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The analytical theory of premixed laminar flames accelerating in tubes is developed, which is an important
part of the fundamental problem of flame transition to detonation. According to the theory, flames with
realistically large density drop at the front accelerate exponentially from a closed end of a tube with nonslip at
the walls. The acceleration is unlimited in time; it may go on until flame triggers detonation. The analytical
formulas for the acceleration rate, for the flame shape and the velocity profile in the flow pushed by the flame
are obtained. The theory is validated by extensive numerical simulations. The numerical simulations are
performed for the complete set of hydrodynamic combustion equations including thermal conduction, viscos-
ity, diffusion, and chemical kinetics. The theoretical predictions are in a good agreement with the numerical
results. It is also shown how the developed theory can be used to understand acceleration of turbulent flames.
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I. INTRODUCTION

Two regimes of premixed burning are well-known: a slow
subsonic regime of flame and a fast supersonic regime of
detonation �1,2�. Chemical reaction propagates in these two
regimes due to different physical mechanisms, and for the
same fuel mixture the velocities of a flame and a detonation
typically differ by three-four orders of magnitude. Still, quite
often in the experiments a flame in a tube may spontaneously
accelerate until it triggers detonation �1,3–8�. Acceleration of
premixed flames and transition to detonation is one of the
most important and, probably, one of the least understood
problems in combustion science. Numerous experimental
studies have demonstrated the following steps in the transi-
tion: a flame accelerates, pushes weak shocks, the shocks
interact, get stronger, compress and heat the fresh fuel mix-
ture, which finally explodes somewhere between the leading
shock and the flame front and produces detonation. However,
up to now there was very limited theoretical understanding
of the flame acceleration, which is the reason and the most
important part in the flame-detonation transition. The first
explanation of the acceleration was suggested by Shelkin in
the classical work �3�, see also Ref. �4�; the explanation is
related to the nonslip boundary conditions at the walls. As a
flame front propagates from a closed tube end, the burning
matter expands; it pushes a flow of the fresh fuel mixture;
friction at the tube walls makes the flow nonuniform, which
bends the flame front, increases the flame velocity and leads
eventually to the flame acceleration. On the basis of that idea
Shelkin has proposed a semiempirical criterion of flame ac-
celeration, according to which any realistic flame with large
density drop at the front is expected to accelerate from a
closed tube end. However, since the time of Shelkin, there
was a common opinion that flame acceleration is impossible
without external turbulent flow. That was a fatal trouble for
constructing the acceleration theory, because turbulent burn-
ing is a key problem of combustion science, which has not
been solved yet despite of almost a century of intensive re-
search, see, for example, Refs. �1,9–20�. In addition, if we

forget the complications due to burning, still much contro-
versy remains about turbulence itself even in the simplest
classical configurations such as flows in tubes �21,22�. By
this reason, Shelkin’s explanation of the flame acceleration
has not been transformed into a theory, which could describe
the process and predict the acceleration parameters. More-
over, as the combustion science developed further, other can-
didates for the explanation of accelerating flames appeared.
One of them was the hydrodynamic Darrieus-Landau �DL�
instability of the flame front �1,2�, which corrugates an ini-
tially planar flame front and increases the flame velocity. For
a long time it was unknown, how strong the flame accelera-
tion because of the instability may be. Recent results on the
nonlinear stage of the DL instability with realistic density
drop at the front have shown that in the case of limited hy-
drodynamic length scale �e.g., for flames in tubes� the accel-
eration is too weak and too short to provide the detonation
triggering for realistic flame parameters �23–25�. Of course,
the DL instability may lead to unlimited acceleration in the
opening �25–27�, but the shock waves generated by a flame
in the opening diverge and decay. Another acceleration
mechanism was proposed in Ref. �28�, which is coupled to
the transition from statistically spherical to statistically pla-
nar geometry of flame propagation on the early stages of
burning in tubes just after ignition. This mechanism works
also for a very short time; it fails as soon as the flame
touches a tube wall. Finally, in a sequence of papers, Sivash-
insky with co-authors has discussed one more mechanism of
flame transition to detonation due to the hydraulic resistance,
see Ref. �29�, and references therein. The mechanism of hy-
draulic resistance studied in Ref. �29� is one dimensional,
which was already quite different from the intrinsically mul-
tidimensional scenario proposed by Shelkin �3�. As a result,
because of the mathematical difficulties coupled to the tur-
bulent burning, Shelkin’s explanation of accelerating flames
was put aside for a long time, and it has not been developed
into a theory.

Only recently a constructive idea was suggested �30,31�
that turbulence plays a supplementary role in the accelera-
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tion, which is possible even for laminar flames with nonslip
at the tube walls. The idea was probed in a few numerical
simulation runs and revived the interest to the Shelkin expla-
nation of flame acceleration. The idea of laminar flame ac-
celeration is incredibly helpful for the theory because it al-
lows the understanding of the effect independently of the
unsolved problems of turbulent combustion. Unfortunately,
the numerical studies �30,31� were too limited and provided
little information beyond the fact that laminar flames can
accelerate.

Here we develop the analytical theory of the flame accel-
eration, which explains the effect and predicts its main ten-
dencies. According to the theory, flames with realistically
large density drop at the front accelerate exponentially from
a closed end of a tube with nonslip at the walls. The accel-
eration is unlimited until a flame triggers detonation. We find
the analytical formulas for the acceleration rate, for the flame
shape and for the velocity profile in the flow pushed by the
flame. We validate the theory by extensive numerical simu-
lations. The numerical simulations are performed for the
complete set of combustion equations including thermal con-
duction, viscosity, diffusion and chemical kinetics. The the-
oretical predictions are in a good agreement with the numeri-
cal results. We also show how our theory can be used to
understand acceleration of turbulent flames.

II. THEORY OF ACCELERATING FLAMES

To be particular, we consider a laminar flame propagating
in a two-dimensional �2D� tube of half-width R with adia-
batic walls and nonslip at the walls as shown schematically
in Fig. 1. Burning matter expands as it passes the flame front;
density ratio of the fuel mixture � f and the burnt gas �b is
typically rather large, �=� f /�b=5–8. Because of the ther-
mal expansion, a flame propagating from the closed tube end
pushes the fresh fuel mixture and generates a flow. As we
have found below in the numerical simulations, the stream
ahead of the flame may be well approximated by a plane-
parallel flow along the walls u= êzuz�x , t�. In the theory we
assume the flow ahead of the flame to be exactly plane par-
allel. Of course, a solution obtained in such a way is only an
approximate one. In order to describe dynamics of a thin
flame front rigorously one has to solve the gas-dynamic
equations in the fuel mixture and in the burnt matter, and to
match the solutions at the flame front �25,32–34�. A solution
obtained in that way takes into account a large number of
different effects such as the DL instability. However, the
complete rigorous solution of gas-dynamic flame equations

is an extremely difficult problem, which has been solved so
far only in some asymptotic limits and/or under simplifying
assumptions. Making the assumption of a plane-parallel flow
of the fuel mixture we may describe only the flame accelera-
tion because of the boundary conditions, but cannot take into
account the DL instability �1,4,25�. Still, the flame accelera-
tion because of the nonslip at the walls is so strong, that the
instability working in the same geometry provides only tiny
corrections to the burning rate. As we will see below, our
assumption works quite well in the case of well-developed
flame acceleration. On the contrary, contribution of the DL
instability may be significant in the very beginning of the
acceleration process.

In the theory we use the traditional approach of an infi-
nitely thin flame front propagating locally with normal ve-
locity Uf with respect to the fuel mixture �1,4,25�. The
normal velocity Uf may be treated as a hydrodynamic con-
stant determined by thermochemical parameters of a particu-
lar fuel mixture. However, the total burning rate Uw is
different from the normal velocity Uf: it shows how much
fuel mixture is consumed per unit time by the whole flame
front and how much energy is produced. As a result, the
larger the flame surface area in comparison with the tube
cross section, the larger the burning rate. In the chosen 2D
geometry the relative increase in the burning rate is simply
equal to the increase in the total length Df of the flame front
Uw /Uf =Df /2R. Because of the flame propagation, 2D “vol-
ume” of the burning gas increases by ��−1�2RUw per unit
time, which generates a flow with the average velocity

�uz� = �� − 1�Uw, �1�

where �¯� designates averaging over the tube cross section.
The generated flow is not uniform. Friction stops the gas
close to the walls, while flow velocities at the tube axis are
larger than the average one. The nonuniform velocity profile
distorts the flame shape, which leads to the flame accelera-
tion. As we show below, asymptotically in time the flame
accelerates exponentially,

Uw � exp��Uft/R� . �2�

The dimensionless acceleration rate � is an eigenvalue,
which has to be found from the problem solution.

To simplify the analytical calculations we introduce
standard scaling choosing R, Uf, and R /Uf as units of
length, velocity and time. In that case we work with the
dimensionless values �� ;��= �x ;z� /R, �= tUf /R, w=u /Uf,
	w=Uw /Uf, 
 f =Df /R. The scaled burning rate is coupled to
the scaled length of the flame front as 	w=
 f /2, the average
velocity of the flame-generated flow is �wz�= ��−1�	w, and
the exponential acceleration of the flame front is described as
	w�exp����. A plane-parallel flow ahead of the flame front
obeys the Navier-Stokes equation

�wz

��
= −

�p

��
+

1

Re

�2wz

��2 , �3�

where the pressure gradient is produced by the flame
front, the density and pressure are scaled by � f and � fUf

2,
respectively. The value Re=RUf /� plays the role of the

FIG. 1. A flame in a tube with nonslip at the walls.
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Reynolds number for the problem. In the case of a plane-
parallel flow the pressure gradient is a function of time only
−�p /��=����. For usual almost isobaric burning with char-
acteristic velocities much lower than the sound speed, the
weak shocks pushed by the flame have the properties of lin-
ear acoustic waves. Then pressure perturbations are propor-
tional to the increase in the burning rate with �����	w���.
Taking into account the exponential regime of flame accel-
eration, the Navier-Stokes equation for wz�� ,��
=
���exp���� reduces to an equation for the velocity profile

���

�2
 = C� + 
�, �4�

where �=��Re. The constant C� comes to Eq. �4� because
of forcing ���� and it may be calculated from Eq. �1�. Using
the nonslip boundary conditions 
=0 at �= ±1 we find the
solution to Eq. �4�


 = 	
cosh � − cosh����

cosh � − 1
, �5�

where we have introduced a more convenient amplitude 	
instead of the constant C�. Thus we obtain the velocity pro-
file generated by the accelerating flame

wz = 	 exp����
cosh � − cosh����

cosh � − 1
. �6�

Averaging Eq. �6� along the flame front and taking into ac-
count Eq. �1� we find

�� − 1�	w = 	 exp����
cosh � − �−1 sinh �

cosh � − 1
. �7�

Then the velocity profile pushed by the flame becomes

wz = �� − 1�	w
cosh � − cosh����
cosh � − �−1 sinh �

. �8�

Figure 2 presents the characteristic velocity profile �8� plot-
ted for �=0.1,2 ,8. For relatively large value �=8 the flow
resembles qualitatively a combination of two boundary lay-
ers at the walls separated by the main stream, which is prac-
tically uniform. Still, there is an important difference be-
tween a boundary layer and the flow we have obtained.
Width of a boundary layer between a uniform stream and a

planar wall grows along the wall �2�. On the contrary, in the
flow generated by the accelerating flame, the velocity profile
and the width of the transitional layers do not change
with distance from the flame. In that sense the accelerating
flow resembles the classical Poiseuille flow of a viscous
fluid in a tube. We can reproduce the Poiseuille result from
Eq. �8� taking infinitely slow acceleration of a flame front
��→0,�→0�. We can see the same parabolic dependence
in Fig. 2 for �=0.1. The case of �=2 is an intermediate one
between large and small values of �, but even for �=2 the
velocity profile differs only slightly form the Poiseuille
solution.

The flame shape �and the burning rate� is controlled by
relative motion of different parts of the flame front. Every
piece of the front moves because of two reasons: �1� it propa-
gates with respect to the fuel mixture with normal velocity;
�2� it is drifted by the flow. For example, the flat top of the
flame at the axis moves with the scaled velocity 1+wz�0,��.
We describe the flame shape with respect to the top point by
the scaled function f�� ,��=F /R defined by use of the flame
position � f�� ,�� as � f =� f�0,��+ f�� ,�� with f�0,��=0 at the
flame top by definition. If a small piece of the flame front is
inclined, then it sweeps more fuel mixture per unit time be-
cause of the increased surface area as �1+ ��f /���2�1/2. In
addition, the front piece is drifted by the flow, which leads to
local propagation velocity along the walls wz+ �1
+ ��f /���2�1/2. This velocity is different from the velocity of
the flame top, and the flame shape gets distorted as

−
�f

��
= wz�0,�� − wz + 1 − �1 + 	 �f

��

2�1/2

. �9�

Equations similar to Eq. �9� are quite typical in the nonlinear
science. As an example, it has many common features with
the eikonal equation, which describes interfaces growing in a
turbulent flow �11� �known also as the G equation in com-
bustion theory�. However, the important difference between
Eq. �9� and the eikonal equation is that the flow in Eq. �9� is
determined by burning in a self-consistent way, while in Ref.
�11� it may be prescribed “by hands” independent of the
spreading interface. The last term in Eq. �9� is well known in
the theory of turbulent flames and the DL instability as the
kinematic Huygens stabilization of flame wrinkles
�1,4,11,13,20,23,25,35–38�. The physical mechanism of such
stabilization is that inclined parts of the front try to catch up
with the flat top due to the geometric velocity increase,
�1+ ��f /���2�1/2−1�0. Obviously, we have the same ten-
dency for accelerating flames in Eq. �9�. However, in the
present case the velocity shear because of the nonslip at the
walls wz�0,��−wz distorts the flame so strongly that the Huy-
gens mechanism is unable to stop the acceleration. After
some transition time we have ��f /���2�1 almost every-
where, which makes the Huygens term in Eq. �9� linear and
eliminates the possibility of a nonlinear stabilization. Of
course, we would like to stress that the condition of a
strongly inclined front ��f /���2�1 is not valid in the flat
region around the flame top. Still, the flat region does not
influence the increase of the burning rate and does not affect
the analytical theory. Then Eq. �9� reduces to

FIG. 2. The velocity profile uz, Eq. �8�, scaled by the amplitude
Umax for different values of the parameter � :�=0.1;2 ;8.
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−
�f

��
= wz�0,�� − wz − � �f

��
� . �10�

Due to the problem symmetry with respect to the axis �=0
in the following we may consider only the domain ��0,
where �f /���0 and 
�f /��
=−�f /��. Then the burning rate
	w becomes proportional to the flame amplitude

	w��� =

 f

2
= �

0

1 �1 + 	 �f

��

2�1/2

d�

� �
0

1 � �f

��
�d� = − f�1,�� �11�

and Eq. �10� takes the form

−
�f

��
= wz�0,�� − wz +

�f

��
. �12�

Since Eq. �12� is linear, then it has the solution in the form of
exponential acceleration in time

f��,�� = ����exp���� . �13�

Substituting Eqs. �6�, �7�, �11�, and �13� into Eq. �12� we find
an equation for the flame shape

�� = − �� + �� − 1���1�
cosh���� − 1

cosh � − �−1 sinh �
. �14�

Integrating Eq. �14� we obtain the flame shape as

���� =
�� − 1���1�exp�− ���

cosh � − �−1 sinh �
�

0

�

�cosh���� − 1�exp����d�

�15�

or

� =
�� − 1���1�exp�− ���

cosh � − �−1 sinh �
� exp��� + ���� − 1

2�� + ��

−
exp�− �� − ���� − 1

2�� − ��
−

exp���� − 1

�
� �16�

or for the whole tube −1���1

� =
�� − 1���1�

cosh � − �−1 sinh �
	 exp��
�
�

2�� + ��
−

exp�− �
�
�
2�� − ��

+
�2

�2 − �2

exp�− �
�
�
�

−
1

�

 . �17�

To find the acceleration rate � we use the condition ����
=��1� for �=1

� cosh � − sinh �

��� − 1�
=

exp �

2�� + ��
−

exp�− ��
2�� − ��

+
�2

�2 − �2

exp�− ��
�

−
1

�
. �18�

Particularly, in the limit of large thermal expansion, leading
to ��1, we find from Eq. �18� with the accuracy of
exp�−��

� + � = �� − 1�
�

� − 1
�19�

or

� = �� Re =
Re − 1

2
	�1 +

4 Re �

�Re − 1�2 − 1
 , �20�

with

� =
�Re − 1�2

4 Re
	�1 +

4 Re �

�Re − 1�2 − 1
2

. �21�

In the case of large values of the Reynolds number,
Re�4�, Eq. �21� predicts decrease of the acceleration rate
� with the Reynolds number, which becomes

� = �2/Re, � = � . �22�

We can see that the limit of exp�−���1 holds with a very
good accuracy for flames with realistically large thermal ex-
pansion �=5–8. Thus, in the present section we have devel-
oped the analytical theory of accelerating flames, which ex-
plains the effect, predicts the acceleration rate Eqs. �18�,
�21�, and �22�, the flame shape �17�, and the velocity profile
generated by the flame �8�. The theoretical formula predicts a
planar top of the flame front around the axis with sharp tran-
sitional regions by the walls as illustrated by Fig. 3 for the
parameter values Re=25 and �=4,6 ,8. Qualitatively the
flame shape resembles the velocity profile, see Fig. 2.

At the end of the section it is also interesting to investi-
gate the limits of the acceleration regime and compare them
to Shelkin’s criterion. In that case �f /��=0 and Eq. �9� re-
duces to

0 = wz�0,�� − wz + 1 − �1 + 	 �f

��

2�1/2

, �23�

with the Poiseuille velocity profile

wz =
3

2
�� − 1�	w�1 − �2� �24�

instead of Eq. �8�. The factor 3 /2 comes from the relation
max�wz�=3�wz� /2, which holds for the Pouseuille flow in the

FIG. 3. The flame shape ����, Eq. �17�, scaled by 
��1�
 for the
fixed Reynolds number Re=25 and different expansion factors
�=4,6 ,8.
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2D geometry. Averaging Eq. �23� over the tube cross section,
we find

0 = wz�0,�� − �wz� + 1 − 	w. �25�

Taking into account Eq. �1� we come to the formula for the
propagation velocity of a stationary flame

	w = 	1 −
1

2
�� − 1�
−1

. �26�

According to Eq. �26�, stationary flame propagation is pos-
sible, if ��3; in the case of stronger thermal expansion
flame accelerates. The propagation velocity of stationary
flames is shown in Fig. 4 versus the expansion factor. As
thermal expansion approaches the acceleration limit the sta-
tionary burning rate 	w tends to infinity. The formula �26� is
similar to the Shelkin criterion of flame acceleration

�� − 1�ks � 1, �27�

where the coefficient ks shows the relative difference be-
tween the maximal and average flow velocity in a tube

ks =
max�uz�

�uz�
− 1. �28�

Shelkin evaluated the above coefficient empirically for a tur-
bulent flow as 0.2�ks�0.25, which is comparable to our
results for the laminar flow. Thus, our results are consistent
with Shelkin’s idea, and we have developed the idea into the
rigorous theory of accelerating flames.

III. BASIC EQUATIONS OF THE DIRECT NUMERICAL
SIMULATIONS

To validate the theory we have performed direct numeri-
cal simulations of the hydrodynamic combustion equations
including transport processes and chemical kinetics. In the
present subsection we describe the basic equations and the
numerical methods used in the modeling. We use dimen-
sional values and variables, the designations are standard for
fluid mechanics. Flame dynamics obeys the following set of
equations:

��

�t
+

�

�xi
��ui� = 0, �29�

�

�t
��ui� +

�

�xj
��uiuj + 
ijp − �ij� = 0, �30�

�

�t
	�� +

1

2
�uiui
 +

�

�xj
	�ujh +

1

2
�uiuiuj + qj − ui�ij
 = 0,

�31�

�

�t
��Y� +

�

�xi
	�uiY −

�

Sc

�Y

�xi

 = −

�Y

�R
exp�− E/RpT� ,

�32�

where Y is the mass fraction of the fuel mixture, �=QY
+CVT is the internal energy, h=QY +CpT is the enthalpy, Q
is the energy release in the reaction, CV, Cp are the heat
capacities at constant volume and pressure. We consider a
single irreversible reaction of first order and of the Arrhenius
type with the activation energy Ea and the constant of time
dimension �R. The stress tensor �ij and the energy diffusion
vector qj are

�ij = �	 �ui

�xj
+

�uj

�xi
−

2

3

�uk

�xk

ij
 , �33�

qj = − �	Cp

Pr

�T

�xj
+

Q

Sc

�Y

�xj

 , �34�

where ���� is the dynamic viscosity, Pr and Sc are
the Prandtl and Schmidt numbers, respectively. The gas
mixture is a perfect gas of a constant molecular weight
m=2.9�10−2 kg/mol with CV=5Rp /2m, Cp=7Rp /2m,
where Rp�8.31J / �mol K� is the perfect gas constant. The
equation of state is

P = �RpT/m . �35�

We consider a flame propagating in a two-dimensional tube
of half-width R with adiabatic boundary conditions and with
nonslip at the walls

u = 0, n̂ · �T = 0, �36�

where n̂ is a normal vector at the wall. The flame propagates
from the closed end of the tube to the open one. We take
the initial pressure and temperature of the fuel mixture
Pf =105 Pa and T=300 K, respectively. The thermal and
chemical parameters of the fuel mixture were chosen to re-
produce the most important properties of methane and
propane laboratory flames. We use the dynamic viscosity
�=1.7�10−5 N s/m2, and considered two values of
the Prandtl number Pr=0.5; 1. To avoid the Zeldovich
�thermal-diffusion� instability we take unit Lewis number
Le�Pr/Sc=1. The activation energy was Ea=56RpTf. We
took the planar flame velocity Uf =34.7 cm/s and
Uf =24.5 cm/s for Pr=0.5 and Pr=1, respectively. These val-
ues of the planar flame velocity provided realistically slow
flame propagation in comparison with the sound speed �the
Mach number was about 10−3�. Using realistically small val-
ues for the Mach number we face extra difficulties from the
numerical point of view, since large difference between the
flame velocity and the sound speed increases the computa-

FIG. 4. The scaled velocity of a stationary flame front Uw /Uf

versus the expansion factor �.
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tional time strongly. Still, the realistically low values of the
Mach number were necessary to avoid influence of gas-
compression effects on the burning process and even detona-
tion triggering, as it was in the previous papers on accelerat-
ing flames �30,31�. For comparison, in the simulations �31�
the propagation velocity of the flame front close to the tube
axis reached 160 m/s. The flame thickness in our calcula-
tions is defined conventionally as Lf �� /PrUf. Thermal ex-
pansion in the burning process is determined by the energy
release in the reaction; we took �=8 typical for methane and
propane burning.

We use a two-dimensional Eulerian code developed in
Volvo Aero. The code is robust and it was utilized quite
successfully in studies of laminar burning, the hydrodynamic
flame instabilities, development of corrugated flames and re-
lated phenomena, see Refs. �23,25,38�. The numerical
scheme of the code and the computational methods were
described in details in our previous papers �23,38�. In the
present simulations we considered different tube widths
10Lf �2R�70Lf, which exceeded up to 7 times the tube
widths used in the previous papers on direct numerical simu-
lations of accelerating flames �30,31�. We took the tube
length much larger than the tube width �70–110�R, which
corresponded to the tube lengths up to 2.5�103Lf. At such
large values, variations of the tube length did not influence
the simulation results. We use a rectangular grid with the grid
walls parallel to the coordinate axes. To perform all the cal-
culations in a reasonable time we made the grid nonuniform
along the z axis with the zone of fine grid around the flame
front. In that zone the grid size was 0.2Lf in the z direction,
which allowed us to resolve quite well the internal flame
structure. Outside the region of fine grid the mesh size grows
gradually with �2% change in size between the neighboring
cells. We employed the same method successfully in Refs.
�23,38� to study the DL instability of the flame front. How-
ever, unlike the studies �23,38�, in the present problem the
flame is strongly curved, which results in strong increase of
the burning rate. By this reason, we have much stronger nu-
merical limitations on the tube width than in our previous
studies of the DL instability. In order to keep the flame in the
zone of fine grid we applied adaptive mesh moving together
with the flame. Along the x axis we used a uniform grid. The
number of cells in the z direction was different for different
tube widths: the wider the tube, the larger the number of
cells. To keep the simulation time reasonable in wide tubes
we took up to 50 cells in the x direction, so that the grid size
was comparable to Lf. By using such a grid we were able to
resolve quite well the zone of large velocity gradients close
to the walls. To check if the number of cells was sufficient
for the problem, we have performed test simulation runs with
number of cells increased 3 times in the x direction and
obtained the same results within the accuracy of �5–10�%.
This value may be considered as the numerical accuracy of
our computations. Similar to our previous papers �23,38� we
used the Zeldovich-Frank-Kamenetsky solution for a planar
flame front as an initial condition. The planar flame front was
created at a distance 12R from the closed tube end. Choosing
other initial conditions �for example, with a strongly
wrinkled flame front� we have obtained the same regime of
exponential flame acceleration, but with another transition

time required for the wrinkles to vanish. We kept nonreflect-
ing boundary conditions at the open end of the tube as de-
scribed in Ref. �23�. Using such conditions we avoided re-
flections of weak shocks and sound waves from the open
end, which otherwise might influence burning and the pro-
cess of flame acceleration.

One of the main dimensionless parameters of the problem
is the Reynolds number defined above as Re=RUf /�. Taking
into account the formula for the flame thickness Lf, we
couple the Reynolds number to the scaled tube half-width
R /Lf

Re =
RUf

�
=

R

PrLf
. �37�

By changing the tube half-width R and the Prandtl number
we varied the Reynolds number within the limits 5�Re
�50. Still, we would like to stress that the above definition
for the Reynolds number characterizes flame dynamics. The
standard definition for the Reynolds number describing the
flow ahead of the flame front has another form

Reflow =
2R�uz�

�
= 2�� − 1�Re Uw/Uf . �38�

The Reynolds number of the flow Reflow increases as the
flame accelerates. For sufficiently large values of Reflow the
stream in the tube may become turbulent. We performed the
simulations as long as Reflow remained within the character-
istic limits of the laminar flow. In order to study the flow
turbulization properly one has to introduce the fine grid far
ahead of the flame front, which would increase the compu-
tational time enormously, and which is beyond the subject of
the present paper.

The main value investigated in the simulations was the
scaled burning rate Uw /Uf. One can calculate the burning
rate applying equation Eq. �1� sufficiently close to the flame
front. To be even more accurate, in order to find Uw we have
taken the difference of �uz� ahead of the flame front and
behind the front similar to Refs. �23,38�. Still, in the present
problem the volume flux behind the front is about 1% and
less of the flux ahead of the front and may be neglected. For
every simulation run the dependence Uw�t� tends �after some
transition time� to the regime of exponential acceleration
Uw�exp��tUf /R�. The exponential acceleration started typi-
cally for Uw /Uf �2 or even earlier. In order to calculate the
acceleration rate we eliminated the transition part of the de-
pendence Uw�t� and approximated ln�Uw /Uf� by the linear
function. Since the dependencies Uw�t� were not exactly ex-
ponential, the values of the acceleration rate calculated for
different parts of the plot may differ. Local variations of �
did not exceed 5% for smaller values of the Reynolds num-
ber Re�25, and they could reach as large as �10–15�% for
Re�25. This happened, first of all, because it is more diffi-
cult to achieve good computational accuracy in wider tubes
corresponding to the larger values of the Reynolds number.
The other reason was that the acceleration rate decreases
with the Reynolds number, and the same absolute variations
of � lead to a larger relative numerical error. The variations
of � were typically smaller for Pr=0.5 in comparison with
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Pr=1. The above uncertainty determines the accuracy of cal-
culating the acceleration rate � in the present paper. Remark-
ably, that the uncertainty in calculating � is about the same
as the estimates for the computational accuracy, which we
have obtained above by changing the number of cells in the
x direction.

IV. SIMULATION RESULTS

As we pointed out above, the main parameter of simula-
tions is the Reynolds number Re=RUf /�, which we varied
by changing the tube half-width R with respect to the flame
thickness Lf �� /PrUf, see Eq. �37�. The other parameter
coming into the formula �37� for the Reynolds number is the
Prandtl number. We have considered Pr=0.5; 1 in the simu-
lations. Figure 5 shows typical evolution of the flame shape
in the simulation run for Re=25, Pr=1. The flame shape is
presented by isotherms 600 K�T�2100 K plotted with the
step in temperature �T=300 K for different time instants. As
we can see, the initial planar flame becomes distorted quite
fast; the flame front acquires a curved shape, which remains
self-similar in the following evolution. The flame shape re-
sembles the theoretical predictions shown in Fig. 3. To per-
form the quantitative comparison, we have plotted the theo-
retical flame shape and the isotherms obtained in the
numerical simulations on one figure, Fig. 6, for Re=25,
Pr=1 at the time instant tUf /R=1.15. According to Fig. 6,
the theoretical predictions agree quite well with the numeri-
cal results. Only two interesting features are different for the

theory and the simulations in Fig. 6. First, in the simulations
the flame front becomes wider close to the walls in compari-
son with the central part of the tube. Such an effect is, obvi-
ously, beyond the scope of the model of an infinitely thin
front used in the theory. Second, we can observe a little
trough close to the tube axis in the simulations, while the
theory predicts a flat top of the flame front. A similar trough
was observed in earlier simulations of the accelerating flames
�30,31�. At present we cannot say for sure what the origin of
the trough is. One possibility is that it develops because of
the particular initial conditions, which were basically the
same in the present paper and in the earlier papers �30,31�.
The other possibility is that the trough is a footprint of the
DL instability developing at the locally planar part of the
flame front close to the tube axis. We would like to stress that
the locally planar part of the flame is accelerating. In the
accelerating reference frame the flame experiences an effec-
tive gravity pointing from the heavy fuel mixture to the light
burning products. As a result the DL instability at the planar
flame top must be enhanced by the Rayleigh-Taylor instabil-
ity similar to the studies �23–25�. The flow configuration in
that case resembles also the hydrodynamic instability �DL
plus Rayleigh-Taylor� in the ablation flow of the inertial con-
fined fusion �39�.

Figure 6 presents also the streamlines of the flow pro-
duced by the accelerating flame. As we can see, the stream-
lines are parallel to the tube walls with a good accuracy
everywhere up to the flame front, which justifies the assump-
tion of the plane-parallel flow made in the theory. To check
this property of the flow quantitatively, in Fig. 7 we have
presented the velocity distribution ahead of the flame front
for the simulation run with Re=25, Pr=1 at the time instance
tUf /R=1.15. The markers correspond to the simulation re-
sults at the distances 10R ;20R ;35R �circles, triangles, and
crosses� from the flame. The arrows illustrate the direction of
the flow. As we can see, the velocity profile does not change
as we move away from the flame front. This is true, of
course, as long as the distance is not too large, for which
even tiny effects of gas compression and nonzero Mach
number may become noticeable. Figure 7 compares also the
numerical results and the theoretical predictions for the ve-
locity profile �8�. We can see that the theory agrees quite well
with the numerical simulations.

FIG. 5. Evolution of the flame isotherms �from 600 to 2100 K
with the step of 300 K� in the simulation run for Re=25, the
tube half-width R=25Lf and the unit Prndtl number Pr=1. The
positions �a�, �b�, �c�, �d�, �e� correspond to the time instants
t= �0;2.03;4 ,06;6.09;7.1��10−3 s, respectively.

FIG. 6. Characteristic flame shape and streamlines of the flow
obtained in the simulations of the present paper for Re=25, Pr=1 at
the time instant tUf /R=1.15. The dashed lines show the isotherms
from 600 K of the fuel mixture to 2100 K of the burning products.
The solid lines with arrows are the streamlines. The flame shape
obtained theoretically is also shown by the solid line.

FIG. 7. The velocity profile uz scaled by the amplitude Umax.
The solid line shows the theoretical result �8�. The markers corre-
spond to the simulation results for Re=50, Pr=1 at the distances
10R ,20R ,35R �circles, triangles and crosses� from the flame at the
time instance tUf /R=1.15. The arrows illustrate the direction of the
flow.
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Modifications of the flame shape shown in Fig. 5 produce
some increase in the burning rate Uw. Time variations of the
scaled burning rate Uw /Uf are presented in Fig. 8 by solid
lines for different simulation parameters Re=10,20 �Pr=1�
and Re=30 �Pr=0.5�. As we can see, in the initial stage of
small flame curvature Uw /Uf−1�1 a flame accelerates in a
relatively slow regime. However, quite soon the acceleration
becomes exponential. Roughly speaking, we may treat the
acceleration regime as exponential when �1+ ��f /���2�1/2

�
�f /��
, which holds with the accuracy of 25% already for

�f /��
�2. Indeed, as we can see in Fig. 8, the acceleration
regime becomes exponential with rather good accuracy for
Uw /Uf =2–2.5. The dashed lines in Fig. 8 show the respec-
tive exponential approximations for every plot. Because of
the exponential acceleration the burning rate Uw /Uf in-
creased by order of magnitude in a rather short time deter-
mined by the inverse acceleration rate. The increase of the
burning rate could be even stronger, but in that case we
would be out of the laminar regime. We would like to stress
that the velocity increase obtained in the flame acceleration
is much stronger than that provided by the DL instability. For
comparison, in the same geometry but with ideal slip at the
walls the DL instability increases the burning rate only by
�20–30�% relative to Uf �23,25,38�. Figure 9 shows the ac-
celeration rate � versus the Reynolds number, the solid line

and the markers present the theory, Eq. �21�, and the simu-
lation results. As we can see, the theory predicts the accel-
eration rate quite well both qualitatively and quantitatively.
In agreement with the theory we observe strong decrease of
the acceleration rate with the Reynolds number. The numeri-
cal results deviate from the theoretical predictions only for
narrow tubes R /Lf �7, when the finite flame thickness influ-
ences the acceleration.

V. SUMMARY AND DISCUSSION

In the present paper we have developed the analytical
theory of flame acceleration in tubes. In agreement with
Shelkin’s idea, the flame accelerates because of the nonslip
boundary conditions at the tube walls. The developed theory
predicts the main features of flame acceleration: the expo-
nential in time regime of acceleration �6�; the acceleration
rate �21�; the flame shape �17�; and the velocity profile in the
flow pushed by the flame front �8�. According to the theory,
the acceleration rate decreases with the Reynolds number of
the flow �for example, with increase of the tube width�.

We have validated the analytical theory by extensive di-
rect numerical simulations of the combustion equations in-
cluding transport processes and chemical kinetics. Predic-
tions of the analytical theory are in a good agreement with
the numerical results.

It is also interesting to compare flame acceleration be-
cause of the nonslip at the tube walls to other “candidates”
for the explanation of accelerating flames �we use the same
dimensionless units as in Sec. II�. One of the candidates was
the DL instability. According to the linear theory of the DL
instability, small perturbations of an infinitely thin flame
front grow as f �exp���� with the instability growth rate
�1,4,25�

� =
��

� + 1
��� + 1 − 1/��1/2 − 1� . �39�

For example, taking �=8 we obtain �=5.5, which is larger
than the acceleration rate obtained in the present paper. How-
ever, a planar-in-average flame front accelerates because of
the DL instability only during a very short time. As the flame
velocity increases, the Huygens nonlinear mechanism re-
duces strongly the acceleration rate and eventually stops the
acceleration. The acceleration goes on until the velocity of
flame propagation becomes about Uw /Uf =1.2–1.3 for the
tube width considered in the present paper. On the contrary,
flame acceleration because of the nonslip at the walls is not
limited in time, which makes it much more interesting from
the point of view of the detonation triggering. The DL insta-
bility can ignite detonation only in the case of artificially
large initial values of the Mach number.

The other interesting mechanism of flame acceleration
was considered in Ref. �28� in the context of the tulip flame
phenomenon. This mechanism concerns the initial stage of
flame propagation in a tube, when a spherically in-average
flame front just after ignition develops into a front, which is
planar-in-average. At that stage the flame has not touched the
walls yet, and the flame shape resembles a finger. As it was
shown in Ref. �28�, in that case the distance from the finger

FIG. 8. The burning rate Uw /Uf versus time for Re=10,20
�Pr=1� and Re=30 �Pr=0.5�. The solid lines show the simulation
results, the dashed lines show the respective exponential approxi-
mations used to calculate the acceleration rate.

FIG. 9. The acceleration rate � versus the Reynolds number Re.
The solid line shows the theoretical result �21�, the markers present
the simulation results for Pr=0.5 �circles� and Pr=1 �triangles�.
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bottom to the tip grows exponentially in time with the accel-
eration rate �=2�, which leads to strong acceleration of the
flame front in the case of realistic thermal expansion �e.g.,
�=16 for �=8�. However, the described mechanism works
only during a very short time. According to Ref. �28�, the
flame front changes from spherical to “finger”-shaped at the
time instant about �sph�0.1, and the flame touches the wall
at �wall�0.26. The whole time of flame acceleration is lim-
ited from above by �wall−�sph�0.16. Therefore, unlike the
DL instability, such a mechanism can provide increase of the
burning rate Uw /Uf by order of magnitude. For sufficiently
fast flames such as burning in hydrogen-oxygen mixtures, it
can be responsible for the detonation triggering. Still, in the
case of usual slow flames it cannot provide long-time work-
ing acceleration like the acceleration because of the nonslip
at the walls.

Finally, we point out how our theory explains accelerating
turbulent flames observed experimentally �1,3–8�. First, our
theory predicts strong decrease of the acceleration rate �
with the Reynolds number, which agrees with experiments
and explains why the acceleration is very slow in tubes with
smooth walls. However, it was noticed already by Shelkin
�3� that rough walls make the acceleration much faster. In-
deed, in that case the average profile of the turbulent velocity
does not depend on the Reynolds number and may be ap-
proximated by the logarithmic function �2� ln�y /d�, where y
is the distance from the wall and d is the characteristic size
of the wall nonuniformities. Replacing the laminar velocity
profile by the logarithmic function, and the laminar flame
velocity Uf by the average turbulent flame speed Ut we
evaluate the dimensionless acceleration rate � from Eq. �21�
rewritten for the cylindrical geometry. Unfortunately, we are
not aware of any experimental measurements of �; the ex-

perimental results concern typically the dimensional charac-
teristic length or time of flame acceleration �1,3–8�. These
values, of course, depend on �, but they also involve the
turbulent flame speed Ut, which by itself is an important
problem of hydrodynamics and combustion science waiting
for solution. Particularly, Ut depends on turbulent intensity,
which increases during the flame acceleration because of the
increase of the Reynolds number. We hope that theoretical
understanding of the flame acceleration achieved in the
present paper will provide a good platform for more elabo-
rated experiments.

It is not clear if the flame acceleration investigated in the
present paper is possible in real tubes in the laminar regime
of burning. Formally, the tube widths studied here are pretty
narrow, about several millimeters. Tubes of this type are used
in combustion experiments quite seldom, mostly in the con-
text of flammability limits �1�. Obviously, in such a narrow
tube one cannot neglect heat loss to the walls as we did in the
present analysis. As pointed out by the referee, the accelera-
tion rate predicted in the present paper is of the same order of
magnitude as the cooling rate to the walls. Therefore, trying
to observe acceleration of laminar flames in narrow tubes,
one may obtain the acceleration rate much smaller than the
values predicted in the present paper, if there will be any
acceleration at all. As an alternative, one may observe flame
oscillations in a tube with strong cooling at the walls similar
to Ref. �31�.
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