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The effects of payoffs and noise on the maintenance of cooperative behavior are studied in an evolutionary
prisoner’s dilemma game with players located on the sites of different two-dimensional lattices. This system
exhibits a phase transition from a mixed state of cooperators and defectors to a homogeneous one where only
the defectors remain alive. Using Monte Carlo simulations and the generalized mean-field approximations we
have determined the phase boundaries �critical points� separating the two phases on the plane of the tempera-
ture �noise� and temptation to choose defection. In the zero temperature limit the cooperation can be sustained
only for those connectivity structures where three-site clique percolation occurs.
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In the original �two-player and one-shot� prisoner’s di-
lemma �PD� game �1,2� the players should simultaneously
choose between two options, called defection and coopera-
tion. The selfish players wish to maximize their own income
in the knowledge of payoffs dependent on their choices. The
curiosity of the PD game is hidden in the fact that the choice
of defection yields higher income independently of the part-
ner’s choice. However, if both players choose defection then
their individual income is lower than those obtained for mu-
tual cooperation when the maximum total payoff is shared
equally. The rational �intelligent� players cannot resolve this
dilemma and both of them choose defection �this is the so-
called Nash equilibrium in the PD game�. At the same time
we find many examples in the nature where mutual coopera-
tion �altruism, ethical norms, etc.� emerges spontaneously
among the selfish individuals �3�. In the last decades several
mechanisms �e.g., kin selection �4�, application of retaliation
strategies �5�, and voluntary participation �6�� are reported
that enforce the appearance of cooperation in the societies.

The spatial versions �7,8� of the evolutionary PD games
can explain the maintenance of cooperation for the iterated
games with a limited range of interaction if the players fol-
low one of the two simplest strategies. For the two simplest
strategies, denoted shortly as D and C, the player chose al-
ways defection and cooperation, respectively. In the evolu-
tionary games the players wish to maximize their total pay-
off, coming from PD games with the neighbors, by adopting
one of the more successful strategies available in their neigh-
borhood. This type of dynamics describes the behavior of the
ecological systems controlled by the Darwinian selection
�9,10�.

Following the work of Nowak et al. �7,8� the two-strategy
spatial evolutionary PD games have been studied by several
authors using different evolutionary rules on a large class of
backgrounds including social networks �11–14� �for a survey
of lattice models see the papers �15–17� and further refer-
ences therein�. In the present paper our attention is focused
on the effect of noise built into the dynamical rule. It is
turned out that the effect of noise on the stationary concen-
tration of cooperators depends strongly on the topological
features of the neighborhood and the measure of cooperation
can be enhanced by increasing the noise in some cases.

For this purpose we consider an evolutionary PD game
with players located on the sites x of a two-dimensional lat-
tice. The players follow one of the above-mentioned two
strategies whose distribution is described by a two-state Potts
model, i.e., sx=C or D, where for later convenience the states
are denoted by the two-dimensional unit vectors,

D = �1

0
� and C = �0

1
� . �1�

In this notation the total income of player x can be expressed
as

Ux = �
�

sx
+A · sx+�, �2�

where sx
+ denotes the transpose of the state vector sx, the

summation runs over those four neighbors who the player x
plays PD game with. Following Nowak et al. �7� the rescaled
payoff matrix is given as

A = �0 b

c 1
�, 1 � b � 2 − c, c � 0. �3�

The evolutionary process is governed by random sequential
strategy adoptions, that is, the randomly chosen player x
adopts one of the �randomly chosen� neighboring strategy �at
site y� with a probability depending on the payoff difference

W�sx ← sy� =
1

1 + exp��Ux − Uy�/K�
, �4�

where K is the measure of stochastic uncertainties �noise�
allowing the irrational choices �18,19�.

Our analysis will be restricted to two-dimensional lattices
where the topologically equivalent sites have four neighbors
�self-interaction is excluded� as indicated by the edges in
Fig. 1. By this way we can avoid the undesired effects due to
the variation of the number of coplayers �7,8,20,21�.

The investigated connectivity structures in Fig. 1 are the
square �1� and Kagome �3� lattices, and a square lattice of
four-site cliques �2�. The latter structure consists of four-site
cliques �within a clique the nodes are linked to each other�
whose sites are connected only to one external site belonging
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to the nearest clique. These structures can be distinguished
topologically by considering the connectivity between the
triangles �three-site cliques�. In fact, the square lattice is free
of triangles, that is, its clustering coefficient C=0. On the
contrary, C=1/2 and C=1/3 for the structures 2 and 3. On
the Kagome lattice percolation of overlapping triangles takes
place whereas the overlapping triangles form isolated four-
site cliques on the structure 2. In order to investigate the
relevance of the mentioned topological features first we
show the prediction of the classical mean-field theory where
the state is characterized by the concentration � of coopera-
tors. In this case the average payoff for the C and D strate-
gies are

UC = z�� + �1 − ��c� and UD = z�b . �5�

The present dynamical rule, represented by the adoption
probability �2�, yields the following equation of motion for
the concentration of cooperators:

��

�t
= ��1 − ���W�D ← C� − W�C ← D��,

= − ��1 − ��tanh�UD − UC

2K
� . �6�

According to this differential equation � tends to zero for
arbitrary value of K as UD�UC. Shortly, the cooperators
become extinct in those systems satisfying the conditions of
mean-field approximation, e.g., if the temporal coplayers are
chosen randomly or in a system where all the possible pairs
play a game with each other �infinite range of interaction�.

In the one-dimensional system the cooperators also die
out �22� because for a confronting cooperator-defector pair
the maximum cooperator’s payoff �1+c� is always less than
the minimum defector’s payoff �b�.

For higher dimensions, however, the cooperator can re-
ceive support from more than one neighboring cooperators
and its total income can exceed the neighboring defector’s
income. For such a connectivity structure the cooperation
can be sustained within a region of b �and c� dependent on
the value of noise �K�. This paper is addressed to quantify
the regions of the b-K parameter plain where cooperation can
emerge. For sake of simplicity, our analysis will be restricted
to the limit c→−0, which is suggested by Nowak et al. in
their pioneering work �7�.

Figure 2 shows the concentration of cooperators on the
square lattice when increasing b for three different values of
K. These data are obtained by Monte Carlo �MC� simulations
performed on a block of L�L sites under periodic boundary

conditions. The linear size is varied from L=400 to L
=2000. The larger sizes are used in the close vicinity of the
extinction of cooperators because this critical transition be-
longs to the “directed percolation” �DP� universality class
�22–24�.

In the stationary state the concentration of cooperators is
independent of the initial state and decreases monotonously
if b is increased. Above a threshold value �b�bcr�, however,
the C strategies always die out and the system remains in the
homogeneous D state forever. The value of bcr is determined
for many different values of K and the results of the system-
atic MC simulations are summarized in Fig. 3. Notice that
bcr reaches its maximum value at about K=0.32 and bcr�K�
tends to 1 if K goes to either 0 or �. Henceforth this plot is
considered as a phase diagram because the cooperators can
survive only below the bcr�K� curve indicated by the solid
line connecting the MC data in Fig. 3.

This phase diagram differs significantly from those pre-
dicted by the above mentioned mean-field approximation

FIG. 1. Three two-dimensional lattice structures on which an
evolutionary prisoner’s dilemma game is studied.

FIG. 2. Monte Carlo results for the concentration of cooperators
vs b for three different temperatures: K=0.1 �pluses�, 0.4 �squares�,
and 1.2 �diamonds� on the square lattice.

FIG. 3. Critical value of b as a function of temperature on the
square lattice. Symbols come from Monte Carlo simulations, the
dashed, dotted, and dashed-dotted lines represent the prediction of
generalized mean-field approximation for 2-, 2�2-, and 3�3-site
clusters.
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�bcr
�mf��K�=1�. More adequate theoretical results are expected

when using the pair approximation detailed in �17�. This ap-
proach is able to describe the coexistence of the C and D
strategies; however, the value of bcr is significantly overesti-
mated as shown by the dashed line �in Fig. 3�, which goes to
2 in the limit K→0. This serious shortage can be reduced by
using the more sophisticated extensions of this technique
when all possible configuration probabilities are determined
on larger clusters. The generalization is straightforward from
two-site clusters �pair approximation� to larger blocks �the
essence of this method is briefly described in �25,26��. Ne-
glecting the technical details now we report only the results
of this calculation for the levels of 2�2- and 3�3-site clus-
ters. In both cases the calculations reproduce the main quali-
tative features �see Fig. 3�, that is, bcr�K� has a maximum at
a finite K and bcr=1 in the limits K→0 and �.

This behavior indicates the existence of a noise level pro-
viding the highest measure of cooperation at a fixed b for a
square lattice connectivity structure. This means furthermore
that one can observe two subsequent phase transitions �both
belong to the DP universality class� if K is increased from
zero for a fixed value of temptation b�max �bcr�.

On structure 2 the results of MC simulations are very
similar to those found on the square lattice �the differences
are comparable to the symbol size� as shown in Fig. 4. In
contrast to the square lattice, the four-site approximation
overestimates the results of MC simulations obtained on
structure 2. At the same time the prediction of the eight-site
approximation fits very well to the MC data for low noises
�K�0.3�. It is suspected that the prediction of an eight-site
approximation can be realized on such nonspatial structures
where four-site cliques are substituted for the nodes of a
random regular graph �or Bethe lattice� with a degree of 4.

Qualitatively different behavior is observed on the
Kagome lattice as illustrated in Fig. 5. The most striking
feature is that here the critical value of b decreases monoto-

nously if K is increased and bcr�K=0�=3/2 in agreement
with the prediction of the three- and five-site approximations.

In order to deduce a general picture about the relevant
topological features supporting the maintenance of coopera-
tion in the low noise limit �for the suggested dynamics� we
have begun to study several other connectivity structures.
According to the preliminary results the latest phase diagram
�see Fig. 5� is reproduced qualitatively on the square lattice
with first- and second-neighbor interactions �z=8�, on the
triangular lattice �z=6�, and on the body centered cubic lat-
tice �z=8�. In agreement with our expectation, the prediction
of the five-site approximation �shown in Fig. 5� is repro-
duced very well by the MC results obtained on the random
regular structure �z=4� constructed from one-site overlap-
ping triangles. For all these structures the overlapping tri-
angles �three-site cliques� span the whole system. It would
be interesting to check the emergence of cooperation �in the
K→0 limit� on other networks where clique percolation
takes place �27,28�. We have to emphasize, however, that the
cooperation is not favored within the large cliques according
to the mean-field arguments mentioned above. This might be
another reason why the cooperation vanishes on the structure
2 in the K→0 limit. In agreement with the above conjecture
the cooperators die out for vanishing K on the cubic �z=6�
and honeycomb �z=3� lattices. Besides it, the one-
dimensional lattice with first- and second-neighbor interac-
tions �z=4� represents an exception �because it inherits the
one-dimensional features on large scales� exhibiting a sharp
transition between the homogeneous states �from C to D if b
is increased for a fixed K�.

In summary, we have studied systematically the effect of
noise K �allowing irrational strategy adoptions� and tempta-
tion b to choose defection on the measure of cooperation in
an evolutionary prisoner’s dilemma game for such two-
dimensional lattice structures where the number of neighbors
is fixed, z=4. For the investigated dynamical rule two basi-
cally different behaviors can be distinguished when varying
the connectivity structures. In the first case the cooperators

FIG. 4. Critical value of b vs K on the structure 2 illustrated in
Fig. 1. Symbols denote the MC data. The dotted and dashed lines
illustrate the prediction of the generalized mean-field approxima-
tions for the four- and eight-site clusters shown at the top.

FIG. 5. MC data �symbols� for bcr as a function of K on the
Kagome lattice. The dotted and dashed lines illustrate the results of
the three- and five-site approximations on the clusters shown at the
top.
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die out in the zero noise limit and the maintenance of coop-
eration can be optimized by choosing a suitable level of
noise for any fixed value of temptation if b�max�bcr�. In the
second case the highest measure of cooperation occurs for
the lowest temptation �b=1� and noise K=0 and the critical
value of b decreases if K is increased. It is conjectured that
the second behavior occurs for all the d-dimensional, d	2,
or nonspatial �e.g., Bethe lattice or random regular graphs�
connectivity structures where the overlapping triangles span
the whole system. This indicates that the percolation of the
overlapping triangle in the connectivity structure can provide
the optimum topological condition for the maintenance of

cooperation in the situations of multiagent prisoner’s di-
lemma.

In the last years several algorithms were introduced to
create a large class of networks �29,30� and very recently the
games are also suggested to control the evolution of a net-
work �31–33�. The above results raise the chance that similar
evolutionary PD games �in the zero noise limit� can be uti-
lized to control the creation of networks of percolating tri-
angles.

This work was supported by the Hungarian National Re-
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