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Exact Langevin equations are derived for the height fluctuations of surfaces driven by the deposition of
material from a molecular beam. We consider two types of model: deposition models, where growth proceeds
by the deposition and instantaneous local relaxation of particles, with no subsequent movement, and models
with concurrent random deposition and surface diffusion. Starting from a Chapman-Kolmogorov equation the
deposition, relaxation, and hopping rules of these models are first expressed as transition rates within a master
equation for the joint height probability density function. The Kramers–Moyal–van Kampen expansion of the
master equation in terms of an appropriate “largeness” parameter yields, according to a limit theorem due to
Kurtz �Stoch. Proc. Appl. 6, 223 �1978��, a Fokker-Planck equation that embodies the statistical properties of
the original lattice model. The statistical equivalence of this Fokker-Planck equation, solved in terms of the
associated Langevin equation, and solutions of the Chapman-Kolmogorov equation, as determined by kinetic
Monte Carlo �KMC� simulations of the lattice transition rules, is demonstrated by comparing the surface
roughness and the lateral height correlations obtained from the two formulations for the Edwards-Wilkinson
�Proc. R. Soc. London Ser. A 381, 17 �1982�� and Wolf-Villain �Europhys. Lett. 13, 389 �1990�� deposition
models, and for a model with random deposition and surface diffusion. In each case, as the largeness parameter
is increased, the Langevin equation converges to the surface roughness and lateral height correlations produced
by KMC simulations for all times, including the crossover between different scaling regimes. We conclude by
examining some of the wider implications of these results, including applications to heteroepitaxial systems
and the passage to the continuum limit.
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I. INTRODUCTION

The widespread application of lattice models to the basic
phenomenology of epitaxial kinetics �1–3� has fostered a
huge literature on the morphological evolution of fluctuating
growth fronts �4–8� that has established these models as
paradigms for driven nonequilibrium systems. One of the
central concerns of this work is the expression of the time-
development of a system, as determined by a set of transition
rules between neighboring configurations, in terms of a sto-
chastic differential equation. Several methods have been pro-
posed for obtaining analytic formulations of rule-based lat-
tice models, including phenomenological �9,10� and
symmetry �11–13� arguments, mappings onto other models
�11,14�, real-space renormalization-group methods �15�, and
formal expansions of stochastic equations on a lattice
�14,16–19�. Although these studies have produced suggestive
results for individual cases, a methodology that produces dif-
ferential equations of motion for general lattice growth mod-
els has yet to be advanced.

An altogether different approach to associating a stochas-
tic differential equation with a lattice model is based on the
asymptotic scaling properties of the growth front. The shot

noise of the deposition process causes kinetic roughening
characterized by scale invariance analogous to that for dy-
namical critical phenomena near equilibrium �4�. The corre-
sponding “critical” exponents are said to be universal if they
depend only on the spatial dimension of the substrate and on
the “relevant” terms in the equation of motion, rather than on
microscopic details, such as the type of lattice or the spatial
range of the transition rules. On this basis, several lattice
models have been assigned to universality classes of particu-
lar Langevin equations �4,5,10,20–28�, although this can re-
quire extensive kinetic Monte Carlo �KMC� simulations to
eliminate crossover effects �24–28�. But there are notable
exceptions to this scenario. For such cases, a more funda-
mental approach to determining the continuum expressions
of lattice models is required.

In this paper we develop a procedure for deriving lattice
Langevin equations for the height fluctuations of driven sur-
faces that are statistically equivalent to KMC simulations
�29�. We will focus on two basic model types: deposition
models, where particles are deposited randomly, relax instan-
taneously to a neighboring site and remain there, and models
with concurrent random deposition and surface diffusion.
Examples of deposition models include random deposition,
where the deposition site is the initial site, the Edwards-
Wilkinson model �20,30�, where the deposition site is a local
height minimum, the Wolf-Villain model �31,32�, where the
deposition site is a local coordination maximum, and numer-
ous variations thereon �33,34�. Such relaxation rules model
the short-range mobility of “hot” atoms deposited onto the
surface by a molecular beam that is caused by the heat of
condensation, especially near step edges, but are also used to
examine the effects of limited surface diffusion without in-
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curring the computational overheads of a full hopping model.
KMC simulations of models with deposition and surface

diffusion have explained many fundamental aspects of epi-
taxial phenomena through quantitative comparisons with ex-
perimental measurements, including growth on vicinal sur-
faces �2,3�, submonolayer island-size distributions �35–37�,
unstable growth �38,39�, and the role of multiple species in
the growth of compound semiconductors �1,40,41�. Such
simulations have the advantage of versatility and computa-
tional efficiency, but the absence of an underlying analytic
formulation means that obtaining systematic results can be
quite time consuming. Even ostensibly minor modifications
to the transition rules necessitate performing an entire new
set of simulations. One of the primary aims of the work
reported here is to provide an analytic infrastructure to aug-
ment KMC simulations.

Our procedure begins by expressing the morphological
evolution of a growth model as a Chapman-Kolmogorov
equation for the joint conditional transition probability be-
tween height configurations of the system. Chapman-
Kolmogorov equations and their associated master equations
provide a complete statistical description of stochastic sys-
tems, but are amenable to direct analysis in only a few spe-
cial cases �42–44�. KMC simulations provide a practical, al-
beit indirect, alternative to solving these equations in terms
of averages over individual realizations of a system and we
make extensive use of such simulations in this paper. How-
ever, as noted above, the major drawback of KMC simula-
tions is their inability to represent the consequences of com-
peting rates in other than an algorithmic form.

The next step is to use a Kramers–Moyal–van Kampen
expansion of the master equation �42� to extract a Fokker-
Planck equation �45–47� that embodies the height fluctuation
statistics of the original lattice model. The statistical equiva-
lence of results produced by these two equations is demon-
strated by comparing the morphological evolution obtained
from the Langevin equation associated with the Fokker-
Planck equation with that produced by KMC simulations.
These comparisons are based on the surface roughness and
lateral height correlations, so scaling exponents can be deter-
mined directly �29�. But we can also identify crossover re-
gimes, and calculate other statistical properties of the mor-
phology, such as amplitudes �48� and stationary roughness
distributions �49�.

Quite apart from providing a computational alternative to
KMC simulations, the Langevin formulation offers a frame-
work for examining the analytic properties of lattice growth
models, such as the relative importance of different sources
of noise �e.g., due to deposition and diffusion� in various
growth regimes. Regularized Langevin equations can be
used to study the long wavelength and low frequency prop-
erties of such models by coarse graining �50,51� or, more
generally, by renormalization group transformations. The lat-
ter procedure, which will be reported elsewhere, is a key
element for explaining the unexpected behavior of the Wolf-
Villain model �24,26� and variations of the Edwards-
Wilkinson �27,28� models in higher spatial dimensions that
have been revealed by KMC simulations.

The organization of this paper is as follows. In Sec. II we
formulate the Chapman-Kolmogorov and master equations

for fluctuating surfaces. The Kramers–Moyal–van Kampen
expansion of the master equation is carried out in Sec. III and
includes a discussion of the analytic requirements of this
expansion. The analysis of the equivalent Langevin equation
�29� is the subject of Sec. IV. To simplify the derivation of
this equation, we confine our discussion to one-dimensional
substrates, although this is not an inherent limitation of our
procedure. Indeed, as noted above, there are several ex-
amples of intriguing behavior exhibited by higher dimen-
sional growth models and our method is well placed to con-
tribute to the debate. The replacement of discrete by
continuous height units necessitated by the Kramers–Moyal–
van Kampen expansion has subtle consequences for the
regularization of the threshold functions used to characterize
local height environments in the transition rules. This is dis-
cussed in Appendix A.

The application of our method to the Edwards-Wilkinson
and Wolf-Villain models is described in Secs. V and VI,
where direct comparisons between the KMC and Langevin
solutions are made for the roughness and the lateral height
correlations. The Edwards-Wilkinson model is used to dem-
onstrate the convergence of the Langevin to the KMC solu-
tion for these quantities as the “largeness” parameter in the
Kramers–Moyal–van Kampen expansion is increased. For
the Wolf-Villain model, our method reproduces the complex
crossover sequence observed with KMC simulations �24�
even without a converged solution. In Sec. VII, we apply our
method to a model with random deposition and surface dif-
fusion. The surface roughness calculated from the Langevin
equation again reproduces the main statistical characteristics
of the KMC simulations, including the temperature depen-
dence of the initial crossover from random deposition. We
discuss the wider implications of these results in Sec. VIII,
including the existence of a continuum expression of lattice
Langevin equations and the extension of our method to het-
eroepitaxial systems and to stochastic lattice models in other
areas of science. A summary of our main results is provided
in Sec. IX.

Some of the results described here have appeared previ-
ously in brief communications �29,50�. The purpose of this
paper is to present a detailed derivation of our methodology
and to demonstrate its capability for a range of models used
to study the statistical properties of growing surfaces. Our
derivation clarifies and extends the earlier discussion �17� of
equations of motion for models of epitaxial growth and pro-
vides a rigorous connection between the variables used in
KMC simulations and those that appear in Langevin equa-
tions.

II. THE MASTER EQUATION

We consider a one-dimensional lattice of length L on each
site i of which �1� i�L� is a column whose topmost particle
is at height Hi. Every surface profile corresponds uniquely to
an array H= �H1 ,H2 ,… ,HL�. The lattice constant and verti-
cal spacing are both set to unity, so the lattice sites and
column heights have integer values. Processes such as depo-
sition, desorption, and surface diffusion �see below� cause
the heights to change by integer increments at discrete times
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tn. Since the transition rates of these processes depend only
on the instantaneous surface profile, not on its history, the
models we consider are all Markovian.

The central quantity for Markov processes is the transition
probability

P�Hn,tn�Hn−1,tn−1� � Tt�Hn�Hn−1� , �1�

where only the time difference t= tn− tn−1 enters on the right-
hand side because of the homogeneity of the processes under
consideration. The Chapman-Kolmogorov equation �42�,

Tt+t��H3�H1� = 	
H2

Tt��H3�H2�Tt�H2�H1� , �2�

is an identity for the transition probabilities of all Markov
processes, but is rarely �43� amenable to a direct analysis.
The differential form of this equation, expressed in terms of
the small-time limit of the transition probability, is the master
equation:

�Tt�H3�H1�
�t

= 	
H2

�W�H3�H2�Tt�H2�H1�

− W�H2�H3�Tt�H3�H1�� , �3�

where W�H� �H�, the transition rate per unit time from H to
H�, is the time derivative of Tt�H� �H� evaluated at t=0. This
equation can be cast into a more compact and intuitive form
by noting that each transition probability is evaluated for the
initial state H1 at time t1. Thus, by suppressing the redundant
arguments, we define P�H , t��Tt�H �H1� and write Eq. �3�
as �42�

�P

�t
= 	

r
�W�H − r;r�P�H − r,t� − W�H;r�P�H,t�� , �4�

where W�H ;r� is the transition rate from H to H+r, and r
= �r1 ,r2 ,…� is the array of jump lengths ri associated with
each site.

The Chapman-Kolmogorov equation �2� is the definitive
statement of the morphological evolution of our driven sur-
faces. Solutions of this equation provide the same statistical
information as averages obtained from KMC simulations.
The master equation �4� is a formal restatement of the
Chapman-Kolmogorov equation in terms of a continuous
time variable, but with discrete height variables. To render
this equation physically meaningful, we must establish the
relationship between the original variables and those appear-
ing in Eq. �4�. This will be done in Sec. III.

The transition rates are determined by processes that
cause the heights to change. Typical examples for surface
growth are deposition, surface diffusion, and evaporation.
Expressions for the transition rates of such processes are eas-
ily constructed. For deposition, particles impinge on the lat-
tice at an average rate �0

−1 per site, where �0 is the time for
the deposition of a monolayer of atoms. The transition rate W
is nonvanishing only between configurations H and H� that
differ by one height unit at the deposition site: Hi�=Hi+1 for
any site i. In the simplest case, random deposition, particles
are deposited onto randomly chosen sites and remain there.
The transition rate for this process is

W1�H;r� = �0
−1	

i

�ri,1

j�i

�rj,0
, �5�

where �i,j is the Kronecker delta. If the final deposition site is
selected from among the initial randomly chosen site and the
two nearest neighbor sites according to some criterion, the
transition rate becomes

W2�H;r� = �0
−1	

i
�wi

�1��ri,1

j�1

�rj,0
+ wi

�2��ri−1,1 

j�i−1

�rj,0

+ wi
�3��ri+1,1 


j�i+1
�rj,0� , �6�

where the quantities wi
�k� express the conditions for the par-

ticle to remain on the initial site i�k=1�, to relax to the site
i−1�k=2�, or to relax to i+1�k=3�. The sum rule

wi
�1� + wi

�2� + wi
�3� = 1 �7�

ensures that the average deposition rate per site is �0
−1. The

generalization of these expressions to deposition rules that
include more distant neighbors is straightforward.

The transition rate for a particle hopping from a site i to a
site j has the general form

W3�H;r� = 	
ij

wij�ri,−1�rj,1 

k�i,j

�rk,0, �8�

where the hopping rate and hopping rules are contained in
the wij. The rules can depend on the initial configuration
only, as for many models of surface diffusion �17�, or on
both the initial and final configurations, as for hopping near
step-edge barriers �52� and Metropolis implementations of
hopping �53�. A common model for surface diffusion is near-
est neighbor hopping with Arrhenius rates whose energy bar-
rier Ei is calculated from the initial environment of the active
atom. In this case we have

wij = 1
2�0e−�Ei��i,j−1 + �i,j+1� , �9�

where the attempt frequency �01012−1013 s−1 �54�, �
= �kBT�−1, kB is Boltzmann’s constant, and T is the absolute
temperature of the substrate. The simplest expression for Ei
is obtained as the sum of a site-independent energy barrier ES
from the substrate and a contribution EN from each of the ni
lateral nearest neighbors: Ei=ES+niEN. For comparisons
with the morphologies of specific materials systems, these
barriers can be determined either by fitting to a particular
experiment �3,40� or from first-principles calculations �41�.

III. KRAMERS–MOYAL–VAN KAMPEN EXPANSION

Although the master equation �4� is more manageable
than the Chapman-Kolmogorov equation �2�, direct solutions
for driven surfaces are possible in only a few special cases
�44�. To circumvent this problem, we will use a Kramers–
Moyal–van Kampen expansion �42� and invoke a limit theo-
rem to obtain a Fokker-Planck equation that embodies the
statistical properties of the master equation. The Fokker-
Planck equation and its associated Langevin equation are
formulated in terms of continuous time and height variables
that can be directly related to the original discrete variables
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used in Eq. �2�. This procedure necessitates expanding the
first term on the right-hand side of Eq. �4�, which relies on
two criteria for the transition rates �42�. These are discussed
in the following two subsections.

A. “Small jump” criterion

The first condition mandates that W�H ;r� is a sharply
peaked function of r in that there is a quantity ��0 such that

W�H;r� � 0 for �r� � � . �10�

This restricts the magnitude of the changes in H caused by
the transition rules and is accordingly referred to as a “small
jump” condition. The fulfillment of this condition ensures the
convergence of the moments of W�H ;r�, as discussed in Sec.
III C.

Transition rules of lattice growth models typically change
the column heights Hi by a single unit, as in Eqs. �5�, �6�, and
�8�. For these processes, the jump length ri=−1, 0 or 1 for all
sites i, which manifestly satisfies Eq. �10�.

B. “Smoothness” criterion

The second condition is that W�H ;r� is a slowly varying
function of H, i.e.,

W�H + �H;r� � W�H;r� for ��H� 	 � . �11�

In effect, this is a smoothness criterion that renders the
Kramers–Moyal–van Kampen expansion meaningful �55�.

Transition rules such as those in Eqs. �5�, �6�, and �8� are
typically expressed in terms of nonanalytic threshold func-
tions that characterize the local height environment. For ex-
ample, the number ni of lateral nearest neighbors at a site i is
calculated by determining how many nearest neighbor
heights are greater than or equal to Hi:

ni = 
�Hi−1 − Hi� + 
�Hi+1 − Hi� , �12�

where


�x� = �1 if x � 0,

0 if x 	 0.
� �13�

Thus an arbitrarily small change in a height can lead to an
abrupt change in ni and thereby in any transition rate that
depends on this quantity, in clear violation of Eq. �11�. This
problem can be alleviated by making two formal modifica-
tions to the transition rules. The unit jumps in Eqs. �5�, �6�,
and �8� are replaced by jumps of size �−1, where �—the
“largeness” parameter in the van Kampen expansion �42�–
controls the magnitude of the intrinsic fluctuations of the
growth front:

Hi → hi = �−1Hi. �14�

The time is rescaled accordingly as

t → � = �−1t �15�

to preserve the rates of change of the heights. The second
modification is the replacement of the step function 
�x� in
Eq. �13� by a continuous function. This renders the transition

rates continuous as well, but the specific form of this regu-
larization depends on the transition rules of the model under
consideration. This is developed in Appendix A.

By regarding h= �h1 ,h2 ,… ,hL� and r as continuous vari-
ables, the master equation �4� becomes

�P

��
=� �W̃�h − r;r�P�h − r,�� − W̃�h;r�P�h,���dr ,

�16�

where the transformed transition rates W̃ are given by terms
of the form

W̃1�h;r� = �0
−1�	

i

��ri − �−1�

j�i

��rj� , �17�

where ��x� is the Dirac delta function, with analogous ex-

pressions for W̃2 and W̃3 corresponding to Eqs. �6� and �8�.
Equation �16� describes the morphological evolution of the
same model as the Chapman-Kolmogorov equation �2�, but
on time and height scales that are finer by a factor �. In
particular, the hi and ri are discrete for finite � and the small
jump condition �10� remains valid. When we take �→ to
apply Kurtz’s theorem �Sec. III C�, these variables become
continuous.

C. Fokker-Planck equation

The first term on the right-hand side of Eq. �16� can now
be expanded as a Taylor series to obtain

� W̃�h − r;r�P�h − r,��dr −� W̃�h;r�P�h,��dr

= 	
n=1


�− 1�n

n! 	
i1,…,in

�n

�hi1
¯ �hin

�Ki1¯in
�n� �h�P�h,t�� ,

�18�

where Ki1¯in

�n� is the nth moment of W̃,

Ki1¯in
�n� �h� =� ri1

¯ rin
W̃�h;r�dr  O��1−n� . �19�

The small jump condition in Eq. �10� ensures that these mo-
ments are well defined. With this ordering in � of the K�n�, a
limit theorem due to Kurtz �45–47� states that, as �→, the
solution of the master equation �4� is approximated, with an
error of O�ln � /��, by the solution of the Fokker-Planck
equation �56�,

�P�h,��
��

= − 	
i

�

�hi
�Ki

�1��h�P�h,���

+
1

2	
ij

�2

�hi � hj
�Kij

�2��h�P�h,��� , �20�

where, from Eq. �19�, the first two moments of W̃ are

Ki
�1��h� � � riW�h;r�dr , �21�
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Kij
�2��h� � � rirjW�h;r�dr . �22�

This Fokker-Planck equation is expressed in terms of the
continuous variables � and h and provides the same statisti-
cal information about the morphological evolution of fluctu-
ating surfaces as the Chapman-Kolmogorov equation �2�,
which is expressed in terms of the original discrete variables
t and H. These two sets of variables have a direct correspon-
dence over their entire ranges only for �→. This fact is
signified by the superscript “” in the moments of the tran-
sition rate. The important conceptual and practical point is
that the continuous representation is characterized com-
pletely by a deterministic drift Ki

�1� and diffusion with co-
efficients Kij

�2�.

IV. THE LANGEVIN EQUATION

The solution of Eq. �20� will be obtained by solving the
equivalent Langevin equation �42,47�,

dhi

d�
= Ki

�1��h� + �i, �23�

where the �i are Gaussian noises with mean zero and a co-
variance matrix given by K�2�:

��i���� = 0, �24�

��i���� j����� = Kij
�2��h���� − ��� , �25�

and �·� signifies averages with respect to the distribution
function of the �i. The initial and boundary conditions for
this coupled set of differential equations must be the same as
those used for obtaining KMC solutions of the Chapman-
Kolmogorov equation �2�. The initial condition is given by a
configuration h0= �h1�0� ,h2�0� ,… ,hL�0��. Periodic boundary
conditions are used in all the calculations reported here.

The solution of the Langevin equation �23� produces re-
sults that are statistically equivalent to the Chapman-
Kolmogorov equation in that averages over many indepen-
dent realizations are identical. This relationship can be
expressed formally as

�F„�Hi�t��…� =�F��Hi�0� + �
0

t

�Ki
�1�

„h���…

+ �i����d���� , �26�

where F is a function of the surface profile, such as the width
or the structure factor defined in Sec. IV B. This equation
provides a direct connection between the continuous vari-
ables � and hi in the Langevin equation and the discrete
variables t and Hi used for KMC solutions of the Chapman-
Kolmogorov equation.

For models of deposition and instantaneous relaxation, as
in Eq. �6�, each event changes the occupancy only of a single
site. Thus, all of the moments of W are diagonal and propor-
tional to the first moment, and we have

Ki
�1� =

1

�0
�wi

�1� + wi+1
�2� + wi−1

�3� � , �27�

Kij
�2� = �ijKi

�1�, �28�

so the noise covariance in Eq. �25� reduces to

��i���� j����� = Ki
�1��ij��� − ��� . �29�

Alternatively, for models with random deposition and
concurrent surface diffusion described by the nearest neigh-
bor hopping in Eq. �9� the transition moments are

Ki
�1� = 1

2�0�2�i + �0
−1, �30�

Kij
�2� = 1

2�0��ij�
2�i − ��i + � j��2�ij� + �0

−1�ij , �31�

where �i=e−�Ei, and the discrete second difference

�2f i = f i−1 − 2f i + f i+1 �32�

acts only on the first index of �ij in Eq. �31�. Any hopping
process generates off-diagonal matrix elements in the cova-
riance matrix because the occupancies of two sites are
changed by such an event. Nearest neighbor hopping pro-
duces a tridiagonal covariance matrix, while longer range
hopping and cluster diffusion generate associated nonzero
entries in this matrix.

A. Numerical solution of the Langevin equation

The numerical integration of Eqs. �23� and �25� proceeds
by assigning an Itô interpretation to the noise �47�. We first
consider deposition models. The stochastic differential equa-
tion associated with the Langevin equation �23� and the mo-
ments in Eqs. �27� and �28� is

dhi = Ki
�1��h�d� + �Ki

�1��h��1/2dWi, �33�

where the Wiener variable dWi represents continuous Brown-
ian motion �57�. The square root of the diagonal matrix K�1�

is well-defined because all of the matrix elements in Eq. �28�
are non-negative. This equation is discretized as

hi�� + ��� = hi��� + Ki
�1��h��� + �Ki

�1��h��1/2�Wi��� ,

�34�

with �Wi���=Wi��+���−Wi���, and

��Wi���� = 0, �35�

���Wi����2� = �� . �36�

The diagonal covariance matrix for deposition models
considerably simplifies the numerical integration of Eq. �23�
because different sites are coupled only in the computation
of the diagonal elements. For models with surface diffusion,
however, the covariance matrices have nonzero off-diagonal
entries, as in Eq. �31�, so an altogether different scenario
arises. The formulation of the corresponding stochastic dif-
ferential equation relies on the fact that this matrix is positive
definite, i.e.,
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i,j=1

L

Kij
�2�viv j � 0, �37�

for all nonzero vectors v= �v1 ,… ,vL�. For the matrix ele-
ments in Eq. �31�, we calculate

	
i,j=1

L

Kij
�2�viv j = 	

i=1

L

��i−1 + �i��vi−1 − vi�2 +
v2

�0
, �38�

where periodic conditions have been imposed on the matrix
elements and on the components of v. Thus, for any finite
deposition rate, K�2� is positive definite. For equilibration in
the absence of deposition �Sec. VII�, we must therefore im-
pose an arbitrarily small flux to maintain this property.

Given the foregoing, the stochastic differential equation
associated with the Langevin equation �23� and the moments
in Eqs. �30� and �31� can be written as

dhi = Ki
�1��h�d� + 	

j=1

L

UijdWj , �39�

in which UTU=K�2�, where UT is the transpose of U, is the
Cholesky factorization �58� of the symmetric positive defi-
nite matrix K�2� in terms of the upper triangular matrix U.
The discretized form of this equation is given by

hi�� + ��� = hi��� + Ki
�1��� + 	

j=1

L

Uij�Wj��� , �40�

where

��Wi���� = 0, �41�

��Wi����Wj���� = �ij�� . �42�

The Cholesky decomposition required for the integration of
Eq. �40� can place substantial demands on computer re-
sources for large system sizes if extended deposition times
are required.

The results presented in the following sections are ob-
tained by integrating Eqs. �34� and �40� for decreasing values
of ��. According to Eqs. �14� and �15�, hi=�−1Hi and �
=�−1t, so �hi=�−1�Hi and �=�−1�t, which implies that a
decrease in �� is equivalent to an increase of �. Hence, with
increasing � successively more iterations of Eqs. �34� and
�40� are required to reach the same elapsed real time interval
�t and physical height change �Hi. Since all our models are
subsumed by the general equation �40�, we write the dis-
cretized form of Eq. �26� as

�F„�Hi�t��…� =�F��Hi�0� + 	
n=1

� ���−1t�Ki
�1�

„h��n�…

+ 	
j=1

L

Uij�Wj��n����� , �43�

where �n=�−1nt. The evaluation of this equation proceeds
by determining K�1� and K�2� from h��n�. Gaussian random
numbers with zero mean and unit variance are then used to
determine the fluctuations at all lattice sites to obtain the

height profile h��n+1� at the next time step. As �→,
Kurtz’s theorem �45–47� stipulates that the statistical proper-
ties of the morphology determined by averages of these so-
lutions converge to the corresponding average quantities ob-
tained from KMC simulations.

B. Statistical characterization of rough surfaces

Our comparisons between KMC simulations and solutions
of Langevin equations are based on the surface roughness
and the lateral height correlation function. These quantities
provide statistical information about the morphological evo-
lution normal to and along the surface.

The surface roughness W�L , t� is defined as the root-mean
square of the height profile,

W�L,t� � ��h2�t�� − �h�t��2�1/2, �44�

where �h�t�n�=L−1�ihi
n�t� for n=1, 2. For sufficiently long

times and large substrate sizes, W exhibits dynamic scaling
�4�:

W�L,t�  L�f�t/Lz� , �45�

with the scaling function

f�x�  �x� for x � 1,

const for x � 1,
� �46�

in which � is the roughness exponent, z=� /� is the dynamic
exponent, and � is the growth exponent.

The lateral height correlation function C�r , t� is

C�r,t� � ��hi�t� − hj�t��2�1/2, �47�

where r= �i− j� is the separation of sites i and j. For r much
smaller than the lateral correlation length, C has the scaling
form �4�

C�r,t�  r�. �48�

The exponents �, �, and z provide the basis for assigning a
model to a particular universality class and thereby inferring
the associated continuum equation, in analogy with the pro-
cedure used for critical dynamics.

V. THE EDWARDS-WILKINSON MODEL

The Edwards-Wilkinson equation �30�,

�h

�t
= �2

�2h

�x2 + � , �49�

where �2�0 and � is a Gaussian white noise, was originally
proposed as a theory for sedimentation. The atomistic real-
izations of this model for surfaces driven by deposition from
a molecular beam �20,27,28� are based on identifying the
lowest height�s� near a randomly chosen site. In the version
we study here, a particle incident on a site remains there only
if its height is less than or equal to that of both of its nearest
neighbors. If only one nearest neighbor column is lower than
that of the original site, deposition is onto that site, but if
both nearest neighbor heights are less than that of the origi-
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nal site, the deposition site is chosen randomly between the
two lower columns.

The pertinent height configurations can be tabulated by
using the step function in Eq. �13� to express the relative
heights between the nearest neighbors of the initial site as an
identity:

�
�hi−1 − hi� + ��hi−1 − hi��

��
�hi+1 − hi� + ��hi+1 − hi�� = 1, �50�

where

��hi − hj� = 1 − 
�hi − hj� . �51�

The expansion of Eq. �50� produces four configurations each
of which is assigned to the wi

�k� in Eq. �6� according to the
rules of the Edwards-Wilkinson model. The sum rule in Eq.
�7� is thereby satisfied by construction. These assignments
are shown in Fig. 1 and yield the expressions

wi
�1� = 
�hi−1 − hi�
�hi+1 − hi� , �52�

wi
�2� = 
�hi+1 − hi���hi−1 − hi� + 1

2��hi−1 − hi���hi+1 − hi� ,

�53�

wi
�3� = 
�hi−1 − hi���hi+1 − hi� + 1

2��hi−1 − hi���hi+1 − hi� .

�54�

The Langevin equation for the Edwards-Wilkinson model is
obtained by substituting these expressions into Eqs. �23� and
�25�.

The comparison of W�L , t� obtained from KMC simula-
tions and the Langevin equation employing the step function

�x ;0� in Eq. �A1� is shown in Fig. 2 for a system of length
L=1000 and with �=1, 2, 20. Most apparent is that, for �
=1, 2, the roughness calculated from the Langevin equation
is appreciably greater than that of the KMC simulation. For
�=1 there is a spurious “crossover” near 2–3 ML from ran-
dom deposition, characterized by a growth exponent �
=1/2, toward the Edwards-Wilkinson scaling regime at
times beyond t102 ML. The behavior at early times is due

largely to the noise: the covariance matrix in Eq. �25� in-
cludes information about nearest-neighbor sites, but the
noise is uncorrelated between sites. Thus, as the lattice is
scanned at each time step, the uncorrelated noise produces a
larger variance in the heights than that of the simulation. As
� increases this regime collapses toward t=0 and the rough-
ness calculated from the Langevin equation converges to the
KMC roughness at all times.

Figure 3 compares the lateral height correlation function
in Eq. �47� obtained from KMC simulations for a lattice of
size L=1000 with that determined from the Langevin equa-
tion for �=1, 2, 20 at an early time �t=100 ML� and at a
much later time �t=5000 ML�. The basic trends with increas-
ing � are the same as those in Fig. 2. The Langevin solution
overestimates the correlation function and there is a cross-
over from uncorrelated behavior at small separations to the
Edwards-Wilkinson scaling regime. These deviations are
most apparent up to r10, even for �=20. This is to be
expected, since the spatial range of the discrepancy ap-
proaches the atomic scale of the lattice. However, even for
�=1 the spatial range of the correlations is correctly de-
scribed by the Langevin equation.

We have shown previously �29� that a plot of WL−� vs
tL−z produces a collapse onto the scaling function f in Eq.
�45� for the Edwards-Wilkinson exponents ��=1/2 ,z=2�.
This result, together with the comparisons in Figs. 2 and 3,
shows that, for large enough values of �, our method repro-
duces the preasymptotic behavior, the scaling properties, and
the saturation values of the roughness and correlation func-
tion obtained from KMC simulations. The roughness fluctua-
tions in the saturation regime �49� also follow the same scal-
ing function as the KMC solution �59�. Each of these
quantities interrogates a different aspect of the surface mor-
phology, so the comparisons presented in this section dem-
onstrate that our method yields results that systematically
converge to those of KMC simulations as �→. These
comparisons also suggest that, if only the scaling regimes are
of interest, then solutions of the Langevin equation, even
with �=1 for large enough system sizes and long enough

FIG. 1. Relaxation rules of the Edwards-Wilkinson model, with
contributions to �a� wi

�1�, �b� wi
�2�, �c� wi

�3�, and �d� to wi
�2� and wi

�3�.
The corresponding expressions are given in Eqs. �52�–�54�. The
arrows indicate the incident and deposition sites. In �d�, both of the
deposition sites are equally likely. The broken lines show where
greater heights do not affect the deposition site.

FIG. 2. Surface roughness obtained from the Langevin equa-
tions �23� and �25� with Eqs. �52�–�54� and from KMC simulations
for a system of length L=1000 for �=1, 2, 20. Time is measured in
units of monolayers �ML� deposited. The data were averaged over
500 independent realizations. The slopes of the straight lines corre-
spond to the growth exponent of random deposition ��=1/2� and
that of the Edwards-Wilkinson model ��=1/4�.
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times, yield an accurate estimate of the exponents.

VI. THE WOLF-VILLAIN MODEL

The Wolf-Villain model �32� was first introduced for the
low-temperature growth of group-IV materials �31�. This
model has been the subject of many theoretical studies
�18,23,24,60–66� over the past 20 years. KMC simulations
show a slow crossover from Mullins-Herring to Villain–Lai–
Das Sarma behavior and eventually to the Edwards-
Wilkinson universality class �24,62–64�, a conclusion sup-
ported by arguments based on surface diffusion currents �23�.

In the Wolf-Villain model �31,32� an arriving particle re-
mains on the original randomly chosen site only if its coor-
dination �the number of nearest neighbors� cannot be in-
creased by moving to a nearest neighbor site. If only one
nearest neighbor site offers greater coordination than the
original site, deposition is onto that site. However, if both
nearest neighbor sites offer greater coordination than the
original site, the deposition site is chosen randomly between
the two. The required configurations can be tabulated by us-
ing the step functions in Eqs. �13� and �51� to express the
pertinent relative heights as an identity. Since the coordina-
tions of the initial and two nearest neighbor sites are needed
to ascertain the deposition site, this identity must include
sites up to second-nearest neighbors:

�
�hi−1 − hi−2� + ��hi−1 − hi−2��

����hi,hi−1� + ��hi−1 − hi� + ��hi − hi−1��

����hi,hi+1� + ��hi − hi+1���hi+1 − hi��

����hi+1 − hi+2� + ��hi+1 − hi+2�� = 1, �55�

where

��hi,hj� = 
�hi − hj� + 
�hj − hi� − 1. �56�

The expansion of Eq. �55� produces 36 terms that can be
combined into configurations that are resolved by the model
and assigned to the wi

�j� according to the deposition rules of
the Wolf-Villain model. The deposition rules are depicted in
Fig. 4 for wi

�1� and in Fig. 5 for wi
�2�. The associated diagrams

for wi
�3� are mirror images about the central �ith� site of each

diagram in Fig. 5. Expressions for the configurations in Figs.
4 and 5 are compiled in Table I; the corresponding expres-
sions for the configurations that contribute to wi

�3� can be
obtained by applying the transformation i±k→ i�k to each
of the terms for wi

�2�. We mention in passing that the corre-
sponding constructions in Table I and Figs. 4 and 5 for the
Das Sarma–Tamborenea model �33� requires minimal addi-

FIG. 3. Lateral height correlation function obtained from the
Langevin equations �23� and �25� with Eqs. �52�–�54� and KMC
simulations up to r=500 for a system of size L=1000 at �a� t
=100 ML and �b� t=5000 ML for �=1, 2, 20. Data were obtained
by averaging over 500 independent realizations. The slope of the
straight line in �b� has the Edwards-Wilkinson value of the rough-
ness exponent ��=1/2�.

FIG. 4. Local height configurations that contribute to wi
�1� for

the Wolf-Villain model. Arrows indicate the incident and deposition
sites. Column heights strictly greater than and strictly equal to hi are
as indicated; those less than or equal to hi are shown with broken
lines.

FIG. 5. Local height configurations that contribute to wi
�2� for

the Wolf-Villain model. Arrows indicate the incident and deposition
sites. Where more than one deposition site is obtained, both are
equally likely. Column heights strictly greater than and strictly
equal to hi are as indicated: those less than or equal to hi are shown
with broken lines.
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tional effort because the resolved configurations are the same
as those of the Wolf-Villain model. The two models differ
only in the application of their deposition rules to these con-
figurations.

Figure 6 compares the roughness determined from KMC
simulations with that obtained from the Langevin equation
with the step function 
�x ;1� in Eq. �A1� for a lattice of
length L=40 000. Because of the extended deposition time
and large system size, we have integrated the Langevin equa-
tion with �=1. The three distinct scaling regimes have been
labeled by growth exponents determined by more extensive
simulation studies �24,62�.

In common with the corresponding comparison for the
Edwards-Wilkinson model in Fig. 2, there is an initial tran-
sient regime of random deposition extending up to t

10 ML during which ��0.5. For greater times, the rough-
ness obtained from the Langevin equation tracks the KMC
roughness. Between the initial transient period and t
105 ML, the growth exponent is �=3/8, which is associ-
ated with the Mullins-Herring equation �67,68�,

�h

�t
= − �4

�4h

�x4 + � , �57�

where �4�0. This is the result obtained by Wolf and Villain
�32� from KMC simulations, but we can offer an analytic
justification of this behavior. If, in the lattice Langevin equa-
tion, the step function 
�x ;1� in Eq. �A1� and the height
profile h are replaced by analytic functions, and discrete dif-
ferences are calculated with Taylor expansions, the dominant
coefficient, by almost an order of magnitude, in the resulting
infinite series of partial derivatives is �4 �51�. Thus, the mor-
phological evolution of the smoothed Wolf-Villain model is
described approximately by the Mullins-Herring equation.

Mullins-Herring scaling persists for almost four decades
of deposition time before crossing over to a regime charac-
terized by the growth exponent �=1/3, which corresponds
to the Villain–Lai–Das Sarma equation �9,10�:

�h

�t
= − �4

�4h

�x4 + �
�2

�x2� �h

�x
�2

+ � . �58�

After a further elapsed time extending to two decades, there
is a final crossover to the scaling regime of the Edwards-
Wilkinson equation �49�, for which �=1/4. Although the
Langevin equation provides an accurate account of this
crossover sequence, which was first reported by Kotrla and
Šmilauer �24�, a complete understanding must await a de-
tailed renormalization-group analysis, which will be reported
elsewhere.

TABLE I. The terms generated by the expansion of Eq. �55�, the corresponding configurations in Figs. 4 and 5, and the assignment to the
wi

�j� according to the rules of the Wolf-Villain model.

Term Figure Rule


�hi−1−hi−2���hi ,hi−1���hi ,hi+1�
�hi+1−hi+2� 4�a� wi
�1�

�1−
�hi−hi−1���1−
�hi−hi+1�� 4�b� wi
�1�

�1−
�hi−hi−1����hi ,hi+1� 4�c� wi
�1�

��hi ,hi−1��1−
�hi−hi+1�� 4�d� wi
�1�

�1−
�hi−hi−1���1−
�hi+1−hi��
�hi+1−hi+2� 4�e� wi
�1�


�hk−1−hk−2��1−
�hi−1−hi���1−
�hi−hi+1�� 4�f� wi
�1�

�1−
�hi−1−hi−2����hi ,hi−1���hi ,hi+1�
�hi+1−hi+2� 5�a� wi
�2�

�1−
�hi−1−hi����hi ,hi+1�
�hi+1−hi+2� 5�b� wi
�2�

�1−
�hi−1−hi−2���1−
�hi−1−hi���1−
�hi−hi+1�� 5�c� wi
�2�

�1−
�hi−1−hi−2���1−
�hi−1−hi���1−
�hi+1−hi��
�hi+1−hi+2� 5�d� wi
�2�

�1−
�hi−1−hi−2���1−
�hi−1−hi����hi ,hi+1��1−
�hi+1−hi+2�� 5�e� wi
�2�

�1−
�hi−1−hi−2����hi ,hi−1���hi ,hi+1��1−
�hi+1−hi+2�� 5�f� wi
�2�, wi

�3�

�1−
�hi−1−hi−2���1−
�hi−1−hi���1−
�hi+1−hi���1−
�hi+1−hi+2�� 5�g� wi
�2�, wi

�3�


�hi−1−hi−2��1−
�hi−1−hi���1−
�hi+1−hi��
�hi+1−hi+2� 5�h� wi
�2�, wi

�3�

�1−
�hi−1−hi−2����hi ,hi−1��1−
�hi+1−hi��
�hi+1−hi+2� 5�i� wi
�2�, wi

�3�

FIG. 6. Comparison of surface roughness obtained from the lat-
tice Langevin equation with �=1 and KMC simulations for the
Wolf-Villain model for a system of length L=40 000. Scaling re-
gimes �24,62� are shown by straight lines whose slopes have the
indicated values of the growth exponent �.
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The correlation function in Eq. �47� determined from
KMC simulations and the Langevin equation with �=1 is
shown in Fig. 7 at t=104 ML, 106 ML, and 108 ML. Figure
7�a� shows that the scaling regime of the correlation function
is consistent with the roughness exponent �=3/2 for the
Mullins-Herring equation. This behavior persists to t
=108 ML �Figs. 7�b� and 7�c��, but only for values of r up to
10 lattice units, i.e., only for short-range correlations. At t
=108 ML, there appears to be an incipient crossover from the
Mullins-Herring regime, but no other clearly discernible
scaling behavior. Nevertheless, the correlation function ob-
tained from the Langevin solution follows the details of the
KMC solution; any discrepancy can be attributed to our hav-
ing used �=1 to obtain this solution. Even at the latest time,
the correlations extend only to several hundred lattice sites,
so the slope change in the roughness at this time is a true
crossover, rather than the onset of saturation.

VII. RANDOM DEPOSITION WITH SURFACE DIFFUSION

Models of epitaxial kinetics typically include random
deposition and nearest-neighbor Arrhenius-type hopping
over barriers determined by the initial environment of the
hopping atom �1–3�. The simplest such rules stipulate that
the hopping barrier is determined by an energy ES from the
substrate and a contribution EN from each of the ni lateral
nearest neighbors, so Ei=ES+niEN. The Langevin equation
for this model is given in terms of the moments in Eqs. �30�
and �31� in which we take �3� ES=1.58 eV, EN=0.24 eV,
and a deposition rate of 0.5 ML s−1 with L=100. We have
used the step function 
�x ;1� in Eq. �A1�, which is the same
as that used for the Wolf-Villain model because the transition
rules are again determined by the number of nearest neigh-
bors.

The scaling behavior of this model has been studied with
the renormalization-group �10� and KMC simulations
�22,69�. The roughness shows an intermediate scaling regime
with a growth exponent �=3/8, characteristic of the
Mullins-Herring equation �57�, before crossing over to the
value �=1/3 calculated �10� for the equation of motion in
Eq. �58�. Since these regimes are manifestations of thermally
activated hopping, the crossover times decreases with in-
creasing temperature.

Figure 8 compares the surface roughness in Eq. �44� de-
termined by KMC simulations with that obtained from the
solution of the Langevin equation for temperatures T
=500 K and T=600 K. At T=500 K �Fig. 8�a��, surface dif-
fusion is almost completely suppressed and growth proceeds
essentially by random deposition, resulting in the growth ex-
ponent �=1/2 characteristic of this process. In this regime,
��1 for all lattice sites, so the off-diagonal elements in the
correlation matrix Eq. �31� are small compared to the diag-
onal elements, but we have retained all of the correlation
matrix elements in this calculation. The weak surface diffu-
sion means that the local environment is of minimal impor-
tance for the transition rules, so calculations with �=1 yield
accurate results. However, surface diffusion is not altogether
absent, as times beyond 104 ML see the onset of the cross-
over to the Mullins-Herring growth exponent ��=3/8�.

As the temperature is raised to 600 K, surface diffusion
becomes activated and the roughness shows an altogether
different behavior from that at 500 K �Fig. 8�b��. After an
initial transient, the growth exponent initially approaches �
=3/8. The importance of surface diffusion means that the
local environment becomes an important factor in the transi-
tions at this temperature, so a value of �=10 is required to
obtain agreement between the Langevin and KMC solutions.
These comparisons indicate that the Langevin equation cap-
tures the interplay between the driving force of the deposi-
tion process and the equilibration through surface diffusion,
which is one of the central features of epitaxial growth.

The effect of surface diffusion can be isolated by exam-
ining the equilibration of a surface profile in the absence of
deposition. Such studies originated with the work of Mullins
�68� who showed that the relaxation of a sinusoidally pat-
terned surface could be used to extract surface diffusion con-
stants. Figure 9 shows the relaxation of the one-dimensional
profile displayed in panel �a� determined by KMC simula-

FIG. 7. The correlation function C�r� defined in Eq. �47� calcu-
lated from KMC simulations and the Langevin equation with �
=1 for the Wolf-Villain model for a system size of L=40 000 at
times �a� 104 ML, �b� 106 ML, and �c� 108 ML.
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tions and from the solution of the Langevin equation with the
moments in Eqs. �30� and �31�, both on a surface of length
L=40. The quality of the agreement between the two solu-
tions shows that the Langevin equation correctly describes
the time scale of the relaxation toward equilibrium. This re-
sult is especially important for modeling equilibration pro-
cesses such as Ostwald ripening, the recovery phase of epi-
taxial growth, and the decay of nanostructures on surfaces.

VIII. DISCUSSION

We have developed a framework for deriving Langevin
equations for lattice models of fluctuating interfaces that
complement the purely algorithmic approach of the KMC
method. Our methodology has several useful conceptual and
practical consequences. For deposition models, where the
correlation matrix is diagonal, the numerical integration of
the Langevin equation provides a computational alternative
to KMC simulations. But even in the presence of surface
diffusion, which produces an off-diagonal correlation matrix,
our formulation offers advantages because not all stochastic
processes are always equally important. For example, in the
early stages of irreversible growth on a singular surface un-
der typical operating conditions, nucleation is the most im-
portant stochastic event; all other processes, including depo-

sition, are approximately deterministic �70�. As the growth
front roughens, surface diffusion is less effective and depo-
sition becomes the dominant stochastic process �4�. These
observations could form the basis for adaptive stochastic in-
tegration or some other form of noise reduction �25�.

The model described in Sec. VII provides a basic descrip-
tion of epitaxial growth that has been used to address many
fundamental experimental observations �3,35–37�. But it is
for applications to heteroepitaxial systems that establishing
Langevin equations is now of prime importance. Equations
of motion for heteroepitaxial morphology based on classical
linear elasticity �71–73� have met with considerable success,
but such approaches cannot easily draw connections to ato-
mistic processes. Although continuum elasticity can be de-
rived from “ball-and-spring” models �74�, and hybrid meth-
ods are capable of determining the mesoscopic consequences
of atomistic interactions �75,76�, a complete understanding
of heteroepitaxial morphological evolution, especially com-
parisons with specific materials systems, must await a more
systematic coarse graining of atomic-scale kinetics in the
presence of strain. Lattice models that subsume nonlocal
elastic effects into local hopping barriers provide a conve-
nient starting point for such efforts.

Our approach has been applied to other models with tran-
sition rules that fulfill the small jump and smoothness con-
ditions in Sec. III, including the random walk with exclusion
�77�, which is a lattice realization of Burgers’ equation, and
ballistic deposition �78�, which belongs to the Kardar-Parisi-
Zhang �KPZ� universality class �4�. Taking a broader view,
epidemiology and population dynamics could also benefit
from our analysis. Indeed, a method similar to that described
here has been applied to population dynamics �79�, albeit
without spatially dependent variables, and Van Kampen’s �
expansion has been applied recently �80� to the susceptible-

FIG. 8. Comparison between surface roughness obtained from
the lattice Langevin equation with the indicated values of � and
KMC simulations for a model with random deposition and surface
diffusion for a system of length L=100. The results have been av-
eraged over 500 independent realizations.

FIG. 9. Relaxation of a sinusoidal profile in the absence of
deposition at 600 K modeled by KMC simulations �solid lines� and
the Langevin equation with �=20 �broken lines� for a system with
L=40 on which periodic boundary conditions are imposed. The
initial profile is indicated by dots in �a�. Profiles are shown at times
�a� 3000, �b� 6000, �c� 9000, �d� 12000, �e� 15000, and �f� 18000. In
each panel, the abscissa is the spatial position �1� i�40� and the
ordinate is the height hi. The energy parameters are the same as
those used in Fig. 8 and each result has been averaged over 50
independent realizations.
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infectious-recovered �SIR� model used in epidemiology.
The wider significance of our method derives from the

Langevin equation providing a starting point for the passage
to the continuum limit. This can be carried out for the
Edwards-Wilkinson model by transforming to coarse-grained
variables based on “naive” scaling �50�, but where such ar-
guments fail, renormalization-group �RG� methods must be
used. The regularized Langevin equation �50,51� takes the
form of a convergent series of successively higher spatial
derivatives whose coefficients provide the initial conditions
for the RG �81�. The trajectory emanating from the initial
point determines any crossover regimes along the path to the
stable fixed point and establishes the basis for identifying the
continuum equations at various length and time scales. Quite
apart from the conceptual impact of this procedure, there are
practical applications. A Langevin equation derived from
first principles can be compared with equations derived from
the statistics of growing surfaces to obtain estimates of fun-
damental parameters �82�. The comparison between the mor-
phological evolution of real systems with predictions of sto-
chastic growth equations remains an active research area
�83,84� and our methodology is poised to contribute to this
effort.

IX. SUMMARY AND CONCLUSIONS

We have derived Langevin equations for fluctuating sur-
faces that embody the statistical properties of KMC simula-
tions. The statistical equivalence of the Langevin equation
and the Chapman-Kolmogorov equation, as required by the
Kurtz theorem �45–47�, has been demonstrated with applica-
tions to several standard models. We have identified the im-
portant implementational issues of our method: the optimal
regularization of the step functions used to characterize the
local environment for a particular model, and the conver-
gence of the Langevin to the KMC solution with increasing
largeness parameter �. The convergence is slowest at the
earliest times for the roughness and the smallest distances for
the correlation function, where atomistic effects are most
evident. But for longer times and larger distances on large
lattices, even calculations with �=1 can provide a reliable
account of the scaling behavior of correlation functions.

The availability of an exact analytic formulation of sto-
chastic lattice models of growth provides a starting point for
coarse-graining Langevin equations for input to RG transfor-
mations. This would provide a first-principles continuum de-
scription of lattice models that would explain several intrigu-
ing observations of KMC simulations �24,26–28� that as yet
have no analytic justification. Finally, in the arena of het-
eroepitaxial phenomena, our method provides an opportunity
to derive continuum equations whose coefficients retain their
atomistic ancestry. This would pave the way towards a sys-
tematic approach to modeling heteroepitaxial growth for spe-
cific materials systems.
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APPENDIX: STEP FUNCTION REGULARIZATION

The step functions in the transition rules that appear in the
Chapman-Kolmogorov equation survive the passage to the
Langevin equation, albeit as regularized functions. However,
the transition rules fix the step function 
�x� in Eq. �13� only
for integer values of x �Fig. 10�a��. The continuation to real
arguments must maintain the transition rules for continuous
heights. This is a stringent condition that depends on the
rules of the model. An inappropriate choice of regularization
can produce results that appear to be at variance with the
Kurtz theorem, but actually result from an inadvertent
change to the model. The simplest regularization of that ful-
fills the requirement of continuity discussed in Sec. III B is


�x;a� =
1

a
�max�x + a,0� − max�x,0�� , �A1�

where 0	a�1 and max�x ,y� is the greater of x and y. The
general form of this regularization is shown in Fig. 10�b�. No

FIG. 10. �a� The step function in Eq. �13�, and �b� the regular-
ization in Eq. �A1�. The function in �b� has the same values for
integer arguments, which are indicated by dots, as the function in
�a� for 0	a�1. The shaded regions show how the abrupt threshold
behavior in �a� is smoothed by the regularization in �b�.

FIG. 11. Local deposition probabilities for the Edwards-
Wilkinson model using �a� 
�x ;1� and �b� 
�x ;0.01�, where 
�x ;a�
is defined in Eq. �A1�. The randomly chosen site is denoted by i and
the deposition probabilities to each site are written at the top of the
corresponding column. Height differences between the central and
nearest-neighbor heights are shown at the sides of each
configuration.
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other regularizations we have constructed has produced su-
perior results to those based on Eq. �A1�.

1. The Edwards-Wilkinson model

The transition rates of the Edwards-Wilkinson model are
based on identifying the minimum height�s� from among a
randomly chosen site and its two nearest neighbors. Expres-
sions for these transition rates are given in Eqs. �52�–�54�.
The rules of this model are extended to continuous variables
by requiring that the height is always minimized, even if the
height differences between neighboring sites are less than
one unit.

Several typical local height configurations and their depo-
sition probabilities obtained by using 
�x ;1� and 
�x ;0.01�
in Eqs. �52�–�54� are shown in Fig. 11. These comparisons
demonstrate the striking effect that different choices of the

regularization have on the morphological evolution of a sur-
face for nominally the same transition rules. We see that,
apart from the configuration where the original site has the
minimum height, 
�x ;1� produces a bias toward greater
heights than 
�x�, which clearly violates the spirit of the
Edwards-Wilkinson rules. Configurations in which the origi-
nal site has the greatest height by less than one unit provide
the most telling difference: 
�x ;1� actually favors this as the
deposition site, again in violation of the Edwards-Wilkinson
criterion. On the basis of these considerations, we expect that

�x ;1� produces a rougher surface than 
�x ;0.01� and, more
importantly, that 
�x ;0.01� provides the more faithful exten-
sion of the Edwards-Wilkinson model to continuous vari-
ables.

Figure 12 compares the roughness calculated from the
Langevin equation by using 
�x ;1� and 
�x� with that ob-
tained from KMC simulations. The regularization with

�x ;1� does indeed lead to a rougher surface than the KMC
solution at all times. The two Langevin solutions yield ap-
proximately the same slope prior to saturation, but then be-
gin to diverge, and show an appreciable difference in their
saturation values. By contrast, the calculation with 
�x�
agrees with the KMC roughness at all times. As this sug-
gests, the Langevin solution with the regularizations 
�x ;a�
using decreasing values of a converges to the KMC solution
as a→0. Thus, the optimal choice is, in fact, no regulariza-
tion at all. Operationally, we can either choose a value of a
small enough to produce agreement with KMC simulations
to some prescribed tolerance, or simply take the limit a→0
after having performed the Kramers–Moyal–van Kampen
expansion.

2. The Wolf-Villain model

The deposition rules of the Wolf-Villain model are based
on identifying the site that maximizes the coordination. The
transition probabilities for several representative configura-
tions have been calculated by using 
�x ;1� and 
�x ;0.01� in

FIG. 12. The roughness in Eq. �44� for the Edwards-Wilkinson
model obtained by solving the Langevin equation with �=50 for a
system of size L=20 using the regularization 
�x ;1� defined in Eq.
�A1� and the original threshold function 
�x� in Eq. �13�. Each data
set was obtained from an average of 1500 realizations.

FIG. 13. Local deposition probabilities for the Wolf-Villain model using �a� 
�x ;1� and �b� 
�x ;0.01�. The randomly chosen site is
denoted by i and the transition probabilities to each site are written at the top of the corresponding column. Height differences between the
central and nearest-neighbor heights are indicated at the sides of each configuration.
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the expressions compiled in Table I. The results are shown in
Fig. 13. An immediate consequence of the height variables
becoming continuous is that the likelihood of nearest neigh-
bors having the same height is essentially zero. Conse-
quently, transitions based on the configurations that rely on
the equality of neighboring heights are effectively preempted
by the sharp threshold function in Eq. �13�. Therefore, for
height differences in the range �0, 1�, the rules of the Wolf-
Villain model must be applied gradually, so we expect that

�x ;1� provides the optimal regularization for this model.

The four configurations in the top row of Fig. 13 illustrate
the main difference between the two regularizations. The site
with the maximum coordination is identified as the deposi-
tion site by 
�x ;0.01�, but 
�x ;1� produces a gradual change
of the most probable deposition site as the height of the
second-nearest neighbor increases, which effectively in-
creases the coordination of the nearest neighbor. For configu-
rations where the initial site has the lowest height, both regu-
larizations are in broad agreement if the height differences
are large enough. The regularization 
�x ;1� again yields ap-
preciable probabilities onto neighboring sites if their coordi-
nation, as measured by neighboring height differences, is
sufficient. This regularization allows deposition onto the ini-
tial site if neighboring sites have nonzero coordination, but
correctly identifies the site with the greatest coordination,
which 
�x ;0.01� does not. In effect, 
�x ;1� smears out small
height differences.

The roughness calculated from the Langevin equation
with both regularizations is compared in Fig. 14 with the
KMC roughness. The regularization 
�x ;0.01� produces a
much greater saturation roughness and a delayed saturation
time than 
�x ;1�, although there is agreement at early times
between all three solutions. For the Wolf-Villain model,
therefore, 
�x ;1� is the more accurate regularization.
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