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The onset of nonlinear flow was analyzed in three-dimensional random, porous granular systems with 60%
porosity using a lattice-Boltzmann model. Quantitative analysis was based on participation numbers built on
local kinetic energies and energy dissipation rates computed via nonequilibrium kinetic �viscous stress� tensors.
In contrast to the kinetic energy participation number, which characterizes the onset of nonlinearity in terms of
a transition from a locally concentrated to a dispersed distribution of kinetic energy densities, the nonequilib-
rium kinetic tensor participation number characterizes the onset of nonlinearity in terms of a transition from a
dispersed to a locally concentrated distribution of energy dissipation densities as the flow rate increases. The
transition characterized by the nonequilibrium kinetic tensor participation number occurred over a nearly equal
or a narrower range of Reynolds numbers when compared to the transition characterized by the kinetic energy
participation number.
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In a wide range of natural and experimental systems, the
single-phase flow of fluids through porous media can be ac-
curately described by the Darcy relationship between the av-
erage fluid flow velocity u and the hydraulic potential gradi-
ent, ��P−�g�, where P is the fluid pressure, � is the fluid
density, and g is the gravitational acceleration. The Darcy
equation has been used extensively to simulate groundwater
flow �1� and fluid flow in oil reservoirs during oil recovery
�2�. In these applications, the fluid velocities are small and
the Darcy equation provides accurate predictions throughout
most of the flow domain. However, in the vicinity of high-
rate production and injection wells, the Darcy equation may
become inaccurate �3�.

The Darcy relationship is accurate only if the ratio be-
tween inertial forces and viscous forces �the Reynolds num-
ber� is sufficiently small. In a heterogeneous porous medium,
the flow is concentrated onto preferred pathways, which pass
through high permeability regions determined by the spatial
distribution of permeability associated with the pore mor-
phology. Because of the nonuniform spatial distribution
of fluid flow velocities, the deviations from linear flow be-
havior are also nonuniform, and nonlinear effects appear in
some regions before others, if the mean flow velocity is in-
creased monotonically from a small value. The Forchheimer
equation,

− ��P − �g� =
�

k
u + �u�u� , �1�

where � is the dynamic viscosity of the fluid, � is the non-
Darcy flow coefficient, and k is the permeability of the po-

rous medium, has been proposed �among other equations� to
represent non-Darcy effects in high-velocity flow through
granular porous media �3–7�. In Eq. �1�, the first term on the
right-hand side represents the contribution of viscous forces
to the hydraulic potential gradient and the second term rep-
resents the effects of inertial forces. At low velocities, Eq. �1�
reduces to Darcy’s law. At high velocities in a homogeneous
porous medium and in high-velocity zones in a heteroge-
neous porous medium, inertial effects compete with viscous
effects, and deviations from Darcy’s law can be expected.
Based on numerical simulation results, the Forschheimer
equation was reported to better characterize deviations from
the Darcy equation due to inertial effects in homogeneous
three-dimensional �3D� porous media than in homogeneous
two-dimensional �2D� porous media �8�. Microscopic iner-
tial, viscous, and drag forces have been studied to evaluate
the mechanisms leading to nonlinear macroscopic effects in
high flow velocity zones in heterogeneous porous media.
Through an order of magnitude analysis, increased micro-
scopic viscous forces ���2u� at pore walls �drag forces�
were reported to be the leading mechanism responsible for
the onset of nonlinearity �9�, but the authors also proposed
that both microscopic inertial ��u ·�u� and viscous effects
could be important, particularly for high Reynolds number
flows through coarse-grained porous media. For a homoge-
neous and ordered flow domain with periodic boundaries, the
nonlinearity was attributed to pressure and viscous drag
forces at the solid-fluid interfaces �8�. In other studies, the
nonlinearity was related to microscopic inertial forces
�6,10,11�. These results revealed that local characteristics of
the pore geometry �size, shape, and connectivity� determine
the balance between microscale viscous, inertial, and drag
forces. Hence, the relative magnitudes of the momentum
transfer mechanisms could vary from one region to another
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in the tortuous flow domain in heterogeneous and disordered
porous systems.

The mean values of the microscopic forces computed at
different Reynolds numbers �Re= �u�l /�, where �u� is the av-
erage velocity of the fluid in the pore throat, l is the throat
diameter, and � is the kinematic viscosity� have been used to
study nonlinear effects in high-velocity flow regimes �5�. An
alternative approach is to determine participation numbers,
which characterize the uniformity of the flow through the
porous medium. The transition of an incompressible, single-
phase, athermal, Newtonian fluid from linear to nonlinear
flow through a high-porosity �90%� 2D disordered porous
media was quantified through a participation number based
on the distribution of the local kinetic energy density �6�, �,

� � �n�
i=1

n

qi
2	−1

, �2�

where n is the total number of grid nodes. qi accounts for the
contribution of the local kinetic energy at lattice node i to the
total kinetic energy of the system, and it is given by qi
=�i /� j=1

n � j, where �i=uxi
2 +uyi

2 +uzi
2 , and uxi, uyi, and uzi are

the Cartesian components of the flow velocity u. For uniform
flow, qi
1/n for all i, and �
1. In the limit in which the
flow is concentrated onto a single node q would have a value
of unity for that node and zero for the other nodes, so that �
would have a value of 1 /n. In general, 1 /n���1, and �
characterizes the nonuniformity of the flow. The local kinetic
energy based participation number captures the effects of
inertial forces near the onset of nonlinearity in flows across
2D systems �6�. Although, the local kinetic energy was used
as a statistical indicator, the pressure field and viscous stress
also varied spatially. Hence, alternative participation num-
bers, based on these observables can be constructed to char-
acterize the onset of nonlinear effects. In homogeneous and
ordered porous media, the contribution of drag forces at
solid-fluid interfaces relative to the contribution of viscous
forces was found to be larger for 3D systems than for 2D
systems with the same porosity �8�.

The main objective of this article is to explore statistical
indicators of deviations from Darcian flow in 3D disordered
porous media. Participation numbers based on momentum
energy dissipation rates computed through nonequilibrium
kinetic tensors were used in this work in addition to previ-
ously proposed participation numbers based on local kinetic
energy densities to analyze the onset of nonlinear effects as
the flow rate is increased. A 3D lattice-Boltzmann �LB�
model was used to simulate gravity-driven flow in synthetic
porous media. LB models are based on local particle velocity
distributions that define the populations of fluid particles
moving from each node of a regular lattice toward a discrete
set of neighboring nodes �12�. The discretized Lattice-
Boltzmann equation with a single relaxation time
�Bhatnagar-Gross-Krook� model �13� can be written as

fk�x + ek	t,t + 	t� − fk�x,t� =
�fk

eq�x,t� − fk�x,t��



, �3�

where fk is the population density along the velocity vector
ek, fk

eq is the equilibrium Maxwell-Boltzmann distribution

function, 
 is the relaxation parameter, x is the position of a
lattice node, and 	t is the time increment. A 3D 19-velocity
�D3Q19� model was used in this study. The discrete velocity
vector basis for the D3Q19 model consists of the null vector,
six vectors of length unity directed toward the nearest neigh-
bor nodes, and twelve vectors of length �2 directed toward
the next-nearest neighbor nodes. The equilibrium Maxwell-
Boltzmann distribution is approximated by the low-Mach
number mass and momentum conserving expansion �14�

fk
eq = wk��1 +

ek�u�

cs
2 +

Qk��u�u�

2cs
4 	 , �4�

where wk is the weight coefficient for the kth vector �1/3 for
the null vector, 1 /18 for the nearest neighbor vectors, and
1/36 for the next-nearest neighbor vectors�. Qk��=ek�ek�

−cs
2��� is the projector along the kth direction, where ��� is

the Kronecker delta that takes a value of 1 when �=�, and 0
otherwise �� ,�= �x ,y ,z
�. The local macroscopic density
and velocity at a lattice site can be computed from the dis-
tribution functions at that site as �=�k=0

18 fk and �u
=�k=0

18 fkek. With the equilibrium distribution in Eq. �4�, the
Navier-Stokes equations can be recovered through the
Chapman-Enskog expansion, which shows that the kinematic
viscosity of the fluid is �=cs

2�
−1/2�, and the sound velocity
is cs=1/ �3. In the low-Mach number limit, the LB model
simulates nearly incompressible fluid dynamics. A second
order-accurate half-way bounce-back scheme �12,15� was
used to simulate no-slip boundary condition at the surfaces
of the spherical grains in the granular porous media. Periodic
boundary conditions were imposed at the surface of the com-
putational domain. Participation numbers based on the mo-
mentum flux tensor are proposed as an alternative to partici-
pation numbers based on the local kinetic energy. The
population distribution function f can be split into local equi-
librium and nonequilibrium components, f = feq+ fneq, with
the assumption that fneq�O�
�feq, where 
 is the Knudsen
number. The equilibrium part of the velocity distribution is
associated with the nondissipative component of the momen-
tum flux tensor �eq, and the nonequilibrium part of the ve-
locity distribution is associated with the viscous �dissipative�
component of the momentum flux tensor �neq �12,15,16�,

���
eq �� mu�u�feqdu, ���

neq �� mu�u�fneqdu . �5�

From the momentum conservation equations, � ·�eq

�u ·�u+�P and � ·�neq�� ·�, where � is the shear stress
tensor. Fluctuations in the flow field are damped by the vis-
cous dissipation, particularly when the inertial forces are
smaller than or comparable to viscous forces �at low Re�.
The kinetic nonequilibrium tensor S�� can be expressed in
terms of fneq �Eq. �6�� or local gradients of macroscopic ve-
locities �Eq. �7��,

S�� �
1

2cs
2


�
k

fk
neqQk��, �6�
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S�� � ���� =
�

2
���u� + ��u�� , �7�

where ��� is the symmetric strain tensor. In the above equa-
tions, the effects of local variations in the morphology of the
granular porous media on the flow regime are captured
through the spatial distribution of the energy dissipation den-
sity field determined via the nonequlibrium population dis-
tributions and local velocity gradients. These two definitions
of the nonequilibrium kinetic tensors must converge in the
limit of small 
 �i.e., small variations of the velocity field on
the scale of the molecular mean-free path�. An upwind
scheme �17� was employed to approximate the velocity gra-
dients in Eq. �7�. Once the momentum flux density tensor
had been computed using these two approaches, the Frobe-
nius norm of the momentum flux, �S�= �����S��

2 �1/2, was
calculated at each lattice node. The norm of the momentum
flux tensor at a lattice node is a measure of the local energy
dissipation, and the corresponding participation number �n
can be computed directly from Eq. �1� by replacing �i with
�S�i.

The kinetic energy and nonequilibrium kinetic tensor par-
ticipation numbers can be measured if the magnitude and the
direction of pore-scale velocities can be mapped experimen-
tally. Microparticle image velocimetry �MICROPIV� with re-
fractive index matching has been recently developed �18� to
experimentally determine pore-scale velocities in quasi-2D
porous systems with equal-size pore bodies. In the context of
future work, the authors discussed the potential uses of MI-
CROPIV to measure local pore velocities for single-phase
flows in more complex and realistic 3D pore geometries.
Once this has been accomplished, the participation numbers
discussed herein could be measured experimentally.

The model porous media were generated by randomly in-
serting spheres with radii r, randomly selected from a trun-
cated Gaussian distribution �r had a mean of 12.0, a width of
6.0, and it was truncated to the range 6�r�24� into a rect-
angular domain of size 128�128�128 �all in lattice units�
with periodic boundary conditions. The centers of the
spheres were given random integer coordinates, and the
spheres were allowed to overlap. The addition process was
continued until the volume fraction of the domain occupied
by the spheres reached or exceeded a target value of
�T=0.6.

The 3D LB simulations were performed on four different
realizations of the 60% porosity pore space model, represent-
ing unconsolidated porous domains. All simulations were
continued up to 3000 time steps, which was sufficient to
ensure that deviations from the steady-state flow regime were
negligible ��0.1% �. The spatial distribution of the solid
grains and cross sections at the center of the flow domain
with 60% porosity, used in the first realization, is shown in
Fig. 1. Fluid flow was driven by a uniform gravitational field,
and the Reynolds number was tuned by changing the gravi-
tational acceleration, g acting in the x direction only �Fig. 1�.
The Reynolds number, defined in terms of geometric mean
of the grain diameters, was varied over the range 0.04–16.7,
which was broad enough to investigate the flow transitions.

The participation number based on local kinetic energies

� increased with Re �Fig. 2�, in agreement with the findings
reported in Ref. �6�. As Re increased, the flow became less
localized �more uniform� with increasing contributions from
a larger number of grid nodes to the total global kinetic en-
ergy. Although the kinetic energy participation numbers for
realizations 1 and 2 provided a relatively narrower transition
from linear to nonlinear flow, the transitions for realizations
3 and 4 were broader, and the critical Reynolds numbers, at
which a transition to nonlinear flow occurred, displayed a
wider range. On the other hand, Fig. 3 reveals that the energy
dissipation �resulting from local spatial variations in macro-
scopic velocities� became less uniform at the onset of non-
linear effects. The spatial distribution of kinetic energy and
energy dissipation measures exhibited �Fig. 4� geometric an-
isotropy �i.e., directional dependency of the correlations�,
with positive correlations in the y �relatively strong� and z

FIG. 1. A disordered 3D flow domain �a� with cross sections at
the center along x, y, and z coordinates �b�–�d�. White regions are
occupied by soil grains and black regions are the flow zones in
�b�–�d�.

FIG. 2. Participation numbers based on local kinetic energies.
Right axis is reserved for realization 3.
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�relatively weak� directions, perpendicular to the direction of
the gravitational filed. The spatial variance was computed
through the spatial covariance, C�h���hY�x+h�Y�x� / �n
−1�. Here, Y�x� is the standard normal form of the energy or
energy dissipation measure obtained by subtracting the
sample mean from each measure and dividing by the sample
standard deviation, and n is the number of data points. The
variogram analyses consistently revealed shorter scale spatial
correlations �more localized behavior� for the energy dissi-
pation measures than the energy measures, particularly in the
direction of g, for all realizations. Although these measures
convey different information on the flow characteristics �lo-
cal velocities vs spatial variations in local velocities�, both
characterize the onset of nonlinear effects as the Reynolds
number increases. When compared to flow transitions char-
acterized by the kinetic energy participation number, the
nonequilibrium kinetic tensor participation number resulted
in nearly equal or narrower flow transitions for all realiza-
tions �Fig. 3�. �n’s based on Eq. �6� and Eq. �7� produced
similar trends for all realizations with up to 1–1.5% differ-
ences at low flow rates and 3–4% differences at high flow
rates.

To calculate the critical Reynolds number, the participa-
tion number curves were fitted by cubic splines �17� and an
increase of 0.5% with respect to the first sampling point was
used as an indicator of the onset of the flow transition. The

critical Reynolds numbers obtained from the kinetic energy
participation number � were 1.31, 1.79, 0.96, and 0.80,
while the critical Reynolds numbers obtained from the en-
ergy dissipation participation numbers �n were 1.03, 1.79,
1.67, and 1.72. The energy dissipation participation numbers
�n provided nearly equal or narrower transitions for the four
flow fields and yielded 72–116% higher critical Reynolds
numbers for the third and fourth realizations than the kinetic
energy participation numbers. In summary, the present 3D
analysis shows that different statistical indicators provide
complementary characterization of flow transitions in porous
media. We propose that participation numbers based on en-
ergy dissipation �19�, i.e., nonequilibrium kinetic tensor, pro-
vide a useful indicator �in addition to the kinetic energy par-
ticipation number� for the quantitative assessment of flow
transitions in heterogeneous porous media �Fig. 2 and
Fig. 3�.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of En-
ergy Environmental Management Science Program under
Contract No. DE-AC07-05ID14517 at the Idaho National
Laboratory.

�1� M. A. Robinson and W. G. Reay, Ground Water 40, 123
�2002�.

�2� T. Ahmed, Reservoir Engineering Handbook �Elsevier, Lon-
don, 2001�.

�3� J. Bear, Dynamics of Fluids in Porous Media �American
Elsevier, New York, 1972�.

�4� E. V. Evans and R. D. Evans, JPT, J. Pet. Technol. 40, 1343
�1988�.

�5� H. Ma and D. W. Ruth, Transp. Porous Media 13, 139 �1993�.
�6� J. S. Andrade, Jr., U. M. S. Costa, M. P. Almeida, H. A.

Makse, and H. E. Stanley, Phys. Rev. Lett. 82, 5249 �1999�.

�7� Y.-S. Wu, Transp. Porous Media 49, 209 �2002�.
�8� M. Fourar, G. Radilla, R. Lenormand, and C. Moyne, Adv.

Water Resour. 27, 669 �2004�.
�9� S. J. Hassanizadeh and W. G. Gray, Transp. Porous Media 2,

521 �1987�.
�10� A. Z. Barak, Transp. Porous Media 2, 533 �1987�.
�11� V. D. Cvetkovic, Transp. Porous Media 1, 63 �1986�.
�12� S. Succi, The Lattice-Bolzmann Equation �Oxford University

Press, New York, 2001�.
�13� P. L. Bhatnagar, E. P. Gross, and M. A. Krook, Phys. Rev. 94,

511 �1954�.

FIG. 3. Participation numbers based on nonequilibrium kinetic
tensors. Right axis is reserved for realization 3.

FIG. 4. Semivariograms � in different spatial coordinates for
realization 4 �similar behavior was also observed for the other re-
alizations�. ��h�=C�0�−C�h� �20�, in which h is the distance vector
and C is the covariance. ��h�=0 represents the perfect correlation,
and ��h�=1 indicates no correlation.

BAȘAĞAOĞLU, MEAKIN, AND SUCCI PHYSICAL REVIEW E 72, 046705 �2005�

046705-4



�14� Y. H. Qian, D. D’Humieres, and P. Lallemand, Europhys. Lett.
17, 479 �1992�.

�15� A. J. C. Ladd, J. Fluid Mech. 271, 285 �1994�.
�16� R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145

�1992�.
�17� J. H. Ferziger, Numerical Methods for Engineering Applica-

tions �Wiley-Interscience, New York, 1998�.

�18� B. Zerai, B. Z. Saylor, J. R. Kadambi, M. J. Oliver, A. R.
Mazaheri, G. Ahmadi, G. S. Bromhal, and D. H. Smith,
Transp. Porous Media 60, 159 �2005�.

�19� M. Pilotti, S. Succi, and G. Menduni, Europhys. Lett. 60, 72
�2002�.

�20� E. Gringarten and C. V. Deutsch, Math. Geol. 33, 507 �2001�.

ENERGY DISSIPATION MEASURES IN THREE-… PHYSICAL REVIEW E 72, 046705 �2005�

046705-5


