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An analytical solution to the problem of potential flow inside an evaporating line is obtained. The line is
shaped as a half-cylinder lying on a substrate, and evaporates with either pinned or depinned contact lines. The
solution is provided through the technique of separation of variables in the velocity potential and stream
function formulations. Based on the flow field calculations, it is estimated that the coffee-stain phenomenon
should be expected even for uniform evaporation flux throughout the cylindrical surface, provided that the
contact lines remain anchored. A simple expression for the velocity potential is also suggested, which repro-
duces the local velocity vector with excellent accuracy. The vertically averaged velocity is calculated also for
other contact line values, revealing for any value an outward liquid flow for pinned lines as opposed to inward
flow for depinned lines.
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I. INTRODUCTION

The evaporation of liquid segments with cylindrical ge-
ometry is encountered in a number of practical applications,
including graphic-art drawing and printing, product marking
and coding, substrate patterning in microelectronics, etc. Re-
cently, there has been increasing interest in the fabrication of
high-resolution thin-film transistors, which requires the con-
trolled deposition of source, drain, and gate electrodes with
tailored dimensions, within conveniently selected micro-
channels �1,2�. A key stage in this type of fabrication process
is the evaporation of the solvent following the touch-down,
spreading, and equilibration of the droplet that is ejected
from an ink-jet orifice. It has been observed experimentally
that the characteristic time of the spreading stage is usually
much shorter than that of the evaporation stage, depending of
course on the nature of the solvent and on the size of the
droplet. For modeling purposes, this observation allows the
separate study of the evaporation process from that of
spreading, and justifies the usual assumption of a static drop-
let, shaped as a spherical or cylindrical cap prior to the ini-
tiation of the evaporation �3�, due mainly to the action of the
surface tension.

Several attempts to describe the internal flow during drop-
let evaporation have been reported in the literature and can
be, in general, divided in two main categories. In the first
one, the flow field in the interior of the droplet is determined
through rigorous or approximate analytical solutions,
whereas in the second, only the vertically averaged liquid
velocity is calculated, which nevertheless provides a useful
picture of the mean microflow. In the former case, an ana-
lytical solution was recently provided in �4�, assuming a
hemispherical droplet, potential flow conditions inside the
droplet, and diffusion-controlled evaporation. Thanks to the
use of a contact angle equal to � /2, the evaporation flux is
uniform on the surface of the droplet in both the diffusion

and the kinetic regimes. The results for the local velocity
field inside the droplet contribute significantly to our under-
standing of the so-called coffee-stain effect and can be fur-
ther used to calculate the deposition of colloidal particles
suspended in the droplet, which eventually make up the solid
electrode. Lubrication solutions for the flow field are pos-
sible �5,6�, but their validity is limited to thin droplets only.
In the second case, the vertically averaged velocity is calcu-
lated from a mass balance �3� without any detailed informa-
tion on the local flow field. Nevertheless, the trend of the
colloidal particle rearrangement within the liquid phase can
thus be delineated and studied in terms of the evaporation
mechanism and the mobility of the contact lines.

In the present work, the liquid is arranged as a half-
cylinder lying on a flat substrate with a contact angle �c
=� /2. Evaporation takes place from the surface of the cyl-
inder at uniform flux, which is consistent with both kineti-
cally controlled and diffusion-controlled evaporation pro-
cesses for the particular contact angle. The length of the
cylinder is much larger than the diameter, which justifies the
use of the term liquid line in the rest of the paper. Potential
flow is assumed within the liquid mass under the pinning
assumption, which has been repeatedly verified experimen-
tally for various colloidal suspensions, at least at the initial
stages of the evaporation process. The constant contact angle
mode, combined with moving contact lines, has also been
observed experimentally, most notably during evaporation of
pure solvents �see, for instance, relevant sections in
�3,7–10��. Analytical solutions are obtained here for the
stream function and the velocity potential in the pinned line
case, whereas the trivial solution applies in the depinned
case. Finally, analytical expressions for the vertically aver-
aged velocity are provided for both the pinned and depinned
line cases, which are valid for any value of the contact angle
in �0,� /2�.

II. MODEL DEVELOPMENT AND SOLUTION

Consider a liquid line shaped as a half-cylinder of infinite
length lying on a flat surface. Gravity effects can be safely*Corresponding author; electronic address: vbur@iceht.forth.gr
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neglected for small droplets ��1 mm�, for which the Bond
number is considerably less than 1 �4�. Surface evaporation
is assumed to take place through a uniform evaporation flux
from the cylindrical surface. Such an assumption is valid in
both the kinetic and the diffusion regime for �c=� /2. If the
contact lines are pinned, then considerable liquid flow is ex-
pected to take place inside the line in order to provide the
necessary flow towards the contact lines and to replenish the
mass that is evaporated there. In this way, the line edges
remain wet, as required by the line-anchoring condition.

In typical printing applications, the length of the liquid
lines is much larger than their width and, hence, the problem
can be solved on a cross section only using polar coordi-
nates. For potential flow at steady state, we can write

1

r

�

�r
�r

��

�r
� +

1

r2

�2�

��2 = 0, �1�

where � is the velocity potential, which is connected to the
radial and angular velocity components �see Fig. 1� through
the relations vr=�� /�r and v�= �1/r���� /���. Equation �1�
must be solved for � subject to the following boundary con-
ditions:
axial symmetry

��

��
= 0, at � =

�

2
, �2a�

no flow through the solid surface

��

��
= 0, at � = 0, �2b�

finite solution at the center

� = finite, at r = 0, �2c�

radial liquid velocity at the surface

��

�r
= urs +

J0

�
, �2d�

given in terms of the evaporation flux J0 and of the radial
component of the surface velocity urs, where � is the liquid
density.

If �c is the contact angle and Rb the half-width of the
wetted area, the volume of the liquid per unit length is

VL = Rb
2�c − cos �c sin �c

sin2 �c
. �3�

The total evaporation rate per unit length is given by

− �
dVL

dt
= 2J0

�c

sin �c
Rb. �4�

If h0 stands for the height of the liquid at the center, then

h0 = Rb
1 − cos �c

sin �c
, �5�

and

dh0

dt
= −

J0

�

�c�1 − cos �c�
sin �c − �c cos �c

�6�

for pinned contact lines.
The radial component of the interface velocity is given by

urs =
��h/�t�x

�1 + � �h

�x
�

t

2�1/2 , �7�

where h is the height at position x.
However,

h = �R2 − x2�1/2 − �R − h0� , �8�

where R is the cylinder radius. Following algebraic manipu-
lations, we finally get
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, for �c = �/2 �9�

and

� �h

�x
�

t
= −

x

�R2 − x2�1/2 , for any �c value. �10�

Introduction of expressions �6�, �9�, and �10� into Eq. �7�
gives

urs = −
J0

�

�

2
sin � . �11�

Use of expression �11� in Eq. �2d� yields

��

�r
=

J0

�
�1 −

�

2
sin �� . �12�

The solution to Eq. �1� subject to conditions �2a� and �2b�
is

��r,�� = A0 + B0 ln r + 	
n=1

�

�Anr2n + Bnr−2n�cos 2n� ,

which reduces to

��r,�� = A0 + 	
n=1

�

Anr2n cos 2n� �13�

upon use of condition �2c�. The unknown coefficients An ,n
=1,2 , . . . can be obtained with the help of Eq. �2d�, written in
the form of Eq. �12�, and are given by

FIG. 1. Schematic representation of evaporating line and coor-
dinate system.
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An =
J0

�

R−2n+1

n�4n2 − 1�
, n = 1,2, . . . .

The final expression for the velocity potential, within an ar-
bitrary constant, is

��r,�� =
J0R

�
	
n=1

�
�r/R�2n cos 2n�

n�4n2 − 1�
. �14�

Obviously, once the general solution of Eq. �13� is available,
other types of evaporation mechanisms with J0=J��� can
also be handled. The radial and angular components of the
velocity vector can be calculated at every point from

vr =
2J0

�
	
n=1

�
�r/R�2n−1 cos 2n�

4n2 − 1
�15a�

and

v� = −
2J0

�
	
n=1

�
�r/R�2n−1 sin 2n�

4n2 − 1
. �15b�

In the stream function formulation,

�� = 0. �16�

Using the same set of boundary conditions as above, ad-
justed to the �-formulation, and using the technique of sepa-
ration of variables, one eventually gets

� =
J0R

�
	
n=1

�
�r/R�2n sin 2n�

n�4n2 − 1�
.

This expression reproduces, of course, the same expressions
for vr and v� �15a� and �15b� as those obtained in the veloc-
ity potential formulation.

III. RESULTS AND DISCUSSION

The flow field in terms of the local velocity vector is
shown in Fig. 2. Note that the internal flow is directed from
the center to the edges of the line, thus promoting a ring-like
deposit for colloidal dispersions. This flow configuration de-
velops despite the evaporation flux uniformity on the liquid
surface and is caused by the line anchoring condition. Notice
that the liquid velocity is proportional to the magnitude of
the local evaporation flux �J0�, which implies that the coffee-
stain phenomenon becomes more pronounced with increas-
ing volatility of the solvent. The sign of the radial velocity
changes at �=sin−1�2/��
2� /9, whereas the corresponding
angle in the spherical geometry is � /6, based on the work in
�4�. Needless to say, the full description of the problem dy-
namics requires the solution of the same problem at an arbi-
trary contact angle followed by monitoring particle trajecto-
ries in the interior of the evaporating line to their eventual
deposit on the surface.

It is noteworthy that the first few terms of the solution
expansion shown in Eq. �14� provide a very good approxi-
mation to the full solution for practically any position inside
the line. In fact, numerical calculations reveal that the simple
expression �truncation at n=2�

��r,�� 

J0R

�
� r2 cos 2�

3R2 +
r4 cos 4�

30R4 � �17�

reproduces the actual velocity with 99% accuracy, except at
positions very close to the surface, where a few more terms
are needed to achieve the same level of accuracy �see Fig. 3�.
This facilitates considerably the flow field calculations in the
vast majority of the liquid volume.

In the case of pure solvents, it is reasonable to expect that
�c remains constant during evaporation and the contact lines
are allowed to slip on the surface. In this case, the interface
velocity is everywhere the same and equal to dR /dt. But a
simple mass balance at the surface yields dR /dt=−J0 /�.
Consequently, the radial component of the liquid velocity
vanishes at the surface and Eqs. �1� and �16� have only the

FIG. 2. Vector representation of the internal flow field in an
evaporating cylindrical line.

FIG. 3. Comparison of the use of the full �solid lines� and ap-
proximate �dashed lines� solution, as given by Eqs. �14� and �17�,
respectively, for the calculation of the dimensionless local velocity
magnitude at two different angular positions.
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trivial solution �no flow inside the liquid mass�. However,
this is only the case of uniform evaporation flux on the sur-
face with depinned contact lines. Under different conditions,
including those related to stronger or weaker wettabilities
than the one considered here, finite flow is expected to de-
velop inside the liquid line.

A practical quantity that provides a good measure of the
inward or outward flow trend is the vertically averaged liquid
velocity. It can be calculated from

�vx� =
1

h


0

h

vxdy , �18�

where vx=vr cos �−v� sin � is the x-component of the liquid
velocity in the Cartesian coordinate system. Alternatively,
one can calculate this velocity directly from the mass balance
around a vertical liquid column of width 	x and height h �see
�3,11� for a similar analysis in spherical droplets�

�� �h

�t
�
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= − �� ��vx�h
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�
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,

which yields

�vx� = −
1

�h


0

x ��� �h

�t
�

x
+ J0�1 + � �h

�x
�2�1/2�dx . �19�

Introduction of Eqs. �9� and �10� into Eq. �19� leads eventu-
ally to

�vx� =
J0

�

�

2
x̄ − sin−1�x̄�

�1 − x̄2�1/2 , �20�

where x̄=x /Rb. In the general case of �c�� /2, one can
show following algebraic manipulations that

�vx� =
J0

�h̄

1

��c cos �c − sin �c�
�sin−1�x̄ sin �c� − x̄�c� ,

and

�vx� =
J0

�h̄

cos �c

��c − sin �c cos �c�
�sin−1�x̄ sin �c� − x̄�c� ,

in the pinned and depinned line cases, respectively, where

h̄=h /Rb. Figure 4 shows the variation of the vertically aver-
aged liquid velocity with the dimensionless distance from the
center for various values of the contact angle and for both
types of contact line conditions. Outward flow is obtained for
any contact angle value in the pinned line case, whereas
inward flow is obtained in the depinned line case. This is a
very interesting result as it reveals that, under potential flow
conditions, the coffee-stain effect is always to be expected
for intermediate and low wettability substrates, provided that
the contact lines remain pinned. On the contrary, concentra-
tion of the deposit around the line center is expected for
moving contact lines, for low and intermediate substrate wet-
tability.
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FIG. 4. Dimensionless vertically averaged velocity vs dimen-
sionless radial distance on the substrate for pinned �solid curves�
and depinned �dotted curves� contact lines. Variation with the con-
tact angle value.
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