �f� t*=1.12, where t*= ft.
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in the horizontal direction �L /L is calculated by Eq. �2�
which determines the force F applied perpendicularly to the
layer, and hence the parameter 	. Then the mode M* is de-
termined by Eq. �9�, and so is the layer shape by Eqs. �7� and
�8�.

Note that the lowest mode M*=1 gives the critical force
Fc given by

Fc = ẼI��

L
	2

. �10�

For smaller k, we have

k ��4

3
�1 −

	L

�
	 ��F − Fc

Fc
, �11�

and

M* =
	L

2�2E − K�
=

	L

�
�1 +

3

4
k2 + ¯ 	 �

2L

�h
�6�3

�z

d
.

�12�

C. Estimation of �z /d

The value of �z /d may depend on the impact velocity, as
well as the properties of the particle, which we shall estimate

in the following. Generally speaking, the pattern formation
of granular beds vibrating vertically like z=a sin�2�ft�, can
occur if a finite period of lift-off phase is present, which is
larger than arcsin�1/�� for a single particle. In the particulate
dissipative system, however, a still larger threshold accelera-
tion must be necessary above which the uppermost particles
in the layer acquire freeflight motion. The whole layer will
then be in fluidlike state and can develop into “ ripples.” On
the other hand, if the layer has a lift-off phase but the upward
momentum is dissipated before it is transmitted to the upper-
most particles, the whole layer moves up-and-down, possibly
showing local relative motions, but will remain an undulat-
ing layer. Our observation shows that soft-landing and soft-
release of particles, where the colliding phase 2�ft is
2��7/4+�u� with �u�0.03 as is typically shown in Fig. 2
�and also in Ref. �20� for other granular material�, lead to
“undulations.” On the contrary, hard hitting of the layer on
the bottom wall, which occurs around 2��2−�r� with
�r�0.06, results in “ripples,” as is shown in Ref. �19�. Con-
sequently the lift-off velocity V=2�fa cos�2�ft� of the low-
est layer of particles becomes about 0.2
2�fa for undula-
tions, and 0.9
2�fa for ripples. Either of the two above-
mentioned collision processes remains stable, through self-
adjustment of the macroscopic wave motion to the externally
applied oscillation of the vessel, whose detailed mechanism
is not yet fully understood.

In the undulation mode, each particle in the lowest layer
will thrust into the granular particles above it against the
frictional force proportional to �mg, where � is an effective
friction coefficient and m is the mass of the particle. Here we
have assumed that only a few layers of particles adjacent to
the bottom layer are relevant to the contact forces due to
local equilibrium of forces. The intrusion of the particle will
be stopped when the kinetic energy of the particle is dissi-
pated by the friction, so that

1

2
mV2 = C�mg�z , �13�

where C is a constant as a first approximation. These as-
sumptions lead us to

L

�
� M* �

L

h

fa
��gd

. �14�

We show our experimental results for undulation modes
in Fig. 7. The ordinate is L /� whereas the abscissa is
�L /h��fa /�gd�. Agreement is generally good. Larger devia-
tion of L /� for lower modes like A1 and S1 is mostly due to
the finite size effect of the container. In fact it is difficult to
rigorously determine which part of the layer touching the
bottom wall belongs dynamically to one wavelength. On the
other hand, scattering of the data in the abscissa seems to be
ascribed to the variation of lift-off phase, as well as to the
ambiguities of determining effective layer height h, which
was measured at static state in this paper.

IV. DISCUSSION

Earlier observation of the similar pattern, which was
termed “regular pattern of defects” �5�, was interpreted as a

FIG. 6. Calculated undulation modes with k=0.5. The abscissa
is x /L and the ordinate is z in arbitrary unit. �a� A1, �b� S1, �c� A2,
�d� S2, �e� A3, and �f� S3.
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result of the repulsive force between two defects or between
a defect and the lateral boundary. In our experiment, we have
elucidated that this “repulsive force” is given by the horizon-
tal dilatation due to microscopic configuration change at the
impingement on the bottom wall. We have also reproduced
the tendency of h /� on � �i.e., relation H / l�0.16��−4.2� of
Ref. �5��, but our data are rather distributed around this
curve, with the proportional coefficient being smaller
��0.06� and the ordering of the undulation modes being
mixed on this diagram. This is probably because � is neces-
sary but not a sufficient control parameter to specify the sys-
tem, apart from the difference of granular material.

All the results shown here are based on the data, which
were obtained by abruptly applying an oscillation with pre-
scribed frequency f and amplitude a to the granular layer
initially at rest. By this procedure we determined the critical
frequency fc and critical amplitude ac below which no undu-
lation pattern was observed. Our undulation pattern has hys-
teresis, as is the case in most of the pattern formation in
dissipative systems �e.g., �5,10,13��. In fact we sometimes
observed undulations below fc or ac when we decreased f or
a continuously after attaining some undulation mode. Con-
versely we did not necessarily observe undulations above fc
or ac by continuously increasing f or a. These evidences
suggest the difference of quasiequilibrium states of granular
assemblies. When the layer moves up-and-down without
considerably changing relative position of the constituents, it
remains to be in a solid state, and does not show undulation
modes. On the other hand the whole layer becomes a liquid
state once the ripple mode sets in, and does not show undu-
lations.

In this paper we have introduced an effective Young’s
modulus to explain buckling and bending of the granular
layer. Our material, i.e. lead spheres, is noncohesive, so that
the Young’s modulus is not the same as that of ordinary

solids. It is not surprising, however, that a particulate system
with noncohesive or repulsive forces shows elastic behavior
if the system is confined in finite boundaries �22�. In order to
check our conjecture, we performed a simple experiment us-
ing the same apparatus, in which one of the sidewalls was
replaced by sponge rubber of constant thickness. By measur-
ing the deformation of the sponge rubber due to the stress
exerted by a vertically oscillating granular layer, we can
roughly estimate Ẽ�103�Pa� for a layer with h=10.3 mm
under external forcing f =40 Hz and a=1.2 mm, which is
quite small in comparison to that of iron �Ẽ�2
1011�Pa�
and rubber �Ẽ�3
106�Pa��. In our previous paper �20�, we
have estimated the effective Young’s modulus of the sesame
layer as Ẽ�2
104�Pa� on the basis of the velocity of den-
sity waves in the granular layer, which is one order of mag-
nitude larger than the present case. The difference will be
attributed to a larger friction and nonspherical shape of the
sesame to reduce relative translation and rotation, so that the
cohesion and energy dissipation are enhanced. The effective
Young’s modulus of our system may depend on the external
forcing f , a and the layer height h as well as the properties
of the particle, such as density, friction coefficient, restitution
coefficient, size and shape, etc. A closer look of our addi-
tional experiment reveals that it is only the particles in the
lower part of the layer that exhibit the deformation of the
sidewall, which is consistent with our findings �21� that this
part plays a decisive role for the dilatation at the impinge-
ment, and hence contributes to undulations. In that case the
effective Young’s modulus will weakly depend on the layer
height h as far as it exceeds a certain threshold value around
5d for lead spheres. The influence of the other factors is left
for future investigations.

We observed patterns, in which f /4 ripples were accom-
panied by undulation slightly below A1 or S1 regions, which
is similar to the 3D ones shown by Fig. 3 of Ref. �18�. In the
latter “phase bubbles” is transient and shrinks with decay
time depending on � and system size. On the other hand, our
2D pattern also changed the position of the kinks irregularly,
but it developed over the layer with the increase of accelera-
tion, to form stationary undulations. This apparent difference
is resolved if we consider the different parameter values
of Ref. �18�, which are estimated to be L /��2 and
�L /h��fa /�gd��15, the latter being much larger than the
value we report here.

We have not mentioned ripple patterns because they have
been fully discussed �1,9–21�. As has been shown in Fig.
1�k�, ripples are also generated by the configuration change,
in which the horizontal dilatation triggers the movement of
the particle in the lower layer into the above ones. This can
happen when the particles acquire large enough upward mo-
mentum depending on the external forcing such as f , a and
the timing of collision with the bottom layer, against the
dissipation depending on the friction and restitution coeffi-
cients of the material and the number of layers, etc. Once the
ripples are generated, the whole system is in a fluid state, so
that the wave motion is characterized by a local balance of
forces including f ,a ,g ,h, and hence the macroscopic length
like the container size is irrelevant �19–21�. In vertically os-
cillated thin granular layers, regular polygonal cells and

FIG. 7. Mode map. Symbols for A1, S1, A2, S2, A3, … are shown
in the inset.
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stripes are easily reproduced �1,9–12,23�, in which the
boundary shape is apparently independent �or at least not
important� to the pattern selection. This could be seen clearly
when we observe these patterns in a circular container of
large extension, which has no preferred direction of the
alignment of the cells �23�. The orientation of the sides of
these cells met angled to the boundary wall, and it is less
than about one-half wavelength that the regularity of the cell
pattern is disturbed, which means that the granular layer is in
a highly dissipative regime. Then a question arises how these
collective motions are generated over the macroscopic size

of the cell. Our experiments suggest that the above-
mentioned mechanism of pattern formation, inherent to the
granular material on a vibrating rigid plane, coherently in-
duces configuration change of particles and dilatation of the
layer over the entire bottom plane, which develops into regu-
lar patterns irrespective of the boundary shape.
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