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We study the temporal fluctuations in time-dependent stock prices �both individual and composite� as a
stochastic phenomenon using general techniques and methods of nonequilibrium statistical mechanics. In
particular, we analyze stock price fluctuations as a non-Markovian stochastic process using the first-passage
statistical concepts of persistence and survival. We report the results of empirical measurements of the nor-
malized qth-order correlation functions fq�t�, survival probability S�t�, and persistence probability P�t� for
several stock market dynamical sets. We analyze both minute-to-minute and higher-frequency stock market
recordings �i.e., with the sampling time �t of the order of days�. We find that the fluctuating stock price is
multifractal and the choice of �t has no effect on the qualitative multifractal behavior displayed by the 1/q
dependence of the generalized Hurst exponent Hq associated with the power-law evolution of the correlation
function fq�t�� tHq. The probability S�t� of the stock price remaining above the average up to time t is very
sensitive to the total measurement time tm and the sampling time. The probability P�t� of the stock not
returning to the initial value within an interval t has a universal power-law behavior P�t�� t−�, with a persis-
tence exponent � close to 0.5 that agrees with the prediction �=1−H2. The empirical financial stocks also
present an interesting feature found in turbulent fluids, the extended self-similarity.
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I. INTRODUCTION

The financial stocks are complex, nonlinear, open systems
characterized by a large number of parameters. Among other
features, they present a multifractal behavior �1–11�.
Whether or not the multifractality is intrinsic or apparent is
still an open question �12�. Several interesting multifractal
models �8,9� have been developed over the last decade. For
example, the multifractal random walk model, introduced by
Barcy and collaborators �10,11�, has been recently shown to
explain, besides the multifractality, other features of financial
time series, such as the absence of correlations between price
variations and long-range volatility correlations. Other mul-
tifractal models have been proposed �13,14� to account for
the asymmetry of the volatility-return correlation function.
An important step toward a better understanding of such in-
tricate dynamical processes is to search for new methods that
are able to provide information about their temporal evolu-
tion. One way to explore the temporal evolution of a stochas-
tic system such as a fluctuating stock price, denoted by x�t�,
is by measuring the persistence probability P�t�. That is the
probability of the stochastic variable x�t� not reaching its
original value corresponding to the starting time t0 up to a
later time t0+ t. This concept, closely related to the first-
passage probability, has been successfully implemented in
surface growth phenomena �15,16� and has been used to de-
termine the universality class and the nonlinear features of
the underlying dynamical process through the exponent �
associated with the power-law decay P�t�� t−� of the persis-
tence probability at large times. Alternatively, one is inter-
ested in measuring the survival probability S�t� which is de-
fined as the probability of the stock price remaining above a
reference value up to time t. In contrast with the persistence
probability, we show that the survival probability depends
independently on both the total measurement time tm and the

time between successive recordings—i.e., the sampling time
�t. The concepts of persistence and first-passage time have
been recently introduced in econophysics �17,18�. Despite
the capacity of first-passage statistical tools to predict the
degree of performance of a given stock �i.e., how long a
stock remains above a certain value, what is the first time
when it reaches a particular level�, it is quite intriguing that
their use in understanding the evolution of financial markets
is rather scarce. Our study emphasizes the potential of the
survival and persistence probabilities in any time series in-
vestigations and shows how these concepts can be connected
to the traditional analysis �19� based on the time evolution of
price-price correlation functions. We also point out the ex-
tended self-similar behavior manifested by the stock price
correlation functions. Extended self-similarity was originally
observed in fluid turbulence problems �20,21� and subse-
quently in discrete stochastic surface growth models �22�.
Therefore we combine features from very different fields,
such as surface growth, econophysics of stock markets, and
fluid dynamics, in an effort towards understanding the tem-
poral evolution of financial stocks.

Our statistical study of stock market temporal fluctuations
is motivated primarily by the availability of the huge amount
of quantitative data on the stock market prices both for indi-
vidual stocks and for aggregate stock indices and both for
instantaneous minute-to-minute price fluctuations and for
large-scale fluctuations over several years. Such detailed and
precise quantitative information about the time dependence
of a far-from-equilibrium stochastic process is not easy to
find in real physical systems. For example, temporal thermal
fluctuations of steps on solid surfaces, which we have re-
cently analyzed �23–25� to study the persistence and survival
properties of equilibrium step fluctuations, usually provide
reliable time-dependent data only over a couple of decades.
Similarly, experimental studies �26� of kinetic surface rough-
ening in interface growth, which have served as model prob-
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lems for developing the concepts of dynamical scaling in
nonequilibrium growth phenomena, usually have reliable
data for a couple of decades in growth time. The availability
of extensive quantitative information on stock prices, includ-
ing minute-to-minute price fluctuations within a single day
as well as prices spanning over years �or even decades for
some stocks and index averages�, therefore provides an al-
most unique opportunity to statistically analyze a time-
dependent non-Markovian stochastic phenomenon using ac-
tual “experimental” data covering many decades in time, in
contrast to the corresponding experimental studies of real
physical systems which span only a few decades in time. It
should consequently be possible to obtain definitive informa-
tion about the persistence and survival behavior of stock
price fluctuations studied as a non-Markovian stochastic phe-
nomenon. The availability of extensive stock price data
should also allow for a detailed multifractal analysis of stock
price fluctuations, which could serve, in principle, as a quan-
titative measure of “volatility” in the stock market since mul-
tifractality is directly related to intermittency and intermit-
tency arises from the finite probability for very large scale
fluctuations.

Our work presented in this article should therefore be
thought of as a detailed empirical “experimental” analysis of
a non-Markovian dynamical stochastic process—namely, the
stock market—from the specific perspectives of first-passage
statistics �i.e., persistence and survival probabilities and ex-
ponents� and intermittency �i.e., multifractality and volatil-
ity�. Our motivation for studying this specific problem is the
existence of a huge amount of experimental data �i.e., stock
prices� of a very wide dynamical range. The fact that there is
widespread current interest in the statistical physics commu-
nity in the subject of “econophysics,” which is nothing but
the study of economics using the principles and methodolo-
gies of statistical mechanics, gives our current work some
broad context, but our own interest is, however,
complementary—we are using the vast amount of available
dynamical data on stock price fluctuations to carry out an
“experimental” study of the important first-passage statistical
concepts of persistence and survival in non-Markovian sto-
chastic phenomena. The current work is, in some sense, a
continuation of our earlier work on understanding various
stochastic phenomena �i.e., thermal step fluctuations �23–25�
and nonequilibrium surface growth �16�� from the first-
passage statistics perspective—here the stochastic process
under consideration being an economic phenomenon �i.e.,
stock price fluctuations� rather than physical phenomena as
in the past.

Our study of the multifractal character of price fluctua-
tions is based on a multifractal version �27� of the traditional
detrended fluctuation analysis �28�. We also use a standard
dynamical scaling analysis, inspired from surface growth
phenomena, to show the multifractal behavior of the finan-
cial stocks, quantitatively extracted from the q-order price-
price correlation functions. Our results go in parallel with
earlier analyses of other groups �1–7� which succeeded in
showing multifractality in several stock markets and com-
modities. On the other hand, we investigate the persistence
of price fluctuations described by the persistence exponent �.
The bridge between these two analyses is provided by the

second-order Hurst exponent H2 associated with the correla-
tion function of the stock price, which has been shown
�15,16� to be simply related to the persistence exponent
through H2=1−�. In this study we verify that this simple
relation is satisfied by both low- and high-frequency fluctu-
ating financial stocks.

The data we use for our stochastic study comprise the
daily Intel �INTC� stock value between January 1990 and
December 2002 and the composite NYSE index �i.e., NYA
index� between January 1966 and December 2002. This
corresponds to 3355 and 9312 data points, respectively. We
also analyze sets of data recorded every minute for the
Johnson and Johnson stock �JJ 2000� and every 5 min for the
Intel stock �INTC 2000� during the year of 2000 �29�. This
corresponds to 98 280 and 19 656 data points, respectively.
The daily recorded stocks have an obvious exponential in-
crease of their prices over several years. Therefore the expo-
nential drift of the background can be subtracted from
the stock price and we define a new stochastic variable
x̃�t�=x�t�−xb�t�, where the stochastic variable xb�t� associ-
ated with the evolution of the background depends on two
parameters a and b, xb�t�=a exp�bt� �30�. We analyze the
persistence probability of both x�t� and x̃�t�. Changing the
background subtraction within reasonable limits does not af-
fect our statistical conclusions about persistence exponents
and/or multifractality.

The rest of the paper is organized as follows. In Sec. II,
we define the various dynamical correlation functions and
related statistical quantities, as well as the various exponents
to be used throughout our statistical analyses—Sec. II is im-
portant in introducing the methodology of our analyses; in
Sec. III, we present our extensive results and discussions; our
concluding remarks are exposed in Sec. IV.

II. NONEQUILIBRIUM STATISTICAL MECHANICS
TECHNIQUES

A. Price-price correlation functions
and extended self-similarity

The generalized qth-order price-price correlation function
is defined as

Gq�t� = ��x�t0 + t� − x�t0��q�1/q, �1�

where x�t� is the stock price and the average is over all the
initial times t0. Gq�t� has a power-law behavior

Gq�t� � tHq, �2�

which defines the exponent hierarchy Hq, also called the gen-
eralized Hurst exponent. The price evolution is multifractal
if the exponent hierarchy Hq varies with q, otherwise is frac-
tal �in the theory of surface dynamical scaling referred to as
multiaffine and self-affine, respectively�. In particular, for q
=2, we recover the fractional Brownian motion case de-
scribed by the well-known Hurst exponent, 0�H2�1. A
simple way of assigning the presence of multifractality in a
stochastic stock market is by looking at the multifractal spec-
tra, �q=qHq−1. For fractals �q depend linearly on q. A non-
linear behavior of �q vs q is considered a manifestation of
multifractality.
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The temporal behavior in Eq. �2� of the generalized
price-price correlation functions is analogous to the spatial
behavior of the q-order structure functions of turbulent fluids
or the generalized height difference correlation functions,
Cq�r , t�= ��h�x+r , t�−h�x , t��q�1/q�r�q �for small distances r�,
corresponding to surface growth models. The multiscaling
behavior is revealed by the q dependence of the scaling ex-
ponents �q. The extended self-similarity �ESS� behavior in
both turbulent fluids and surface roughening models refers to
the enhancement of the scaling region once the log�Cm�r�� is
plotted against log�Cn�r��, where m and n are two different
positive integers �22�. In this study we show that for different
financial stocks Gm�t� depends on Gn�t� in a power-law fash-
ion and, although the temporal scaling domain is not neces-
sarily enhanced as in the case of turbulent fluids or roughen-
ing models, the ESS behavior is clearly identified and this
interesting feature of the financial stocks can be further ex-
ploited to understand the associated multifractal character.

B. Persistence exponent of fractional brownian motion

The fractional Brownian motion �FBM� is one of the sim-
plest stochastic models that can be used to model financial
stocks or any time series with long-range memory. Before
proceeding further, we summarize the definition and the
known first-passage property of a FBM. We then describe the
multifractal detrended fluctuation analysis �MF-DFA�
method which is used to estimate the generalized Hurst
exponent.

A stochastic process ��t� �with zero mean ���t��=0�
is called a FBM if its two-time correlation function
C�t1 , t2�= ����t1�−��t2��2� is �i� stationary—i.e., depends only
on the time difference �t2− t1�—and �ii� grows asymptotically
as a power law �31�:

C�t1,t2� � �t2 − t1�2H, �t2 − t1� � 1. �3�

The parameter 0�H�1 is called the Hurst exponent, which
characterizes the FBM, and �¯� denotes the expectation
value over all realizations of the process ��t�. In order to
match the notation throughout the paper, let us call the Hurst
exponent H2 instead of H. For the sake of completeness we
also mention that, alternatively, a zero-mean stochastic pro-
cess ��t� is called a FBM if its autocorrelation function has
the following expression:

a��t1,t2� = ���t1���t2�� � t1
2H2 + t2

2H2 − �t2 − t1�2H2. �4�

The zero-crossing properties of a FBM have been studied
extensively in the past �32–34�. In particular, assuming that
��t=0�=0, we are interested in the probability P�t� that a
FBM does not cross zero up to time t �i.e., the persistence
probability�:

P�t� = Prob	��t�� � 0, ∀ t� � t
 . �5�

In terms of the stochastic stock price variable x�t�, character-
ized by a particular value x�t0� at the initial time t0, the
probability of remaining always above that value up to time
t0+ t �i.e., positive persistence� reads

P+�t� = Prob	x�t0 + t�� � x�t0�, ∀ t� � t
 , �6�

and, similarly, the negative persistence probability reads

P−�t� = Prob	x�t0 + t�� � x�t0�, ∀ t� � t
 . �7�

These definitions can alternatively be reformulated in
terms of the cumulative time series of the discretized log
returns. Let rj =ln�xj+	j /xj� be the discrete set of log returns,
with j=0,1 , . . .. The sampling time 	j is the interval be-
tween successive measurements. We define the cumulative
log returns, Rj =�i=0

j ri. Since Rj =ln�xj /x0�, the definition of
the positive persistence probability, for example, becomes

P+�N� = Prob	Rn � 0, ∀ 0 
 n � N
 . �8�

In several studies of linear surface growth models, char-
acterized by identical positive and negative persistence prob-
abilities, it has been shown that P�t� decays as a power law
�15,16� at large times, P�t�� t−�, with the steady-state persis-
tence exponent � obeying the relation

� = 1 − H2. �9�

We note that this relation holds for any zero-mean process
�not necessarily Gaussian �33,35�� that satisfies requirements
�i� and �ii� above. Both analytic arguments as well as numeri-
cal simulations supporting the relation �9� have been pre-
sented previously in the literature in the context of fluctuat-
ing interfaces. In this study we investigate the behavior of
P�t� at large times and its dependence on the sampling time
for both x�t� and x̃�t� stochastic variables.

The persistence probability can be generalized �23,36� us-
ing the persistent large deviations probability P�t ,s�, defined
as the probability for the “average sign” Sav of the stock price
fluctuation to remain above a certain preassigned value “s”
up to time t:

P�t,s� � Prob	Sav�t�� � s, ∀ t� 
 t
 , �10�

where

Sav�t� � t−1

0

t

dt� sgn�x�t0 + t�� − x�t0�� . �11�

Since Sav�t�� �−1,1�, the probability P�t ,s� is defined for
−1
s
1. For s=1 we recover our earlier simple definition
of persistence, while for s=−1 the probability P�t ,s=−1� is
trivially equal to unity for all t. However, for the remaining
values of the average sign parameter s, −1�s�1, the
generalization of the persistence probability provides new
information through the family of persistent large deviation
exponents, �l, associated with the power-law behavior,
P�t ,s�� t−�l�s�, at large time scales.

C. Survival probability

Perhaps of more practical interest in evaluating the tem-
poral trend of a financial stock is the probability of the
stock’s price remaining above �below� a certain reference
value up to a later time t0+ t, given that its initial value at
time t0 was above �below� that reference level—i.e., the posi-
tive �negative� survival probability S±�t�. Let us denote by
S�t� the average between the positive and negative survival
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probabilities. This statistical quantity offers a better picture
of the likelihood of a given stock having a positive evolving
trend, for example, with respect to a preassigned reference
value. The definition of this probability reads

S+�t� = Prob	x�t0 + t�� � x̄, ∀ t� � t
 , �12�

where x̄ is the reference price. For simplicity we consider x̄
to be the average price over the measurement time tm, but in
general it can take any value between the minimum and the
maximum values of x�t� for all the discrete times t up to the
final measurement time. We will show that S�t� depends in-
dependently on both tm and �t and the scaling with t /�t
appears only when �t / tm is a constant. The same type of
behavior has been found recently in experimental thermal
fluctuations of surface steps on Ag�111�, screw dislocations
on the facets of Pb crystallites, and Al-terminated Si�111�
surfaces �24,25�.

D. Multifractal detrended fluctuations analysis

MF-DFA is a reliable method for analyzing correlated
time series. It is known to provide the accurate values of the
generalized Hurst exponents even for time series with small
length, while other similar methods, such as the Hurst
rescaled-range analysis �37�, overestimate those values in the
case of small-size series �38�.

Let xi, i=1, . . . ,Tf, be the stochastic price variable re-
corded at discrete times i. The final transaction time is de-
noted by Tf. We denote by rj the log-return price variable,
rj =ln�xj+1 /xj�, j=1, . . . ,T, where T=Tf −1. We estimate the
cumulative time series of the log-return price variables,

X�i� = �
j=1

i

�rj − r̄�, i = 1, . . . ,T , �13�

where r̄=1/T�i=1
T ri is the average value of the log returns.

The time series X�i� is divided into N� disjoint segments
In �n=1, . . . ,N�� of equal size �. Obviously, N�= �T /��.
For each segment we calculate the local trend using a
linear least-squared fit Y��n , t�=an+bnt, where t� In and
n=1, . . . ,N�. The local time series of the cumulative log re-
turns is simply X��n , t�=X��n−1��+ t�. Therefore, the vari-
ance is given by

F2�n,�� =
1

�
�
t=1

�

�X��n,t� − Y��n,t��2. �14�

F�n ,�� is called the fluctuation function. In order to avoid
disregarding some data points X�i� when the length T of the
time series is not a multiple of the time lag �, one has to
repeat these steps starting from the opposite end of the
interval. In that case, X��n , t� in Eq. �14� becomes equal to

FIG. 1. �Color online� Log-log plot of the generalized price-
price correlation function Gq�t� vs t corresponding to minute-to-
minute INTC stock �top� and JJ stock �bottom� for
q=1/8 ,1 /4 ,1 /2 ,1 ,2 ,4 ,8 from bottom to top in each panel.

FIG. 2. �Color online� Log-log plot of the generalized price-
price correlation function Gq�t� vs t corresponding to the
daily INTC stock �top� and NYA index �bottom� for
q=1/8 ,1 /4 ,1 /2 ,1 ,2 ,4 ,8 from bottom to top in each panel.

M. CONSTANTIN AND S. DAS SARMA PHYSICAL REVIEW E 72, 051106 �2005�

051106-4



X�T− �n−N���+ t�, for n=N�+1, . . . ,2N�. By averaging over
all the segments In we finally obtain the correlation function
of order q,

Fq��� = � 1

2N�
�
n=1

2N�

�F2�n,���q/2�1/q

. �15�

By construction, since we use a linear fit for simplicity,
Fq��� is defined for ��3. The scaling form of the correlation
function Fq�����Hq provides the family of generalized Hurst
exponents Hq. For reasons that will become clearer very
shortly we also introduce the dimensionless fluctuation func-
tion f�n ,��, defined by

f�n,�� =
�F2�n,���1/2

�
, �16�

where �=�1/T�t=1
T �rt− r̄�2 is the standard deviation of the

log returns during the interval T. Therefore, the dimension-
less qth-order correlation function becomes

FIG. 3. �Color online� The generalized Hurst exponent Hq vs
1/q for the four stocks discussed in the paper. Hq behaves linearly
with 1/q at both small and large values of 1 /q. For the daily
stocks a linear least-squares fit has been applied to the first two
decades, while for the high-frequency stocks, the fitted regions were
25� t�500 for the INTC 2000 stock and 25� t�400 for the JJ
2000 stock.

FIG. 4. �Color online� Log-log plot of the normalized fluctua-
tion function fq��� vs time lag � corresponding to INTC 2000 stock
�top� and JJ 2000 stock �bottom�. The MF-DFA method has been
used. The curves shown correspond to q=−8,−4,−2,
−1/2 ,1 /2 ,2 ,4 ,8 from bottom to top in each panel.

FIG. 5. �Color online� Log-log plot of the normalized fluctua-
tion function fq��� vs � corresponding to the daily INTC stock �top�
and NYA index �bottom�. The MF-DFA method has been used to
calculate fq���. The curves shown correspond to −8,−4,−2,
−1/2 ,1 /2 ,2 ,4 ,8 from bottom to top in each panel.
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fq��� = � 1

2N�
�
n=1

2N�

�f�n,���q�1/q

. �17�

Obviously, fq obeys the same scaling relation as Fq,

fq��� = CHq
�Hq, �18�

where CHq
is a constant independent of the time lag �. How-

ever, for q=2 �which corresponds to the usual DFA proce-
dure�, the expression of this constant is known exactly �39�,

CH2
= � 2

2H2 + 1
+

1

H2 + 2
−

2

H2 + 1
�1/2

, �19�

where H2 is the Hurst exponent of the FBM. The time evo-
lution of fq���, along with the analytical result for the coef-
ficient CH2

, can be used to understand the dynamics and
memory of financial stocks.

III. RESULTS AND DISCUSSIONS

We first discuss the results concerning the price-price cor-
relation functions calculated using Eq. �1�. In Fig. 1 we
present the results of Gq�t� for the high-frequency stocks and
in Fig. 2 for the low-frequency stocks. It is obvious that since
the log-log plots of Gq�t� vs t do not exhibit linear behavior
over the entire time range, the associated Hurst exponent Hq
varies with time and the scaling of the correlation functions
suffers many transient regimes. A good power-law depen-
dence appears for q=2. Although for other values of q the
deviations from a power law become visible, it is clear that
Hq decreases with q. For illustration purposes we have fitted
certain portions of these log-log plots to obtain a qualitative
view of the dependence of Hq on 1/q, as shown in Fig. 3. In
this figure we have used a large range of values for q �i.e.,
q=1/10,1 /9 , . . . ,1 ,2 , . . . ,10�. We notice that Hq depends
linearly on 1/q for both small and large values of 1 /q. The
stock with the smallest sampling time of �t=1 min �JJ 2000�
displays an increase of Hq at large values of 1 /q, while for
the rest of the stocks Hq has the tendency to saturate as 1 /q
increases.

When using the MF-DFA method to calculate the correla-
tion functions of order q we note that the power-law behav-
ior of fq��� vs � extends over longer time periods, making the
extraction of the exponent Hq more reliable. The results are

FIG. 6. �Color online� The normalized fluctuation function f2���
as a function of time for the daily INTC stock during the period
1990–2002. The straight line represents the theoretical curve based
on Eqs. �18� and �19� for H2=0.47.

FIG. 7. �Color online� The multifractal spectra �q vs q for the
stocks discussed in the paper. The deviation of all curves from the
linear dependence is a signature of the multifractal behavior. The
inset shows the 1/q dependence of Hq, keeping the same symbol-
stock correspondence as in the main figure.

FIG. 8. The local stock price difference �x�t+�t�−x�t�� vs the
dimensionless variable t /�t for the INTC 2000 recorded with sam-
pling time �t=5 min.

FIG. 9. �Color online� The normalized fluctuation functions
f2��� and f−1/2��� as a function of f1��� for the INTC 2000 and JJ
2000 �inset� stocks.
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shown in Figs. 4 and 5. This can be easily seen in the case of
the daily NYA index and INTC stocks. The power law is
seen for more than three decades in Fig. 5, while limited
power laws spanning two decades only are seen in Fig. 2.

As we have already mentioned, the value of Hq is sensi-
tive to the fitted region of the log-log plot of fq��� vs �. This
issue requires special treatment. Our strategy was to take
advantage of the analytic result of Eq. �19� in order to iden-
tify the time window over which the second-order Hurst ex-
ponent can be extracted correctly. This can be achieved by
adjusting H2 such that the agreement between the empirical
results for f2��� using Eq. �17� and the theoretical curve pre-
dicted by Eq. �18� with q=2 and Eq. �19� becomes very
good. This procedure is shown in Fig. 6. Once the time win-
dow which gives the best agreement for q=2 is identified, we
use it to extract Hq for a large set of q values
�q= ±8, ±4, ±2, ±1, ±1/2 , ±1/4 , ±1/8�. The results for the
q dependence of Hq based on the MF-DFA method have been
used to calculate the multifractal spectra, �q=qHq−1, shown
in Fig. 7. We observe that all spectra deviate from a linear q
dependence, which is an obvious manifestation of the multi-
fractality in these stocks. In the inset of Fig. 7 we also show
the 1/q dependence of Hq. At positive q, the qualitative trend
of the results is the same as in Fig. 3. It is interesting to point

out that the empirical set with the smallest sampling time, JJ
2000, which in the case of the standard price-price correla-
tion function analysis has shown an increasing trend of Hq at
large values of 1 /q, does not present this trend anymore, Hq
saturating quickly as 1/q increases. Negative values of q are
accessible within the MF-DFA analysis. For large negative
values of 1 /q the generalized Hurst exponents saturate rather
fast, as in the case of large positive values of 1 /q.

The fact that Hq �and in particular H2� changes with time
is a clear indication of the multifractal character. In this con-
text we mention that the so-called multifractional Brownian
motion could be alternatively used to model this feature �38�.

The analogy of the stock market fluctuations and fluid
turbulence has already been pointed out in the literature �40�.
It is known that in turbulent fluids the energy dissipation rate
shows violent fluctuations. Similarly, as shown in Fig. 8, we
find that the temporal evolution of the local stock price dif-
ferences, �x�t+�t�−x�t��, presents strong fluctuations which
represent the signature of intermittency. In addition, the self-
extending similarity features of intermittent fluid turbulence
have been shown to exist in spatial height correlation func-
tions of the kinetic surface roughening models. We show in
Figs. 8 and 9 that the extended self-similarity exhibited by
the structure functions in fluid turbulence also shows up in
the temporal behavior of the financial stocks correlation
functions. This observation offers a connection between
three distinct physical problems, apparently without any in-

TABLE I. Extended self-similar behavior of financial stocks
based on the power-law dependence of log�fm���� on log�fn����
�m=− 1

2 and 2 and n=1�. The exponents 
−1/2,1 and 
2,1 extracted
from the power laws shown in Figs. 9 and 10 are in very good
agreement with the expected ratios of H−1/2 /H1 and H2 /H1,
respectively.

Stock H2 /H1 H−1/2 /H1 
2,1 
−1/2,1

INTC 0.966 1.051 0.956 1.065

NYA 0.960 1.059 0.961 1.058

INTC 2000 0.958 1.062 0.956 1.065

JJ 2000 0.983 1.033 0.962 1.040

FIG. 10. �Color online� The normalized fluctuation functions
f2��� and f−1/2��� as a function of f1��� for the daily NYA and INTC
�inset� stocks.

FIG. 11. Persistence probabilities P�t� vs t for the minute-to-
minute stocks. The dashed line corresponds to P+�t�, the dotted line
corresponds to P−�t�, and the solid line represents P�t�.
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tuitive connections: fluid turbulence, surface roughening, and
financial stocks.

For exemplification purpose we plot, in Figs. 9 and 10,
log�fm���� vs log�fn���� for m=−1/2 and 2 and n=1. From
the linear behavior of these plots it is obvious that
fm�����fn����
mn, where the expectation value for the expo-
nents 
mn is 
mn=Hm /Hn. We find that our empirical results
for 
mn are in very good agreement with the expected ratios
between Hm and Hn, as summarized in Table I. It would be
interesting to check the existence of the extended self-
similarity in other financial stocks. We mention that the
analysis of correlation functions based on the extended self-
similarity is known to provide reliable values of the ratios
between several generalized Hurst exponents �22�.

Next, we present in the results of the persistence
probabilities and persistence exponents for our fluctuating
stocks. In Fig. 11 we show the results based on the minute-
to-minute stocks and in Fig. 12 the daily stocks. We
observe that the best power law appears for the average per-
sistence probability P�t�=1/2�P+�t�+ P−�t��, while depar-
tures from the power-law behavior can be seen for P±�t�
corresponding to the INTC 2000 stock and more clearly
for the daily stocks. For the low-frequency stocks, in addi-
tion to measuring the positive, negative, and average persis-
tence probabilities of the stochastic price variables, we have

also considered the set of these three probabilities corre-
sponding to the empirical sets after the background
elimination—i.e., x̃�t�=x�t�−a exp�bt�. For the INTC stock
we have that a=1.1703 and b=1.1889�10−3, and for NYA
index a=28.473 and b=0.3177�10−3. The persistence
curves for the variable x̃�t� are very similar in the sense that
no distinction between the positive, negative, and average
probabilities can be made. This result agrees with previous
studies of the persistence probability of the German stock

index �17�. We have used P�t� and P̃�t� in order to extract the
persistence exponents for the minute-to-minute and daily
stocks, respectively. The results are summarized in Table II.
We compared these values against 1−H2, with H2 extracted
from the fitted power law of f2���, in order to investigate the
validity of Eq. �9�. We find good agreement between � and
1−H2. However, it is important to emphasize that since both
� and H2 are very close to 1/2, the memory effects of the
time series under investigation can only be revealed by
higher-order correlation functions. The second-order correla-
tion function by itself cannot explain the multifractality dis-
cussed in this study since it indicates that the returns are
uncorrelated. We also add that P�t� is not sensitive to the
large discrepancy between �t and tm corresponding to the
high-frequency stocks and daily stocks, respectively.

The generalization of the persistence probability is
shown in Fig. 13. We only present the results for the prob-
ability of persistent large deviations corresponding to
the INTC 2000 stock, but we have checked the applicability
of this concept to other empirical stocks as well. From
the linear behavior of log P�t ,s� vs log t we conclude that the
t dependence of P�t ,s� is indeed a power law. We see that
the local slope decreases as the average sign parameter s
decreases. We have varied s from −1 to 1 with an increment
of 0.1, and the s dependence of the resulting family of per-
sistent large deviations exponents is shown in the inset of
Fig. 13. We mention that each curve in Fig. 13 corresponds
to the average between the positive and negative persistent
large deviations probabilities—i.e., P�t ,s�=1/2�P+�t ,s�
+ P−�t ,s��. Both P+�t ,s� and P−�t ,s� show departures from
the expected power laws at large t, as we have seen in Figs.
11 and 12 in the case of the positive and negative persistence
probabilities.

Finally we show the results of the survival probability in
Fig. 14. We have looked at the temporal evolution of the JJ
2000 stock price recorded with two different sampling times,

FIG. 12. �Color online� Persistence probabilities P�t� vs t for the
daily stocks. Solid lines correspond to P+�t�, P�t�, and P−�t� �from

top to bottom�. The dashed lines correspond to P̃+�t� and P̃−�t�. The

circle represents the average probability P̃�t� for the variable x̃�t�.

TABLE II. The persistence exponent � associated with the

power-law decay of the average probability P�t� �P̃�t�� for the
minute-to-minute stocks �daily stocks�. H2 is the second-order
Hurst exponent extracted from the time evolution of f2��� �see Eq.
�18��.

Stock � H2

INTC 0.51 0.47

NYA 0.50 0.50

INTC 2000 0.50 0.47

JJ 2000 0.52 0.47
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of 1 and 5 min, respectively. We have chosen different val-
ues of the measurement time tm, which influences directly the
value of the average price x̄=1/ tm�0

tmdt�x�t��. As shown in
upper panel of Fig. 14 the survival probability measured over
a longer tm has a slower decrease with time than the one
corresponding to a smaller tm. We find that the empirical
measurements of S�t� show good scaling with t /�t at short
times �t�300 min�, when the ration between the sampling
time and measurement time is kept constant. This agrees
with similar measurements done on experimental step fluc-
tuations �24�. Since a very simple interpretation of the stock
market fluctuations is based on the random walk model, we
have numerically simulated the survival behavior of a ran-
dom walker which allows us to understand qualitatively all
the features of S�t� found experimentally. Measurements of
S�t� for the random walk model were carried out for systems
of size L=100. The measured average of the random walker
variable at each site over the measurement time was used as
the reference level in the calculation of the survival probabil-
ity, and the results were averaged over 300 independent runs.
In bottom panel of Fig. 14 we show that a perfect collapse of
S�t� vs t /�t appears when the ratio �t / tm is constant. In ad-
dition, S�t� corresponding to the data recorded with the same
�t shows a slower decrease when the measurement time is
larger, as in the empirical case. Therefore both sampling time
and total measurement time have to be taken into consider-
ation in order to interpret correctly the survival features of
the financial systems. We want to point out that S�t� does not
show an exponential behavior over the investigated time
range �see the inset of the bottom panel of Fig. 14�, and
possibly much larger tm is needed to observe such a behavior
at large time scales, as happens in the case of equilibrium
surface step fluctuations �25�.

IV. CONCLUSIONS

We conclude with some speculative thoughts on the pos-
sible development of “understanding” in the sense of physics

with respect to stock price fluctuations. In physics—e.g., step
fluctuations �15,16,23–25� or kinetic surface roughening
�19�—one typically looks for minimal �in the renormaliza-
tion group sense� dynamical �in general, nonlinear� stochas-
tic continuum partial differential equations underlying the
stochastic phenomena—e.g., the Edwards-Wilkinson equa-
tion �41�, the Mullins-Herring equation �42�, the Kardar-
Parisi-Zhang equation �43�, the Villain–Lai–Das Sarma
equation �44,45�, etc., hoping to derive the long-time coarse-
grained asymptotic power-law behavior of the system arising
from some simple minimal underlying dynamics �which is
often based on symmetry and universality considerations�. It
is unclear whether such an approach based on continuum
nonlinear stochastic equations is at all meaningful for the
understanding of the dynamical evolution of complex eco-
nomic phenomena such as stock price fluctuations. It may be
possible to empirically construct dynamical equations which
are sufficient to reproduce the exponents and the related sta-
tistical stochastic behavior described in this paper, but the
necessary conditions for obtaining such equations are simply
unknown �in fact, we do not know if such equations exist,

FIG. 13. �Color online� Log-log plot of the persistent large de-
viations probability P�t ,s� vs t for the INTC 2000 stock. The aver-
age sign parameter, s, is varied from 1 to −0.8 �bottom to top� with
an increment of 0.2. The inset contains the persistent large devia-
tions exponent �l vs s.

FIG. 14. �Color online� The average survival probability S�t� vs
t /�t for the JJ 2000 stock �top� with different sampling times and
different measurement times, as shown in the legend. The bottom
plot contains the numerical simulation of S�t� corresponding to a
random walk with L=100. The scaling of S�t� with t /�t appears
when �t / tm is constant. The inset shows the same curves on a
logarithmic-linear scale.
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except in some “trivial” data fitting sense�. It is therefore
quite intriguing that stock price fluctuation data are amenable
to stochastic analyses based on first-passage statistics and
multifractality �as carried out in this article� with results not
that dissimilar from physical processes such as step fluctua-
tions or nonequilibrium growth.

Our work demonstrates that the persistence and the
multifractal behaviors of stock prices �both individual and
composite� are subtle �including extended self-similar prop-
erties not identified in the literature before�. It will be of
interest to investigate if the empirical behavior we report in
this paper can be derived from the various multifractal sto-
chastic models �10,11,13,14� for stock price fluctuations pro-
posed in the literature. Such investigations, clearly beyond
the scope of the current work, would, however, be quite dif-
ficult since both persistence and extended self-similarity are
notoriously difficult concepts to derive theoretically, even
when the underlying non-Markovian dynamics is known for
a process. At this early stage of our understanding of econo-
physics, the fact that the stock price fluctuations seem to
follow the persistence and the multifractal properties of well-
studied surface fluctuation phenomena is by itself intriguing
and interesting.

To summarize, in this study we have analyzed the
multifractality, extended self-similarity, and first-passage

properties of several financial stocks. While the second-order
Hurst exponent and the persistence exponent characterizing
the power-law decay of the average persistence probability
are not able to explain the long-term correlations in the in-
vestigated price time series, higher-order correlation func-
tions reveal much richer information about the complicated
dynamics of such systems. We have shown that the persis-
tence exponent � is in agreement with 1−H2 and does not
depend on the sampling time and measurement time. How-
ever, the survival probability has a nontrivial dependence on
both �t and tm, presenting scaling with t /�t only when the
ratio �t / tm is a constant. The numerical simulations of per-
sistence, survival, and extended self-similarity features using
discrete models of financial stocks remain an interesting
open problem.
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