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We introduce quantitative measures for the description of the electric and magnetic coherence in a stationary,
random electromagnetic field at two points, in a volume, and in the Fourier space. These quantities are applied
to free electromagnetic fields, and several theorems regarding the relationship between the two types of
coherences in such fields are established. Fields which are statistically homogeneous, and those which, in
addition, are statistically isotropic are considered separately. Furthermore, the connection between the electric
and magnetic coherence is exemplified for some specific statistically homogeneous fields.
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I. INTRODUCTION

The principles and tools of the optical coherence theory
are traditionally formulated within the scalar framework �1�.
This significantly limits their usability, since today’s physical
and engineering problems in optics often necessitate a fully
electromagnetic treatment. Although some basic concepts of
the electromagnetic coherence theory have been introduced,
such as the coherence tensors both in the space-time and
space-frequency domains, the wave equations that govern
their propagation �1�, as well as the coherence-polarization
matrices for nonuniform beams �2�, many results familiar
from the scalar theory have not been verified for the general,
nonplanar electromagnetic fields. The situation has started to
change only quite recently �3–9�, and along with it, also a
discussion on the nature of the electromagnetic coherence
has arisen �10,11�.

A common feature for all of those recent works is that
they consider the coherence properties of the electric field
component only. In particular, the degree of electric coher-
ence that is a measure for the correlation of the electric field
vectors at two points was introduced in Refs. �3,4�. In this
paper, we extend that quantity to the magnetic field vector
and put forward measures that characterize, in general, the
electric and magnetic coherence in a volume and in the Fou-
rier space. Besides purely for fundamental reasons, the mag-
netic field and its coherence properties are of interest, for
instance, in connection with tightly focused electromagnetic
waves and magnetic interactions in semiconductor quantum
dots. Our specific aim is to employ the two quantities to
investigate the connection between the electric and magnetic
coherence in free electromagnetic fields �12,13�.

The paper is organized as follows. In Sec. II we present
the quantities for the characterization of the electric and
magnetic spectral �spatial� coherence in general electromag-
netic fields. Next, we employ these quantities for free elec-
tromagnetic fields �Sec. III�, for statistically homogeneous

fields �Sec. IV�, and for fields that are statistically homoge-
neous and isotropic �Sec. V�. Section VI contains specific
examples of statistically homogenous fields, and, finally, Sec.
VII summarizes the main results and conclusions of the
work. Certain mathematical details are presented in Appen-
dixes A–E.

II. BASIC DEFINITIONS

The spatial coherence �correlation� properties of a statis-
tically stationary, random, electromagnetic field, at a fre-
quency �, are described by the cross-spectral density tensors
�1�. In this work, only the electric and magnetic tensors are
of relevance to us. They are defined, specifically, by the re-
lations

WJ �e��r1,r2,�� = �E*�r1,��E�r2,��� , �1�

WJ �h��r1,r2,�� = �H*�r1,��H�r2,��� , �2�

where E�r ,�� and H�r ,�� represent the electric and mag-
netic components of the electromagnetic field realization at
frequency � in a statistical ensemble. Furthermore, the angle
brackets and the asterisks denote ensemble averaging and
complex conjugation, respectively, and r1,2 refer to two
points in space.

It is insightful to investigate the coherence properties of
the field in the Fourier space �k-space� �14�. Therefore, we
introduce the spatial Fourier transforms of the electric and
magnetic field realizations

Ẽ�k,�� =
1

�2��3 � E�r,��e−ik·rd3r , �3�

H̃�k,�� =
1

�2��3 � H�r,��e−ik·rd3r . �4�

These quantities constitute an ensemble of realizations in the
k space, where the coherence tensors are obtained by aver-
aging over the ensemble, i.e.,*FAX: �358 9 451 3155. Email address: Tero.Setala@hut.fi
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WJ �ẽ��k1,k2,�� = �Ẽ*�k1,��Ẽ�k2,��� , �5�

WJ �h̃��k1,k2,�� = �H̃*�k1,��H̃�k2,��� . �6�

Furthermore, the k-space coherence tensors are related to the
spatial Fourier transforms of the r-space tensors

W̃
J �f��k1,k2,�� =

1

�2��6 � � WJ �f��r1,r2,��

�e−i�k1·r1+k2·r2�d3r1d3r2, f = �e,h� , �7�

by the relations

WJ � f̃��k1,k2,�� = W̃
J �f��− k1,k2,��, f = �e,h� . �8�

The minus sign in front of k1 on the right-hand side of Eq.
�8� is simply a consequence of the definition of the coher-
ence tensors with complex conjugation on the first field vari-
able.

A quantitative measure for the degree of coherence of the
electric component of a random electromagnetic field was
recently introduced in the space-time domain �3�, and soon
after in the space-frequency domain �4� �see also Refs.
�5,6,10,11��. Analogous quantities can readily be written for
the magnetic field component as well. Thus, we define the
spectral degree of electric coherence, �e, and the spectral
degree of magnetic coherence, �h, by the relations

� f
2�r1,r2,�� =

tr�WJ �f��r1,r2,�� · WJ �f��r2,r1,���
tr�WJ �f��r1,r1,���tr�WJ �f��r2,r2,���

=
�i,j

	Wij
�f��r1,r2,��	2

�i
Wii

�f��r1,r1,���i
Wii

�f��r2,r2,��
,

f = �e,h� , �9�

where Wij
�f�, with �i , j�= �x ,y ,z�, are the elements of the cross-

spectral density tensors. The latter form of the above formula
indicates that the electric and magnetic degrees of coherence
describe, respectively, the average correlation of the Carte-
sian electric or magnetic field components at two points �4�.
The values of � f are bounded between zero and one, with the
limits corresponding to complete incoherence �non-
correlation� and complete coherence �correlation�, respec-
tively �4,5�.

It is also useful to introduce corresponding measures for
the degrees of coherence of the field components in the Fou-
rier space. Thus, we define the spectral degree of electric
coherence in the k space, �ẽ, and an analogous quantity for
the magnetic field, �h̃, via the expressions

�
f̃

2�k1,k2,�� =
tr�WJ � f̃��k1,k2,�� · WJ � f̃��k2,k1,���

tr�WJ � f̃��k1,k1,���tr�WJ � f̃��k2,k2,���

=
�i,j

	Wij
� f̃��k1,k2,��	2

�i
Wii

� f̃��k1,k1,���i
Wii

� f̃��k2,k2,��
,

f = �e,h� . �10�

The values of these quantities are bounded to the interval 0
�� f �1 with the upper and lower limits corresponding to
complete coherence and complete incoherence between the
Fourier components.

In order to quantify the field correlations within a volume,
we define the effective spectral degrees of coherence for the
electric and magnetic fields by the formulas �6,15,16�

� f ,eff
2 ��� =

�
D
�

D

Sf�r1,��Sf�r2,��� f
2�r1,r2,��d3r1d3r2

�
D
�

D

Sf�r1,��Sf�r2,��d3r1d3r2

,

f = �e,h� , �11�

where D is the volume in which the field is considered �in
our analysis D is the whole space�, and

Sf�r,�� = tr�WJ �f��r,r,���, f = �e,h� . �12�

The quantities Se and Sh correspond to the spectral densities
of the electric and magnetic fields, respectively.

The above formulas are valid for any electromagnetic
field. However, in this work we consider specifically free
electromagnetic fields, i.e., fields that consist of a superposi-
tion of propagating plane waves only. The realizations of
such a field are expressible in the form

E�r,�� = �
	

e�û,��eikû·rd	 , �13�

H�r,�� = �
	

h�û,��eikû·rd	 , �14�

where e�û ,�� and h�û ,�� are, respectively, the electric and
magnetic field components of the plane wave propagating in
the direction specified by the unit vector û. Furthermore, k
=� /c0 is the wave number of the field, with c0 being the
speed of light in vacuum, and the integration is performed
over the solid angle 	. The realizations of the free electro-
magnetic field obey Maxwell’s equations, written in an infi-
nite source-free space as �in SI units�

� · E�r,�� = 0, �15�

� · H�r,�� = 0, �16�

� � E�r,�� = i��0H�r,�� , �17�

� � H�r,�� = − i�
0E�r,�� , �18�

where �0 and 
0 are the vacuum permeability and permittiv-
ity, respectively. According to Eq. �17�, we can write the
following connection between the electric and magnetic
plane wave amplitudes in the field realization
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h�û,�� = 
 
0

�0
�1/2

û � e�û,�� . �19�

By making use of Eqs. �12�–�14�, �19�, and �A1�, one readily
finds that

� Sh�r,��d3r =

0

�0
� Se�r,��d3r , �20�

with the integration performed over the whole space. Finally,
we note that in the k space, Eqs. �15�–�18� take on the forms

k · Ẽ�k,�� = 0, �21�

k · H̃�k,�� = 0, �22�

k � Ẽ�k,�� = ��0H̃�k,�� , �23�

k � H̃�k,�� = − �
0Ẽ�k,�� , �24�

where Ẽ�k ,�� and H̃�k ,�� are the Fourier transforms de-
fined in Eqs. �3� and �4�.

III. ELECTRIC AND MAGNETC COHERENCE IN FREE
ELECTROMAGNETIC FIELDS

In this section we first establish a general relationship
between the electric and magnetic coherence of free electro-
magnetic fields in the k space. Later we use that result to
obtain a general connection for the two types of coherence in
the r space.

A. Connection between the electric and magnetic coherence
in k space

By making use of Eqs. �6�, �23�, and �A2�, we obtain

tr�WJ �h̃��k1,k2,���
=

1

�2�0
2��k1 � Ẽ*�k1,��� · �k2 � Ẽ�k2,����

=
1

�2�0
2��k1 · k2�tr�WJ �ẽ��k1,k2,���

− k2 · WJ �ẽ��k1,k2,�� · k1 , �25�

which, when k1=k2=k, simplifies to

tr�WJ �h̃��k,k,��� =

0

�0
tr�WJ �ẽ��k,k,��� . �26�

In obtaining the above result, Eq. �21� was employed. Fur-
thermore, by a straightforward computation one finds that

tr�WJ �h̃��k1,k2,�� · WJ �h̃��k2,k1,���
=

1

�4�0
4��k1 � Ẽ*�k1,���n�k2 � Ẽ�k2,���m�

���k2 � Ẽ*�k2,���m�k1 � Ẽ�k1,���n�

= 
nij
nuv
mkl
mpqk1ik1uk2kk2p

�Wjl
�ẽ��k1,k2,��Wqv

�ẽ��k2,k1,�� , �27�

where 
nij is the Levi-Civita symbol, and Einstein’s summa-
tion notation is invoked. Using the following relation for the
Levi-Civita symbol �17�


nij
nuv = �iu� jv − �iv� ju, �28�

together with Eq. �21�, we obtain the result

tr�WJ �h̃��k1,k2,�� · WJ �h̃��k2,k1,���
= 
 
0

�0
�2

Wjl
�ẽ��k1,k2,��Wlj

�ẽ��k2,k1,��

= 
 
0

�0
�2

tr�WJ �ẽ��k1,k2,�� · WJ �ẽ��k2,k1,��� . �29�

Equations �26� and �29�, when substituted into Eq. �10�, im-
ply the following theorem:

Theorem I. For any free electromagnetic field, the electric
and magnetic degrees of coherence in the k space, defined in
Eq. �10�, are equal, i.e.,

�h̃�k1,k2,�� = �ẽ�k1,k2,�� . �30�

In other words, at all temporal frequencies, two spatial Fou-
rier components of the electric field are as correlated as the
corresponding Fourier components of the magnetic field.

Theorem I is, of course, understandable, since Eq. �23�
indicates that the Fourier transforms of the magnetic field
realizations are obtained from the electric ones by rotating
them in the k space by an angle of � /2 and by scaling. Put
slightly differently, both vectors are proportional to the same
random process, but pointing in different �orthogonal� direc-
tions.

B. Connection between the electric and magnetic coherence
in r space

We note that the k-space relation given in Eq. �29� can be
rewritten in the form

�
jk

	Wjk
�h̃��k1,k2,��	2 = 
 
0

�0
�2

�
jk

	Wjk
�ẽ��k1,k2,��	2. �31�

According to Eqs. �7� and �8�, the functions Wjk
� f̃��k1 ,k2 ,��

and Wjk
�f��−r1 ,r2 ,�� constitute a Fourier transform pair. Fur-

thermore, we assume that these functions are square inte-
grable. Therefore, Eq. �31� together with Parseval’s theorem,
Eqs. �A3� and �A4�, imply that

�
jk
� � 	Wjk

�h��− r1,r2,��	2d3r1d3r2

= 
 
0

�0
�2

�
jk
� � 	Wjk

�e��− r1,r2,��	2d3r1d3r2, �32�

where the integration is performed over the whole space. On
making the change of variable r1→−r1, and using Eqs. �9�
and �12�, we obtain the result
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� � �h
2�r1,r2,��Sh�r1,��Sh�r2,��d3r1d3r2

= 
 
0

�0
�2� � �e

2�r1,r2,��Se�r1,��Se�r2,��d3r1d3r2.

�33�

This formula, together with Eqs. �11� and �20�, implies the
following theorem:

Theorem II. For any free electromagnetic field, the effec-
tive spectral degrees of electric and magnetic coherence, cal-
culated over the whole space, are equal at all frequencies,
i.e.,

�e,eff��� = �h,eff��� , �34�

where � f ,eff���, with f = �e ,h�, are defined by Eq. �11�.
As seen from Eq. �30�, the connection between the elec-

tric and magnetic coherence is local in the k space, while in
the r space the relationship is established via the effective
degrees of coherence that are averaged quantities and take
into account the degrees of coherence between all pairs of
points in the space.

IV. ELECTRIC AND MAGNETIC COHERENCE
IN STATISTICALLY HOMOGENEOUS

ELECTROMAGNETIC FIELDS

For a statistically homogeneous electromagnetic field, the
cross-spectral density tensors depend on the positions r1 and
r2 only through the displacement R=r1−r2,

WJ �f��r1,r2,�� � WJ �f��R,��, f = �e,h� . �35�

Equivalently, the realizations of such a field are of the form
given in Eqs. �13� and �14�, but the plane waves propagating
in different directions are completely uncorrelated �18�, i.e.,
the angular coherence tensors are of the form

�e*�û,��e�û�,��� = �e*�û,��e�û,�����û − û�� , �36�

�h*�û,��h�û�,��� = �h*�û,��h�û,�����û − û�� , �37�

where e�û ,�� and h�û ,�� are the angular plane-wave ampli-
tudes. Inserting the representations �13� and �14� into Eqs.
�1� and �2�, and using the angular correlation tensors above,
it follows that the electric and magnetic cross-spectral den-
sity tensors of a statistically homogeneous field are of the
form

WJ �e��R,�� = �
	

�e*�û,��e�û,���e−ikû·Rd	 , �38�

WJ �h��R,�� = �
	

�h*�û,��h�û,���e−ikû·Rd	 , �39�

where, according to Eq. �19�,

�h*�û,��h�û,��� = −

0

�0
û � �e*�û,��e�û,��� � û . �40�

Formulas �38�–�40� are useful in establishing various con-
nections between the electric and magnetic cross-spectral

density tensors as we shall see shortly. For example, with the
help of Eq. �A2�, we at once find that

tr�WJ �h��R,��� =

0

�0
tr�WJ �e��R,��� , �41�

and, therefore, also that

Sh��� =

0

�0
Se��� , �42�

indicating that the electric and magnetic energy densities are
constant throughout the space. This is, of course, what one
would intuitively expect.

For statistically homogeneous fields it is possible to estab-
lish a general, yet compact relation between the electric and
magnetic cross-spectral density tensors. A straightforward
calculation, presented explicitly in Appendix B, leads to the
formula

WJ �h��R,�� =

0

�0
��UJ +

1

k2 � ��
�tr�WJ �e��R,��� − WJ �e�T�R,��� , �43�

where T denotes transpose. Hence the functional forms of the
electric and magnetic cross-spectral density tensors of a ho-
mogeneous electromagnetic field may be completely differ-
ent. Consequently, the degrees of electric and magnetic co-
herence may have different values. However, as theorem II
states, the effective degrees of electric and magnetic coher-
ence are equal.

V. ELECTRIC AND MAGNETIC COHERENCE
IN STATISTICALLY HOMOGENEOUS

AND ISOTROPIC ELECTROMAGNETIC FIELDS

Consider next free electromagnetic fields that not only are
statistically homogeneous, but also isotropic. The realiza-
tions of such a field are expressible as Eqs. �13� and �14�, but
in addition to the plane waves being angularly uncorrelated
�homogeneity�, they are also unpolarized and have the same
intensity �see theorem IV�. A general form for both the elec-
tric and the magnetic cross-spectral density tensor of a sta-
tistically homogeneous and isotropic field is given by �19,20�

WJ �f��R,�� = Af�R,��UJ + Bf�R,��R̂R̂, f = �e,h� , �44�

where, as before, R=r1−r2, and in addition, R= 	R	, and

R̂=R /R. The above tensors are symmetric, WJ �f�T�R ,��
=WJ �f��R ,��, and their form is invariant under rotation of the
coordinate system �19�. Furthermore, the coefficients
Af�R ,�� and Bf�R ,�� are not independent, but are connected
by a divergence equation of the form

� · WJ �f��R,�� = 0, f = �e,h� , �45�

and a Helmholtz equation given in Eq. �B4�. Under these
conditions and using Eq. �43� we find �as shown in Appendix
C� that
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Ah�R,�� =

0

�0
Ae�R,�� , �46�

Bh�R,�� =

0

�0
Be�R,�� . �47�

This result implies the following theorem:
Theorem III. For any statistically homogeneous and iso-

tropic electromagnetic field, the electric and magnetic cross-
spectral density tensors are of the form of Eq. �44�, and differ
only by a constant factor 
0 /�0,

WJ �h��R,�� =

0

�0
WJ �e��R,�� . �48�

Consequently, at any pair of points R=r1−r2 and at any
frequency �,

�h�R,�� = �e�R,�� , �49�

i.e., the degrees of electric and magnetic coherence defined
by Eq. �9� are equal.

Note that according to Eq. �42� the factor 
0 /�0 �=1/�0
2,

with �0 being the free-space impedance� is equal to the ratio
of the magnetic and electric energy densities of the field.

VI. CONNECTION BETWEEN ELECTRIC
AND MAGNETIC COHERENCE IN SPECIFIC

STATISTICALLY HOMOGENEOUS
ELECTROMAGNETIC FIELDS

Next, we employ the plane-wave representation of free
electromagnetic fields, Eqs. �13� and �14�, to investigate the
connection between the electric and magnetic coherence in
some specific statistically homogeneous fields. For this pur-
pose, it is useful to express the electric amplitude vector of
each plane wave in the field realization in terms of the s and
p polarized components, which are mutually orthogonal and
perpendicular to the propagation direction û. Hence, for the
amplitude of the electric field, we write

e�û,�� = es�û,��ŝ + ep�û,��p̂ , �50�

where es�û ,�� and ep�û ,�� denote the amplitudes of the s
and p polarized components, respectively. Furthermore, the
corresponding unit vectors are obtained as ŝ= û� ûz / 	û� ûz	,
and p̂= ŝ� û, with ûz being the unit vector along the z axis of
the Cartesian coordinate system.

Using Eqs. �40� and �50�, the angular coherence tensors
take on the forms

�e*�û,��e�û,��� = Ass�û,��ŝŝ + Asp�û,��ŝp̂

+ Aps�û,��p̂ŝ + App�û,��p̂p̂ , �51�

�h*�û,��h�û,��� =

0

�0
�Ass�û,��p̂p̂ − Asp�û,��p̂ŝ

− Aps�û,��ŝp̂ + App�û,��ŝŝ� , �52�

where

Aij�û,�� = �ei
*�û,��ej�û,���, �i, j� = �s,p� . �53�

The diagonal elements Aii�û ,�� correspond to the intensities
�spectral densities� of the s and p polarized electric field
components, and the off-diagonal elements Aij�û ,��, with
i� j, characterize their correlations. By varying the value of
these elements as a function of û, we can change the angular
distribution and the state of partial polarization of the plane
waves. We recall that when the s and p polarized components
of a plane wave are completely uncorrelated and have the
same intensity, the wave is fully unpolarized. On the other
hand, when the two components are fully correlated, the
plane wave is fully polarized, irrespective of the intensities.
In any other case, the wave is partially polarized. For a more
thorough discussion on the partial polarization of plane
waves �two-dimensional fields� and their degree of polariza-
tion, we refer to Ref. �1�. Below we consider some specific
plane-wave distributions, in which, due to the assumption of
statistical homogeneity, the waves are angularly uncorre-
lated.

A. Statistically homogeneous and isotropic field
and its plane-wave representation

First we study what is required of the plane waves, or
more specifically of the angular coherence tensors in Eqs.
�51� and �52�, in order for the electromagnetic field to be
statistically homogeneous and isotropic. We note that Eq.
�48� of theorem III demands that Ass�û ,��=App�û ,��, and
Asp�û ,��=−Aps�û ,�� in this case. Furthermore, the symme-
try of the tensors implies that Asp�û ,��=Aps�û ,��, which,
when combined with the former condition, indicates that
Asp�û ,��=Aps�û ,��=0. Hence the angular coherence ten-
sors must be of the form

�e*�û,��e�û,��� = A�û,���ŝŝ + p̂p̂� , �54�

�h*�û,��h�û,��� =

0

�0
A�û,���ŝŝ + p̂p̂� , �55�

where A�û ,�� is the intensity of the s and p polarized com-

ponents. Making use of the relations ŝŝ+ p̂p̂+ ûû=UJ and
ûexp�−ikû ·R�= �i /k�� exp�−ikû ·R�, the electric and mag-
netic cross-spectral density tensors can be written as

WJ iso
�e��R,�� = 
UJ +

1

k2 � ��I�R,�� , �56�

WJ iso
�h��R,�� =


0

�0

UJ +

1

k2 � ��I�R,�� , �57�

where the subscript iso refers to statistical isotropy, and

I�R,�� = �
4�

A�û,��e−ikû·Rd	 . �58�

Next, we note that the cross-spectral density tensors in Eqs.
�56� and �57� are of the form of Eq. �44� if, and only if,
I�R ,��= I�R ,��, i.e., if A�û ,��=A���, requiring that the
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distribution of the plane waves be uniform within the full 4�
solid angle �proof is found in Appendix D�. In such a case,
employing Eqs. �A5�–�A8�, the cross-spectral density tensors
are found to be given by

WJ iso
�e��R,�� = 4�A����� j0�kR� −

j1�kR�
kR

�UJ + j2�kR�R̂R̂� ,

�59�

WJ iso
�h��R,�� =


0

�0
WJ iso

�e��R,�� , �60�

where ji�kR�, with i= �0,1 ,2�, are spherical Bessel functions
of order i. The above analysis then results in the following
theorem:

Theorem IV. An electromagnetic field expressed as a su-
perposition of plane waves is statistically homogeneous and
isotropic if, and only if, the plane waves are fully unpolar-
ized and uniformly distributed within the full solid angle.
Furthermore, the electric and magnetic cross-spectral density
tensors are necessarily of the form given in Eqs. �59� and
�60�, respectively.

Note that the cross-spectral density tensors in Eqs. �59�
and �60� are proportional to the imaginary part of the free-
space Green tensor �21,22�. Furthermore, it should be noted
that this example covers the important case of blackbody
radiation for which the coefficient 4A��� is determined by
Planck’s law �21,22�. The theorem is, however, more gener-
ally valid; the spectrum of the radiation may differ from
Planck’s spectrum since thermal equilibrium is not assumed.

B. Nonuniform distribution of unpolarized, angularly
uncorrelated plane waves

For a statistically homogeneous electromagnetic field con-
sisting of a nonuniform distribution of unpolarized plane
waves, the elements of the tensors in Eqs. �51� and �52� are
given by

Ass�û,�� = App�û,�� = A�û,�� , �61�

Asp�û,�� = Aps
* �û,�� = 0, �62�

and, therefore, the angular coherence tensors are those given
by Eqs. �54� and �55�. Although the functional forms of the
electric and magnetic cross-spectral density tensors depend
on the quantity A�û ,��, Eqs. �38�, �39�, �54�, and �55� indi-
cate that the tensors always are connected by the relation

WJ B
�h��R,�� =


0

�0
WJ B

�e��R,�� , �63�

where the subscript B refers to “example B.” Thus, irrespec-
tive of the angular nonuniformity, the coherence properties
of the electric and magnetic fields are the same.

C. Uniform distribution of partially polarized, angularly
uncorrelated plane waves

Next we consider a statistically homogeneous field com-
posed of a uniform distribution of partially polarized plane

waves, for which the tensor elements in Eqs. �51� and �52�
are of the form

Ass�û,�� = App�û,�� = A��� , �64�

Asp�û,�� = Aps
* �û,�� = B��� , �65�

where B��� is a complex quantity. The waves have the same
state of partial polarization and the intensities associated
with the s and p polarized components are equal. The angu-
lar coherence tensors are now given by

�e*�û,��e�û,��� = A����ŝŝ + p̂p̂� + �B���ŝp̂ + B*���p̂ŝ� ,

�66�

�h*�û,��h�û,��� =

0

�0
A����ŝŝ + p̂p̂�

−

0

�0
�B*���ŝp̂ + B���p̂ŝ� . �67�

We see that the first terms correspond to the angular coher-
ence tensors, which in example A above were shown to lead
to electric and magnetic cross-spectral density tensors that
are proportional to the imaginary part of the free-space
Green tensor. Furthermore, the terms in the brackets are
transposes of each other. Thus we can write

WJ C
�e��R,�� = WJ iso

�e��R,�� + FJ�R,�� , �68�

WJ C
�h��R,�� = WJ iso

�h��R,�� −

0

�0
FJT�R,�� , �69�

where the subscript C refers to “example C,” and

FJ�R,�� = �
4�

�B���ŝp̂ + B*���p̂ŝ�e−ikû·Rd	 . �70�

Eliminating the tensor FJ�R ,�� from Eqs. �68� and �69�,
and making use of Eq. �60� together with the fact that

WJ iso
�e��R ,�� is symmetric �see Eq. �59��, one obtains

WJ C
�h��R,�� =


0

�0
�2WJ iso

�e��R,�� − WJ C
�e�T�R,��� . �71�

Hence, in general, the electric and magnetic cross-spectral
density tensors in this case have different functional forms.
However, the degrees of electric and magnetic coherence are
equal; �e�R ,��=�h�R ,��, for all R. This can be verified by
inserting Eq. �71� into the expression of �h�R ,�� given in
Eq. �9�, then using Eqs. �41� and �68�, and the fact that

FJ�−R ,��=−FJ�R ,��, which is proven in Appendix E.

D. Nonuniform distribution of partially polarized, angularly
uncorrelated plane waves

The final example concerns a statistically homogeneous
field consisting of a nonuniform distribution of partially po-
larized plane waves, for which

Ass�û,�� = App�û,�� = A�û,�� , �72�
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Asp�û,�� = Aps
* �û,�� = B��� . �73�

Thus the intensities of the s and p polarized components
associated with each plane wave are equal, but differ for
waves propagating in different directions, as do their states
of partial polarization. The angular coherence tensors can
readily be written as

�e*�û,��e�û,��� = A�û,���ŝŝ + p̂p̂� + �B���ŝp̂ + B*���p̂ŝ� ,

�74�

�h*�û,��h�û,��� =

0

�0
A�û,���ŝŝ + p̂p̂�

−

0

�0
�B*���ŝp̂ + B���p̂ŝ� . �75�

Consequently, by making use of the results of the previous
examples B and C, we at once obtain that

WJD
�e��R,�� = WJ B

�e��R,�� + FJ�R,�� , �76�

WJD
�h��R,�� = WJ B

�h��R,�� −

0

�0
FJT�R,�� , �77�

where the subscript D refers to “example D,” the tensors

WJ B
�f��R ,�� are those encountered in example B, and FJ�R ,��

is given by Eq. �70�. Eliminating the tensor FJ�R ,�� from the
pair of equations above, employing Eq. �63�, and noting that

WJ B
�e��R ,�� is symmetric �since the corresponding angular co-

herence tensor is so�, we get

WJD
�h��R,�� =


0

�0
�2WJ B

�e��R,�� − WJD
�e�T�R,��� . �78�

We therefore find that, in general, the electric and magnetic
cross-spectral density tensors have different functional
forms. In addition, the degrees of the electric and magnetic
coherence are generally different, i.e., �e�R ,����h�R ,��.
One can trace the origin of this difference in the present case
to the angular dependence of the parameter A�û ,��. Unless
A�û ,��=A�−û ,��, the two degrees of coherence acquire
different values.

VII. SUMMARY AND CONCLUSIONS

In this work, we introduced quantities that are funda-
mental for characterizing the electric and magnetic spectral
�spatial� coherence in general, three-dimensional, random
electromagnetic fields. We employed them for free electro-
magnetic fields, i.e., fields that consist only of propagating
plane waves, and proved that in such fields two spatial Fou-
rier components of the electric field are as coherent as the
corresponding magnetic components. Furthermore, in any
free field, the effective degrees of electric and magnetic co-
herence, evaluated over the whole space, are equal to each
other at all frequencies. We also derived a compact, general
relation that connects the electric and magnetic cross-spectral
density tensors in the case of a statistically homogeneous

field. When the electromagnetic field is statistically isotropic
in addition to being homogeneous, the two cross-spectral
density tensors differ only by a constant factor of 
0 /�0,
indicating that the behaviors of the electric and magnetic
coherence in such fields are identical. We also proved that a
superposition of plane waves leads to a statistically homoge-
neous and isotropic electromagnetic field if, and only if, the
waves are fully unpolarized and uniformly distributed within
the full 4� solid angle. The results and examples establish a
useful basis for a more complete treatment of the electro-
magnetic theory of optical coherence in general, three-
dimensional fields, for which the scalar theory is not appli-
cable.
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APPENDIX A: USEFUL FORMULAS

An integral involving exponential functions �Sec. 15.3 in
Ref. �23��

1

�2��3 � ei�k1−k2�·rd3r = ��k1 − k2� , �A1�

where the integration is performed over the whole space.
A vector identity �17�

�a � b� · �c � d� = �a · c��b · d� − �b · c��a · d� . �A2�

Parseval’s theorem for functions of several variables �p.
67 in Ref. �24��: Assume that the functions g�r1 ,r2 ,�� and
G�k1 ,k2 ,�� are square integrable and constitute a Fourier
transform pair, i.e.,

G�k1,k2,�� =
1

�2��6 � � g�r1,r2,��e−i�k1·r1+k2·r2�d3r1d3r2.

�A3�

Then

1

�2��6 � � 	g�r1,r2,��	2d3r1d3r2

=� � 	G�k1,k2,��	2d3k1d3k2. �A4�

A relation involving derivatives of a spherically symmet-
ric, twice differentiable function g�R�

��g�R� =
1

R
g��R�UJ + �g��R� −

1

R
g��R��R̂R̂ , �A5�

where the primes denote derivatives with respect to the spa-
tial variable R.

An integral over the full solid angle �Eq. �12� in Ref. �22��

�
4�

exp�− ikû · R�d	 = 4�
sin kR

kR
= 4�j0�kR� . �A6�
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Relations for spherical Bessel functions �Eqs. 11.161–
11.163 in Ref. �23��

jn−1�x� + jn+1�x� =
2n + 1

x
jn�x� , �A7�

njn−1�x� − �n + 1�jn+1�x� = �2n + 1�jn��x� . �A8�

APPENDIX B: PROOF OF EQ. (43)

An element of the magnetic cross-spectral density tensor
can be developed, with the help of Eq. �17�, as follows:

Wij
�h��r1,r2,�� = �Hi

*�r1,��Hj�r2,���

=
1

�2�0
2
imn
 jpq�m

1 �p
2�En

*�r1,��Eq�r2,��� ,

�B1�

where 
imn is the Levi-Civita tensor, summation convention
is used, and �m

1 and �p
2 act on the coordinates of r1 and r2,

respectively. In the case of a statistically homogeneous field,
the cross-spectral density tensors are functions of R=r1−r2
only, and consequently, we can write

Wij
�h��R,�� = −

1

�2�0
2
imn
 jpq�m�pWnq

�e��R,��

= −
1

�2�0
2 ��nq��ij�mp − �ip�mj�

+ �np��iq�mj − �ij�mq�

+ �nj��ip�mq − �iq�mp���m�pWnq
�e��R,��

= −
1

�2�0
2���2�ij − �i� j�tr�WJ �e��R,���

− �2Wji
�e��R,�� . �B2�

The cross-spectral density tensors satisfy the following
Helmholtz equations �1�

�p
2Wij

�f��r1,r2,�� + k2Wij
�f��r1,r2,�� = 0, f = �e,h� ,

�B3�

where �p, with p= �1,2�, operates on the coordinates rp. For
a statistically homogeneous field, the above formulas can be
written as

�2Wij
�f��R,�� + k2Wij

�f��R,�� = 0, f = �e,h� . �B4�

Using this equation in Eq. �B2�, one obtains

Wij
�h��R,�� =


0

�0
���ij +

1

k2�i� j�tr�WJ �e��R,��� − Wji
�e��R,��� ,

�B5�

which, when written in the dyadic notation, is the same as
Eq. �43�.

APPENDIX C: PROOF OF EQS. (46) and (47)

Substituting WJ �e��R ,�� from Eq. �44� into Eq. �43�, and
making use of Eq. �A5�, one can connect the electric coeffi-

cients Ae�R ,�� and Be�R ,�� with the magnetic ones,
Ah�R ,�� and Bh�R ,��. The calculation results in

Ah�R,�� =

0

�0
�2Ae�R,�� + Be�R,��

+
1

k2R
�3Ae��R,�� + Be��R,���� , �C1�

Bh�R,�� =

0

�0
�− Be�R,�� −

1

k2R
�3Ae��R,�� + Be��R,���

+
1

k2 �3Ae��R,�� + Be��R,���� , �C2�

where the primes stand for derivatives with respect to the

spatial variable R. Inserting the tensor WJ �e��R ,�� into the
divergence equation in Eq. �45� yields the relation

�Ae��R,�� + Be��R,�� +
2Be�R,��

R
�R̂ = 0. �C3�

Furthermore, substituting WJ �e��R ,�� into the Helmholtz
equation, Eq. �B4�, gives

�Ae��R,�� +
2Ae��R,��

R
+

2Be�R,��
R2 + k2Ae�R,���UJ

+ �Be��R,�� +
2Be��R,��

R
−

6Be�R,��
R2 + k2Be�R,���R̂R̂

= 0. �C4�

In order to satisfy the latter two equations for all values of R,

the coefficient of the vector R̂ in Eq. �C3� and the coeffi-

cients of the tensors UJ and R̂R̂ in Eq. �C4�, have to be iden-
tically zero. Thus, we get three equations to connect the pa-
rameters Ae�R ,�� and Be�R ,�� and their derivatives. A
fourth equation is obtained by taking the derivative of the
coefficient in Eq. �C3�. These four equations imply

Ae��R,�� = 
k2 −
4

R2�Be�R,�� , �C5�

Ae��R,�� =
1

R
Be�R,�� −

k2R

2
�Ae�R,�� + Be�R,��� , �C6�

Be��R,�� =
12

R2 Be�R,�� − k2�Ae�R,�� + 2Be�R,��� ,

�C7�

Be��R,�� = −
3

R
Be�R,�� +

k2R

2
�Ae�R,�� + Be�R,��� .

�C8�

Use of these formulas in Eqs. �C1� and �C2� verifies Eqs.
�46� and �47�.
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APPENDIX D: PROOF THAT IN EQ. (58) I„R,�…=I„R ,�…

IF AND ONLY IF A„û ,�…=A„�…

We make use of the fact that I�R ,��= I�R ,�� if, and only
if, the value of I�R ,�� is invariant under rotations. Thus, we
introduce a general rotation, described by a real, orthogonal

matrix TJ, under which the vector R changes to R�=TJ ·R.
Substitution of R� into Eq. �58� results in

I�R�,�� = �
4�

A�û,��e−ikû·TJ·Rd	

= �
4�

A�û� · TJT,��e−ikû�·Rd	�, �D1�

where û�= û ·TJ. Dropping the prime in the last form of this
equation and comparing it to Eq. �58� implies that I�R ,��
= I�R� ,�� for any rotation if, and only if, A�û ·TJT ,��
=A�û ,�� for all TJ. This is satisfied only if A�û ,��=A���.

APPENDIX E: PROOF THAT TENSOR FJ OF EQ. (70) HAS

THE PROPERTY FJ„−R,�…=−FJ„R,�…

Since the differential element of the solid angle is d	
=sin  d� d, where � and  are the azimuthal and polar
angles in spherical polar coordinates, we can write

FJ�− R,�� = �
0

� �
0

2�

�B���ŝp̂ + B*���p̂ŝ�eikû·Rsin  d� d .

�E1�

Next we transform the integration variable û into −û�, which
implies the following changes: ŝ→−ŝ� , p̂→ p̂� ,�→��
+� ,→�−� ,d→−d�, and d�→d��. This yields

FJ�− R,�� = �
�

0 �
�

3�

�B����− ŝ��p̂� + B*���p̂��− ŝ���

�e−ikû�·Rsin�� − ��d���− d�� . �E2�

Noting that sin��−��=sin � and that the integrand is 2�

periodic with respect to ��, we obtain FJ�−R ,��=−FJ�R ,��.
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