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Equation of state for partially ionized carbon at high temperatures
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Equation of state for partially ionized carbon at temperatures 7= 10° K is calculated in a wide range of
densities, using the method of free energy minimization in the framework of the chemical picture of plasmas.
The free energy model includes the internal partition functions of bound species. The latter are calculated by
a self-consistent treatment of each ionization stage in the plasma environment taking into account pressure
ionization. The long-range Coulomb interactions between ions and screening of the ions by free electrons are
included using our previously published analytical model.
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I. INTRODUCTION

The understanding of the physical properties of matter at
high densities and temperatures is important for the funda-
mental physics as well as for various physical and astro-
physical applications. Since the 1980s the theoretical interest
in matter under such unusual conditions (e.g., Refs. [1-4])
has been enhanced by laboratory developments like high-
power short duration lasers, shock-induced plasmas, inertial
confinement implosions, or exploding metal wires (e.g.,
Refs. [5-9]). In the astrophysical domain the calculation of
the equation of state (EOS) for stellar partial ionization zones
is a particularly challenging problem. In these zones the elec-
trons and different ionic species cannot be regarded as
simple ideal gases: Coulomb interactions, bound-state level
shifts, pressure ionization, and electron degeneracy should be
taken into account. In this paper, we calculate the EOS for
carbon at temperatures 103 K=<T7T=< 10" K in a wide range of
densities p. Such an EOS is required, e.g., for modeling inner
envelopes of carbon-rich white dwarfs [10,11] or outer enve-
lopes of neutron stars.

An EOS calculation in the partial ionization regime is not
possible without approximations. For astrophysical simula-
tions, these approximations should not violate the thermody-
namic consistency. The free energy minimization method
[12,13] allows one to include the complex physics in the
model and ensures the consistency. This method has the great
advantage to identify the various contributions to the free
energy, illustrative of various physical effects (see, e.g., Ref.
[14], for a discussion).

Free-energy models which carefully include the nonideal
effects have been proposed for fluid hydrogen [15] and he-
lium [16,17]; the EOS tables for these elements, which cover
a pressure and temperature range appropriate for low-mass
stars, brown dwarfs, and giant planets have been calculated
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in Ref. [18]. For heavier elements, a similarly detailed EOS
is lacking. Up to now, the best available thermodynamically
consistent EOS for carbon covering the stellar pressure ion-
ization zones was the EOS developed by Fontaine, Gra-
boske, and Van Horn in the 1970s [14] (FGV) and amended
in the 1990s [19]. We shall call these two versions FGV77
and FGV99, respectively. This EOS has been calculated
by different methods in different p—7 domains. At
relatively low densities (e.g., p<<(0.01-1) gcm™ for
105 K<T<10°K), the ionization equilibrium has been
obtained by the free-energy minimization technique. At den-
sities above several grams per cubic centimeter, the Thomas-
Fermi model has been employed. At intermediate densities,
in particular in the various regimes of pressure ionization,
the EOS was interpolated between these two regions.
Clearly, the accuracy of the EOS in the interpolation region
can be called into question. Moreover, the Thomas-Fermi
model may be inaccurate at p=<10° g cm~>, where the pres-
sure is not sufficiently high to force the complete ionization
of carbon, as we shall see below.

Extension of the free energy minimization technique to
p=0.1 g cm™ is complicated because of the growing impor-
tance of nonideal contributions to the free energy and the
onset of pressure ionization. The latter is difficult to treat in
the framework of the “chemical picture” of plasmas, which
assumes that different ion species can be clearly identified
(see, e.g., Refs. [18,20,21], for discussion). On the other
hand, EOS calculations within the more rigorous “physical
picture,” quite successful at relatively low p (e.g., Ref. [22]),
become prohibitively complicated at such high densities.
First principle approaches based on path integral Monte
Carlo (PIMC) [23] or molecular dynamics (MD) calculations
are computationnaly highly expensive. These methods also
suffer from some difficulties. Indeed, the sign or node prob-
lem for the PIMC method or the use of effective pair poten-
tials for MD simulations restrict their applicability (see how-
ever [2]). In any case, a comparison with our results will be
instructive, but, to the best of our knowledge, no PIMC or
MD data for carbon in the temperature-density range of in-
terest in this paper has been published yet.
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In this paper we present an EOS model which relies on
the free energy minimization in the framework of the chemi-
cal picture and extends to arbitrarily high densities across the
pressure ionization region without interpolation. This allows
us to obtain not only the thermodynamic functions, but also
number fractions for every ionization stage. We treat the
long-range interactions in the system of charged particles
(ions and electrons) using the theory previously developed
for fully ionized plasmas [25,26]. The contribution of the
internal electronic structure of the ions embedded in the
dense plasma is calculated using a scheme [27] which self-
consistently: (i) builds separate models for different ioniza-
tion stages in the plasma, taking into account the real struc-
ture of bound states (configurations, LS terms); (i) uses
Boltzmann statistics to sum up the internal partition func-
tions of these ions; (iii) takes into account spreading of
bound states into energy bands as they are pressure ionized;
and (iv) treats quantum mechanically the free electron back-
ground around each ion thus resolving resonances. Points (i)
and (ii) make our model different from average atom ones.
The closest “ion-in-plasma” theoretical model is that of Pain
and Blenski [24], where ions are treated separately (using
superconfigurations), but screening is introduced through a
Thomas-Fermi approach for the free electrons. The applica-
bility of our model is tested by numerical calculations of
thermodynamic functions, which we compare with the FGV
models.

In Sec. II we present the free energy model. The technique
for the calculation of thermodynamic functions at equilib-
rium is described in Sec. III. In Sec. IV we discuss the results
of the EOS calculations for carbon plasma, and in Sec. V we
give conclusions.

II. FREE ENERGY MODEL

Consider a plasma consisting of N, free electrons and N;
heavy ions with numbers of bound electrons v from 0 to Z,,,
(where Z,,. is the element charge number) in a volume V.
Let us write the total Helmholtz free energy as F,=F,+F;
+F., where F;, denote the ideal free energy of ions and
free electrons, respectively, and F,, is the excess (nonideal)
part, which arises from interactions. F; is the free energy
of an ideal Boltzmann gas mixture, which can be written as
F;=NkgT [In(n\})~1]-S T, where \;=(27h*/mkgT)"
is the thermal wavelength of the ions, m; is the ion
mass, Sy,ix=—Nkg=,x,Inx, is the entropy of mixing, and
x,=N,/N; is the number fraction of the ions of the v-th type
(2,x,=1). For the electrons at arbitrary degeneracy, F, can
be expressed through Fermi-Dirac integrals and approxi-
mated by analytical formulae [25]. The main complication is
the calculation of the nonideal term, which is quite nontrivial
at high densities. It includes a contribution due to the build-
ing of localized bound states of the ions, and the long-range
Coulomb interactions between these ions and free electrons.
We write

chzFee+Fii+Fie+Fint» (1)

where the first three terms represent the contributions of
electron-electron, ion-ion, and ion-electron interactions, re-
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spectively, and F;, is the contribution due to the internal
degrees of freedom of the ions, that involves sums over
bound states. Equation (1) does not imply a strict separation
of the terms on its right-hand side: No strict definition of free
and bound electrons nor ions exists in a dense plasma. In
general, the terms must be interdependent and evolve in a
correlated way. Our approach to this difficulty consists in
calculating self-consistent models for the ions embedded in
the plasma, coupling them with a model for the long-range
interaction, and minimizing the resulting total free energy
Fop-

A. Free energy of a fully ionized plasma

A fully ionized electron-ion plasma which contains only
one ion species is characterized by three parameters: the ion
charge Ze, the electron density parameter r,, and the ion
Coulomb coupling parameter I’

a (47771 )1/3Z5/3€2
_67 F = _e b
ap 3 kBT

re= (2)
where n, is the electron number density and ay=%%/m e is
the Bohr radius. The Helmholtz free energy of the fully ion-
ized plasma is described by analytical fitting formulae
[25,26], which are applicable at high densities (r,<1, arbi-
trary I') or high temperatures (small I'). When neither r, nor
I' are small, the plasma cannot be considered as fully
ionized.

In a multicomponent fully ionized, dense plasma with dif-
ferent ion charges Z,e, the “linear mixing rule” has been
shown to be very accurate [28-30]

Ff:ix(Ni’V’ T’{XV}’{ZV}) =NikBTE xvfw (3)

where

X

fo= e T.2,) = FG . /NksT 4)

is obtained from F SX:F vot Fi+ F;, (the superscript “fi”” indi-
cates full ionization). In Eq. (4) n, takes the value implied by
the electroneutrality: n,=n,Z, where n,=N,/V is the ion num-

ber density, and Ze=X,x,Z, e is the mean ion charge. An
effective ion Coulomb parameter for a multicomponent
plasma is obtained by replacing Z°* with =, x,Z>” in Eq.
(2) for I'.

B. Bound-state contribution to the free energy

In order to evaluate F;,, we calculate the ionic structure in
the plasma using the scheme described in Ref. [27]. It is
based on the ion-sphere approximation, which replaces the
actual plasma environment for every ion by the statistically
averaged boundary conditions for the electron wave func-
tions within a spherical volume centered at the ionic nucleus.
At present we do not include neutral atoms (v=Z,,.), which
is justified at the temperatures and densities where the ion-
ization degree of the plasma is high. For each ion containing
v bound electrons, a radius of the ion sphere R, is deter-
mined self-consistently from the requirement that the sphere
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is overall electrically neutral. The Hamiltonian for the ion v
is written as H,=27 h,(r;)+W,, where

ﬁZ
h(r)=- ?Vz + Vi(r) + Vi(r), (5)
" Znuce2 " é*
W,=2 (— e V&(n)) +>2—— (6
i=1 Ti i<j |ri_rj

V}’ is the potential due to the plasma on the ion v, that must
be determined self-consistently, W, is responsible for the LS
splitting of spectroscopic terms, and V, is a scaled Thomas-
Fermi potential of the nucleus and »— 1 bound electrons [31].
Note that V}, disappears in H,. It is used to build an effective
one-electron Hamiltonian /,, which generates a one-electron
wave functions basis. The coordinate parts i, ~of these
functions are obtained from the Schrodinger equation

hv ::lm = Evnl(//::lm(r) . (7)

Then H, is diagonalized in a subspace of Slater determinants
generated by a set of ¢, . The v-electron energies of the
bound states are well approxoimated as Esz?,a

+Z () e al €= € ), where E° and €, are calculated for the

isolated ion, and a=(nl),(nl)," ~(nl),2}S+1L defines a particu-
lar LS term of a configuration. The separation of H, into
parts (5) and (6) allows one to capture the plasma effects in
one-electron energies and wave functions through Eq. (5),
while the v-electron structure is retained through the contri-
bution W,. The boundary condition at R, for Eq. (7) does not
noticeably affect £, except near the densities where the cor-
responding term « becomes pressure ionized. The latter case
will be addressed below.

The free electron density n(r) and the potential V{(r) are
determined self-consistently, using the local density approxi-
mation of the density functional theory. The one-electron
wave functions % (r) of the partial scattering waves are
calculated from the Schrédinger equation

B’ Zpe®
(— Evz - %ce + Vll;(r) + V;j(r) + V;(}c(r)> lpglm(r) = 6¢glm(r)'

(8)

Here, Vy, is the exchange-correlation potential [32], Vi and
VY are obtained from the Poisson equation: V2Vi=-4mnle?,
V2V{=-4mnfe®, and the number densities n}(r) and n{(r)
are calculated as the squared moduli of the wave functions
for the bound and free electrons, respectively, summed with
the statistical weights appropriate for a given 7. For the
bound electrons, these weights are proportional to
Woalye €Xp(—E o/ kgT), where d,,=(2S+1)(2L+1) is the
level degeneracy, and w,, iS an occupation probability
defined below. The density of states per unit volume for the
Ith partial wave of the free electrons at a given energy g,,(€)
is determined with account of the contribution from
resonances (Friedel terms; see Ref. [27] for details). The en-
ergy distribution of the free electrons is assumed
g, (€)/(1+exp[(e—pm,)/kgT]). The free parameters of the
model are T and the electron chemical potential w,. In ther-
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FIG. 1. (Color online) Neutrality volumes of carbon ions v,
normalized to the fiducial number density of free electrons ng (see
text), as functions of ng for T=2.32X10° K (solid lines) and T
=3.71 X 10° K (dotted lines) for carbon ions with v bound electrons
(v=0,1,...,5). The curves for the three lowest degrees of ioniza-
tion (»=3,4,5) end at the nS values at which there remain no rel-
evant bound states (e_ become positive for 2s state in 1s?2s and
15?252, and 2p state in 15%2522p).

modynamic equilibrium, u, is the same for all ions, but as
different ionization stages have different neutrality sphere
radii as well as different numbers of neutralizing free elec-
trons inside them, u, can be related to the mean free electron
density only after the global free-energy minimization (Sec.
IIT) has given the relative populations of the ions.

The neutrality of the ion sphere is ensured by the self-
consistent determination of R, such that

d Z
—| - ==+ Vir)+ V{(r) =0. 9)
dr r

=R,

Associated with this radius is the neutrality volume
U,,=47TR?)/ 3. In the model of a uniform electron background,
that neglects the interactions of free electrons with ions, one
has v,=0"=(Z,,c—v)/n°, where n%(u,, T) =V 9F /|y 1 is
the number density of free electrons in the uniform gas
model. With allowance for interactions of the free electrons
with the ions and bound electrons, v, deviates from v?,, as
illustrated in Fig. 1. The drops of the plotted curves at certain
densities, which are especially sharp at the lower tempera-
ture, are the consequence of pressure ionization of separate
levels: When a n/ level of ion v crosses the continuum limit
and appears as a resonance in the neighboring ionization
state v—1, the latter ion sphere shrinks to compensate this
increase in the free electron density of states.

With increasing u, (or 1Y), the radius R, decreases, the
wave functions ¢, (r) become distorted, and the energies
€, spread into a band. We estimate a bandwidth by solving
Eq. (7) with two alternative boundary conditions: either
Uon(R,)=0, or a7, /dr=0 at r=R,. These two conditions
give two energies which we interpret as the upper (e,) and
lower (€_) edges of the band (Fig. 2). Eventually €, becomes
positive. We interpret the electrons with 0 <e<e, as quasi-
free and exclude them from the internal partition function of
the ion. We introduce an occupation probability w,,,;, equal
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FIG. 2. Monoelectronic energies of He-like carbon (v=2)
as a function of the fiducial electronic density ng; solid line: for
T=3.71 X 10° K and 1s,25,2p,3s,3p,3d states (from bottom to top);
dashed line: for 7=2.32 % 10° K and the 1s state. Upper and lower
limits of energy bands are marked as €, and e_.

to the statistical weight of electrons with €<0 (the signifi-
cance and thermodynamic meaning of occupation probabili-
ties in the chemical picture of plasmas has been discussed,
e.g., in Refs. [20,33,34]).Assuming for the bands the Hub-
bard [35] density of states

v . -5 €, — E_ _ €t €

2
ﬂeﬁ=;55V52—(e—eV, o= 5 =T

(10)

we obtain, for e.<0<e,

Won =

= (E+ + E_)/(E+ - 6—)'

(11)

The occupation probability of a term a is w,,=I1(,)c W
For all electron shells nl, except the K shell, €. becomes
positive at sufficiently high w,; in this case w,,;=0 and the
bound state disappears. The lowest curves in Fig. 1 end at the
densities where the bound states cease to exist in the plasma
for a given v.

For the K shell of H- and He-like ions, €_ is negative
at any density. Asymptotically, at large u, (small R,) and
for a uniform density n,, € =-0.3(Z,.—v)e*/R,, while

€,=0. 5m_1(7'rﬁ /R,)*. Therefore, at high densities

oot = (61 T (Zugo— VIR 5a o] Peen;

The electrons, that populate the bands overlapping with
the continuum, are delocalized, and thus add to the free-
electron degeneracy through the Pauli exclusion principle. It
means that at a given n; the presence of such electrons in-
creases w,. Conversely, at a fixed w,, the electrons that are
pushed into continuum have a larger neutrality volume, cor-
responding to the unscreened shell. Since the share of these
quasifree electrons is (1-w,,), an effective ion charge for
such a partially delocalized state [to be used in Eq. (4)] is
Z,=Zpe—vw,—v (1-w,), where w,=w,, for the lowest
level @ of the ion with v electrons, and v* < v is the number
of electrons remaining on the inner shells (v*=0 for 1s and
1s2).

The contribution of the internal degrees of freedom into
the free energy is calculated as Fi,=—-2,N,kgTIn Z,

— 1
- X\J'l —y? — — arcsin(y),
T T

N | =
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where Z,=3 w,.d,, exp(=E,,/kgT) is the internal partition
function of the ion in the plasma.

C. Total free energy model

We evaluate F,,+F;;+F;, in Eq. (1) as described in Sec.
IT A. Albeit this is not strictly correct for ions with bound
states, which are not pointlike, we need this approximation to
make practical EOS calculations.

The total free energy, normalized to NkgT, can be written

as
fi
= , 12
f= NkB ="+ fint (12a)
where £=> x, f,+ [+ Zf,, (12b)
fi=In(\)) = 1 = s, (12¢)
Me P,
= Xo— Do Xe= o, p.= , 12d
fe=Xe=Pe X kT P neaT (12d)
F, S
fmt — Smix = Zmix (126)
NkgT’ Nikg’

and P, is the free-electron pressure. All terms of f can be
calculated using the fitting formulas [25,26], and only fi,
should be evaluated numerically.

III. THERMODYNAMIC EQUILIBRIUM
A. Equilibrium conditions

Thermodynamic equilibrium at constant V and T realizes
at the minimum of the Helmholtz free energy F,. Since the
total number of the ions in all ionization states is fixed, this
minimum must be found under the constraint X, N,=N,. The
charge neutrality condition is satisfied automatically, because
the total number of electrons equals Z,. in each ion cell by
construction, however at cost of the a priori unconstrained
volume. In order to maintain V=constant, one should impose
the condition 2, N,v,=V

These equilibrium conditions can be written as

f=minimum; Gy=Gy=1; YV v; (13a)

GN=2xw

where f=f(x,,T,{x,}) is given by Eq. (12), n; and T are
fixed, while y, and x, may vary.

x,=0,

Gy=n,2 x,0,, (13b)

B. Finding the equilibrium

While solving the constrained minimization problem (13),
we take into account the condition Gy=1 explicitly, by set-
ting xo=1-3%mu'x  and discard those {x,} sets which
would result in the negative right-hand side of this equation.
As mentioned above, we do not consider the neutral atoms
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FIG. 3. (Color online) Number fractions of different carbon ions
in the plasma (left vertical axis) versus temperature at p
=102 gcm™3. Solid lines: accurate results; dashed lines: Saha ap-
proximation with current partition functions. Numbers of bound
electrons v are marked near the curves. The thick solid curve shows

the mean effective charge Z (right axis).

(v=Z,uc). In order to satisfy the constraint Gy=1, we use the
Lagrange multiplier method. Namely, we minimize an aux-
iliary function

q)(nhT;Xe?{xV};)\) =f_ )\GV+ )\Z(GV_ 1)2 (14)

with respect to its arguments x, and x, (1<v<Z, .—1) for
different values of the Lagrange multiplier A, and find the A
value that gives Gy=1 at the minimum. The last (quadratic)
term in Eq. (14) is an empirical regularization term which
accelerates the solution. The solution provides the equilib-

rium values of Fyy, X, X,» and n,=Zn;.

At each value of N\, we approach min ® in two stages:
first, a rough position of the minimum is found by the sim-
plex method, and then it is refined by the Powell’s conjugate-
direction procedure [36]. In order to filter-out false local
minima, the minimization procedure is repeated several
times with different initial sets of parameters, and the abso-
lute minimum is selected. A search for the root of the equa-
tion Gy(\)=1 is performed by bracketing and bisection. Be-
cause of the complicated dependence of f and Gy on the set
of x,, and due to the limited accuracy of minimization, Gy/(\)
may exhibit a numerical discontinuity, which sometimes dis-
allows the bisection to converge, so we have tried several
initial guesses of A in such cases.

C. Calculating thermodynamic functions

Once Fy, is calculated for a range of temperatures
and densities, all thermodynamic functions can be found
from its derivatives. The first derivatives give the pressure
P=—0F,/dV|r, entropy S=-0dF,,/dT|y, and internal energy
U=-T23/9T(F o,/ T)|y=F+TS. The second derivatives give,
for example, specific heat Cy,=dU/dT|, and the pressure ex-
ponents (temperature and density logarithmic derivatives)
xr=0In P/dInT|y and x,=—3In P/d1n V|. In these deriva-
tives, NV; is kept fixed, but x, depend on V and 7, following
the solution in Sec. III B.
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FIG. 4. (Color online) Same as in Fig. 3, but at p=1 g cm™.

Although such calculation looks simple, it is technically
complicated. We achieved the accuracy of f within 0.003
over the p—T domain where the electron degeneracy is weak
or moderate (x,=10), and to four digits in the strongly de-
generate regime (where x,> 1), but this is insufficient for an
accurate evaluation of the second and mixed derivatives of f.
The difficulty is partly overcome by filtering the calculated
values. We performed calculations on a grid of (p,T) points
and evaluated the derivatives at each (p,T) point from using
the least-squares fit to the F' values at a hundred of neighbor-
ing grid points.

This filtering is not sufficient, if the electrons are strongly
degenerate. In this case, the T derivatives of In F;, In U, and
In P are so small that a tiny numerical noise may preclude
their evaluation. Fortunately, in this regime these derivatives
are mainly determined by f . We use the following modifi-
cation of Eq. (12a):

f=fitsm+fs f=2xInk,/2). (15

The values of f’, x,, and Z, and their p and T derivatives are
calculated numerically, as described above, whereas fﬁ and
its derivatives are obtained from the analytical fits [25,26].

The calculated functions Cy, x5, and x, still exhibit a
considerable numerical noise. To suppress it, we again em-
ploy the least-squares filtering. Improved values of pressure,
consistent with the filtered y;, are obtained by numerical
integration of the equation In P=y;dz, starting from the
lowest isotherm.

The thermodynamic stability (Cy,>0,P>0) and normal-
ity (x7>0) require that S/N;g monotonically increases
with decreasing p or increasing 7. To maintain these
properties, we calculate S by integration of the equations
3813V|y=xrPIT and dS/JT|,=C/T, starting from the high-
est p and lowest 7.

IV. RESULTS FOR CARBON

We have calculated the EOS for carbon at 2.34 X 10° K
<T<3.63X10°K and 10™* gem><p=<10* g cm™; at still
higher p the carbon plasma is fully ionized. For lower
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- p=100 g cm™3
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FIG. 5. (Color online) Number fractions (left axis) and the mean

effective charge Z (right axis) versus temperature at p
=100 g cm™.

temperatures, 7.5 X 10* K<T<=2.34X10° K, we have cal-
culated the EOS at 10 gcm™<p=<0.04 gcm™.
Figures 3-5 show the T-dependences of ion number frac-

tions x,, and the mean effective charge Z. At the lower den-
sities, the electrons are nondegenerate. In this case, the mean

jonization degree and Z depend sensitively on temperature.
At the high density (Fig. 5), the electron degeneracy is sig-
nificant, and the number of free electrons is mainly con-

trolled by pressure, rather than temperature, so that Z varies
weakly. However, the state of the bound electrons still de-
pends appreciably on 7: most of them are in the 1s state at
the higher T and in the 1s? state at the lower 7.

The nonideality effects are less important at lower density.
Therefore, the abundance of individual ion species at low
densities can be evaluated from the Saha equation

Xt Zoi ne< 2 k2 )3/2

X, Z, 2 \mkgT

(16)

as illustrated by Fig. 3 for p=0.01 gcm™. Note that the
shifts of bound-state levels in the plasma environment are
included in Z,. At p<0.01 g cm™, this approximation and
our calculations give identical results (this is one of the

T=108 K
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FIG. 6. (Color online) Same as in Fig. 5, but versus density at
constant T=10° K.
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FIG. 7. (Color online) Isotherms of normalized pressure
P/njkgT for T=5X% 10 K. The present data (solid lines) are com-
pared with the FGV77 (dot-dashed lines), FGV99 (dotted lines),
and fully ionized plasma (dashed lines) models. Note the different
scale in the figure above and below the horizontal long-dash line.

checks of our calculations), but at p=0.01 g cm™, Eq. (16)
becomes progressively inaccurate (Fig. 4). The differences
between Saha and our models in Figs. 3 and 4 are due to the
configurational effects (i.e., the deviations of the neutrality
volumes from their ideal values; see Fig. 1) and the Coulomb
plasma nonideality (Sec. IT A).

The p dependences of the ionization states at T=10° K
are shown in Fig. 6. They exhibit pronounced maxima
and minima due to the pressure ionization of particular
bound states in particular ionization stages. These features
are related to swelling and shrinking of the individual neu-
trality volumes relative to their rigid-background values (Fig.
1) and the corresponding changes in the internal partition
functions.

Figure 7 presents normalized pressure as a function of
density at T=5X 10> K. The vertical scale is smaller for the
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FIG. 8. (Color online) Isotherms of internal energy for T
=24%x10° K, 1.26X10°K, and 3.16X10° K (the curves are
marked by log T values). The present data (solid lines) are com-
pared with the FGV77 (dot-dashed lines), FGV99 (dotted lines),
and fully ionized plasma (dashed lines) models.
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FIG. 9. (Color online) Temperature exponent y; for isotherms
T=2.4x10° K and 1.26 X 10° K, compared with the FGV77 (dot-
dashed lines), FGV99 (dotted lines), and fully ionized plasma
(dashed lines) models (the curves marked with log T values).

upper part of the figure, to take account of the rapidly grow-
ing pressure of degenerate electrons. The difference between
our results and the FGV99 tables is in general of the same
magnitude as the difference between FGV77 and FGV99.
However, our isotherms exhibit more features. The slope
of each isotherm varies near the densities where the ion
composition of the plasma rapidly changes. These variations
could not be revealed by the Thomas-Fermi model, but
are easily grasped within the free-energy minimization
technique. Related variations are seen in Fig. 8, which
shows isotherms of the internal energy per unit mass,
U'=(U+U,)/Nm; measured from the energy level —U, of a
nonionized ground-state carbon, which corresponds to a shift
equal to 8.28 X 103 erg g~! with respect to the electron con-
tinuum level. The gap in the cold isotherm of the fully ion-
ized plasma model (dashed line) corresponds to the region of
instability of this model. Variations of the EOS due to the
changing plasma composition with increasing density are
also seen for the temperature derivative y7, shown in Fig. 9.

Figure 10 shows the normalized specific heat
cy=Cy/Nkg as a function of p for three values of 7. At low
p, where the electrons are nondegenerate, the ideal-gas
value of ¢y is ciy=1.5(Z+1). Actually ¢, approaches ci at
T=3 X 10° K, where the ionization is almost complete but in
general, these two quantities can differ considerably, in par-
ticular because the heat absorbed by a partially ionized me-
dium is spent not only on the increase of the kinetic energy
of the ions and electrons, but also on thermal ionization. At
very high densities, the specific heat is mostly determined by
the ions. For a classical ion solid cy=3; for a strongly
coupled ion liquid ¢y~ 3.4 near the melting I' (Eq. (17) of
Ref. [26]). The corrections due to the ion-electron interac-
tions and quantizing ion motions are within 10% in the high-
density part of Fig. 10. This explains the limit ¢y, =~ 3 seen at
high p.
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FIG. 10. (Color online) Normalized specific heat at

constant volume cy=Cy/Nkg for T=3.16x10° K, 10°K, and
3.16 X 10% K (the curves marked with log T’ values). Present data
(solid lines) are compared with the fully ionized plasma model
(dashed lines).

At p=1000 g cm™, our model reproduces the EOS for a
fully ionized nonideal plasma [26].

V. CONCLUSIONS

We have developed a model for calculation of the EOS
for dense, partially ionized plasmas, based on the free energy
minimization method and suitable for pressure ionization
zones. The free energy model is constructed in the frame-
work of the chemical picture of plasmas and includes de-
tailed self-consistent accounting of quantum states of par-
tially ionized atoms in the plasma environment. Occupation
probability formalism based on the energy bands is used to
treat pressure ionization.

The developed technique is applied to the carbon plasma
at temperatures 7= 10° K, which is relevant for inner enve-
lopes of the carbon-rich white dwarfs or outer accreted en-
velopes of the neutron stars. For general astrophysical appli-
cations of various type of stars, it is desirable to extend the
calculated EOS to other chemical elements, first of all to
oxygen. We are planning to perform such calculations in the
near future.
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