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We study prebifurcation fluctuation amplification in nonlinear oscillators subject to bifurcations of sponta-
neous symmetry breaking which are manifest in the doubling of stable equilibrium states. Our theoretical
estimates of both the linear growth and the nonlinear saturation of the fluctuations are in good agreement with
our results from numerical simulations. We show that in the saturation mode, the fluctuation variance is
proportional to the standard deviation of the external noise, whereas in the linear mode, the fluctuation variance
is proportional to the noise variance. It is demonstrated that the phenomenon of prebifurcation noise amplifi-
cation is more pronounced in the case of a slow transition through the bifurcation point. The amplification of
fluctuations in this case makes it easier to form a symmetric probability of the final equilibrium states. In
contrast, for a fast transition through the bifurcation point, the effect of amplification is much less pronounced.
Under backward and forward passages through the bifurcation point, a loop of noise-dependent hysteresis
emerges here. We find that for a fast transition of the nonlinear oscillator through the bifurcation point, the
probability symmetry of the final equilibrium states is destroyed.
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I. INTRODUCTION

In nonlinear systems, pregeneration noise amplification is
commonly observed at the threshold of self-sustained oscil-
lations. This was shown for both radiophysical and optical
self-sustained oscillating systems �1�. Noise amplification
near the generation threshold is conditioned by the decrease
of losses in the oscillator casting the real part of one of the
Lyapunov indices of the system from negative to positive
values. The initial state of the system loses its stability and
the amplified pregeneration noise turns into an effective push
for self-sustained oscillations.

Pregeneration of noise amplification is a particular case of
a more general phenomenon, the prebifurcation amplification
of fluctuations �2� and of weak signals due to the decrease
�down to zero at the critical point� of the damping strength
�3–5�. The linear theory developed in �3–5� predicts unlim-
ited growth of fluctuations when approaching the bifurcation
point.

Nonlinear analysis of prebifurcation noise amplification
was performed in �6� for the case of period doubling bifur-
cations in the logistics map. In this case, similarly to the
general one, the Lyapunov exponent changes from negative
to positive. However, in general, the change of the sign of
the real part Re � of Lyapunov exponent � now leads not to
emerging generation of oscillations but to the transition of

the system from the unstable state to one of the two possible
stable states.

The aim of this work is to study this phenomenon of
prebifurcation noise amplification in a nonlinear oscillator
subject to a bifurcation of spontaneous symmetry breaking �a
pitchfork bifurcation�. Such a bifurcation is known to lead to
two new stable states instead of one stable equilibrium state
which loses its stability. The increase of the fluctuations is
just due to a decrease of the linear frequency of the oscillator.
As the linear frequency goes to zero, the nonlinear effects
become important, and a self-consistent analysis has to be
carried out.

In Sec. II, we describe the model of a nonlinear oscillator
where doubling of stable equilibrium states may take place.
Examples of such a system are one-dimensional cross oscil-
lations of a rod squeezed along its axis �see Sec. II�. In Secs.
III–V, we present analytical and numerical estimations of the
fluctuation level under fast and slow changes of a control
parameter. Section VI presents results of numerical model-
ing. Section VII describes the phenomenon of noise-
dependent hysteresis in the system under consideration. Fi-
nally in Sec. VIII, it is shown that under fast bifurcation
transitions in the nonlinear oscillator, the probability symme-
try of the stable final states is destroyed.

II. DYNAMIC MODEL

We start by considering oscillations in a nonlinear oscil-
lator described by the second-order equation*Electronic address: selena@iki.rssi.ru
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d2x

dt2 + 2�
dx

dt
+

�U�x�
�x

= ��t� . �1�

Here � is the damping strength, ��t� is the noise forcing the
system, and U�x� is the potential energy.

As is well known, the number of minima of the potential
energy profile U�x� in the nonlinear oscillator determines the
number of equilibrium states �7�. Under the bifurcation of
spontaneous symmetry breaking, a transition from a one-
minimum potential to a two-minimum one takes place. This
is accompanied by a doubling of the number of stable states.
The potential

U�x� = Ax4 + Bx2 �2�

corresponds to bifurcation of spontaneous symmetry
breaking. For B�0, it has one minimum Umin=0 �at x=0�,
and for B�0, there are two equal negative minima
Umin�x±�=−�B2� /4A located at x±= ±��B� /2A with the maxi-
mum Umax=0 in between at x=0.

Assume parameter B to be dependent on time, B=B�t�,
taking positive values B�0 for t� t* and negative ones for
t� t*. Such behavior is demonstrated, e.g., by the function

B�t� = − �0
2 arctan g��t − t*� . �3�

The coefficient � characterizes here the speed of the change
of the control parameter.

For a physical prototype of the system described by po-
tential �2�, we can take one-dimensional cross oscillations
�along the axis x� of a flat rod �ruler� under the influence of
a squeezing force along its axis that grows in time. At a
critical squeeze when B turns to zero, the rod undergoes a
bifurcation of spontaneous symmetry breaking and takes a
curved shape corresponding to one of the two stable states x+

or x− �8�.
The goal of this paper is to determine the variance

��x�t�− x̄�2�		x
2 of the response of x�t� to the fluctuation

force ��t� �x̄ is the mean value equal to the stationary value�
and in that way we describe both the growth and nonlinear
saturation of the prebifurcation noise amplification shortly
before the bifurcation.

We will assume that the fluctuation force ��t� is a station-
ary random process with the autocorrelation function

���t����t��� = 	�
2
��t� − t�� , �4�

where 	�
2 is the variance and 
���� is the autocorrelation

function. We define the correlation time �� as the time when
the autocorrelation function goes down to the value 0.5. Be-
low we will restrict attention to short-time correlated pro-
cesses, i.e., �� is small compared to the period of the free
oscillations 2� /�0 of the unperturbed oscillations, so that
�0��
2�. Hence, the noise is similar to white noise.

III. ESTIMATION OF FLUCTUATIONS UNDER SLOW
CHANGE OF SYSTEM PARAMETERS: WKB

APPROXIMATION

Under a low amplitude of the oscillations and for
B�t��0, Eq. �1� can be linearized

ẍ + 2�ẋ + �2�t�x = ��t� , �5�

where ��t�=�B�t�. For a slow enough decrease of B�t�, i.e.,
when �
�0, x�t� is fairly well described by the Wentzel-
Kramers-Brillouin �WKB� approximation:

x�t� =
Ax

���t�
e−�t cos���t� + �0� , �6�

where

��t� = 

0

t

��t��dt�.

It is easy to apply the same approximation to the Green’s
function of Eq. �5�:

g�t,t�� = �0 at t � t�,

e−��t−t��

���t���t��
sin �g�t,t�� at t � t�, � �7�

where

�g�t,t�� = 

t�

t

��t��dt�.

Using the Green’s function �7�, the solution of the heteroge-
neous linear equation �5� can be written as

x�t� = 

−�

t

g�t,t����t��dt�, �8�

and the variance 	x
2= �x2�t�� as

	x
2 = 


−�

t

dt�

−�

t

dt�g�t,t��g�t,t�����t����t��� . �9�

For short-time correlated noise �4� and the Green’s function
�7�, this expression takes the form

	x
2 = ��	�

2

−�

t

g2�t,t��dt�

= ��	�
2 1

��t�
−�

t e−��t−t��

��t��
sin2 �g�t,t��dt�. �10�

Substituting for sin2 �g�t , t�� its mean value 1/2, we get the
estimate

	x
2�t� = 	�

2 ��

2���t���t�
, �11�

where 1/��t� denotes the integral

1

��t�
= �


−�

t e−��t−t��

��t��
dt�, �12�

representing the value 1/��t�� time averaged with the weight
� exp�−��t− t���.

It is worth mentioning that for a constant frequency
�=�0, the expression �11� turns into the well-known expres-
sion for steady fluctuations of the linear oscillator under
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short-time correlated fluctuation forcing ��t� �1�

	0
2 = 	�

2 ��

2��0
2 . �13�

When approaching the bifurcation point t= t*, where B�t�
turns to zero, the linear estimate �11� describes a growing
fluctuation variance reflecting the prebifurcation amplifica-
tion of the noise. The solid line in Fig. 1 represents this
fluctuation growth. The values 1/��t� and 1/��t� from Eq.
�11� go to infinity for t→ t*. The linear estimate �11� follows
the same path, as is shown in Fig. 1 by the dash-dotted line.
Obviously, the linear estimate �11� based on the WKB ap-
proximation is not applicable in the vicinity of the bifurca-
tion point. However, we will demonstrate in the next section
that for t→ t* it is possible to obtain a nonlinear estimate for
the variance 	x

2 and will show that it takes finite values even
at the bifurcation point.

A peculiarity of the bifurcation scenario consists in the
fact that while approaching the point of bifurcation, the real
parts of the Lyapunov exponents �=Re � do not go down to
zero as for the Landau-Hopf bifurcation and the period dou-
bling bifurcation. That is why the fluctuation increase here is
not related to loss decrease. Instead, we have a transforma-
tion of a pair of conjugate complex exponents �1,2=−�± i�
into a pair of real exponents, one of which is positive. As a
result, the prebifurcation noise amplification is now con-
nected with the decrease of the frequency �=Im �, because
for �→0, the amplitude of the free oscillations grows as
1/���t�.

IV. NONLINEAR ESTIMATIONS OF FLUCTUATION
INTENSITY IN THE VICINITY OF THE BIFURCATION

POINT

As discussed above, expression �11� based on linear
theory loses its validity in the vicinity of the bifurcation
point. This occurs due to nonlinear effects arising under in-
finite growth of the fluctuations. Nonlinear effects can be
neglected as long as the fourth-power term in �2� is small
compared to the second-order term:

A�x4� 
 �B�t���x2� . �14�

Supposing the fluctuations � and x are Gaussian, for estima-
tions we assume

�x4� = 3�x2�2 = 3	x
4

and then rewrite inequality �14� as

�B�t�� � 3A	x
2 =

3A	�
2��

2���t���t�
. �15�

If we also assume that the characteristic oscillation attenua-
tion time 1/� is less than the characteristic change time 1/�
of the frequency ��t�, i.e., ���, then from Eq. �12�, we get

1

��t�



1

��t�
. �16�

Then Eq. �15� takes the form

B2�t� = �4�t� �
3A	�

2��

2�
. �17�

From �17�, we infer the estimate

Bmin � �3A	�
2��

2�
�1/2

�18�

for the permitted distance to the point of bifurcation, and
from �11� together with �16�, we estimate

	x max
2 � 	�� ��

6�A
�19�

for the maximum fluctuation intensity. Therefore, for
B�Bmin, the linear effects of fluctuation growth are replaced
by the nonlinear saturation to be reached at the fluctuation
intensity 	x max

2 . The horizontal line in Fig. 1 denotes the
value 	x max

2 . A similar saturation of the fluctuation intensity
is found for period doubling bifurcations as well �6�. A gen-
eral approach for estimating the saturation level is discussed
in �9�.

It is useful to introduce the prebifurcation noise amplifi-
cation factor K as the ratio of 	x max

2 to the fluctuation inten-
sity �13� at �=�0:

K =
	max

2

	0
2 =

1

	�
� 2�

3A��
�1/2

�0
2. �20�

This value indicates how many times the fluctuation intensity
in the saturation zone is greater than the stationary fluctua-
tion intensity of the oscillator.

The phenomenon of prebifurcation increase of fluctuation
intensity is accompanied by another phenomenon—
prebifurcation correlation time increase. The latter also expe-
riences saturation in the vicinity of the bifurcation point. In
fact, one can speak about a prebifurcation rise and subse-
quent saturation of the correlation time. This phenomenon is
found for period doubling bifurcations �10�. It is noteworthy
that the phenomenon of prebifurcation correlation time in-
crease has a general nature. It is also observed in a nonlinear
oscillator subject to bifurcations of spontaneous symmetry
breaking and described in the present paper. This approach
looks to be a good prospect for analysis of different bistable
systems �11� and nonlinear geophysical systems in which a
period doubling bifurcation and a bifurcation of spontaneous

FIG. 1. Nonlinear estimate of the fluctuation variance.
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symmetry breaking take place. Such a system is, for ex-
ample, the Kuroshio current system �12�.

V. FLUCTUATIONS UNDER A VERY FAST CHANGE
OF THE OSCILLATOR PARAMETERS

Above we considered fluctuations for rather slow changes
����� of the oscillator parameters. For a fast passage
through the bifurcation point, that is, for ���, one
may expect some decrease of 	max

2 in comparison to the case
���.

The trend to a smaller 	max
2 with growing speed � of the

transition through the bifurcation point can be illustrated by
the extreme case �→�, when for t� t*, B�t� is constant and
equals �0

2, while for t� t*, it is constant as well but equals
−�0

2. In this case the fluctuation intensity at t� t* is constant
and equals 	0

2, so that the factor of the fluctuation amplifica-
tion yields K=1.

Naturally, for t� t*, we will observe an exponential
growth of the fluctuations due to the stability loss of the
equilibrium state x=0, but this will have no effect on the
fluctuations for t� t*.

VI. NUMERICAL SIMULATIONS

The nonlinear oscillator described above was numerically
tested for A=0.5, and values of B ranging from B0=100 to
Bf =10−8, that is, almost reaching zero. Changes of B were
slow enough to be in a quasistationary mode. The damping
index � was taken equal to 0.1. So, to satisfy the quasista-
tionary requirement, we needed the characteristic change
time of B to be small compared to 0.1.

The specified range of parameter B allows us to determine
the fluctuation variance both in the immediate vicinity of the
bifurcation point Bc=0 and far away from it �let us recall that
far from the bifurcation point, each value of B corresponds to
an oscillation frequency �0=�B�. For B�0, when the sys-
tem has only one stable solution �see bifurcation diagram in
Fig. 2�, this stable point x�0�=0 was taken as the initial
value, and the initial value of the derivative x��0� was taken
equal to 0.

A random number generator produced normally distrib-
uted values of ��t� with zero mean, ���t��=0, and a mean
square deviation 	� ranging from 10−6 to 10−1. The autocor-
relation function of the random process has a characteristic
time �� in the interval from 10−2 to 10−3, which is small

compared to 2� /�0. In this case, the results do not depend
on the shape of the autocorrelation function 
�; as it must be
for processes close to white noise. The use of other random
number generators producing, for example, uniformly dis-
tributed values of ��t� gave results qualitatively similar to
those obtained for normally distributed noise. The numerical
solution for �1� was obtained using a fourth-order Runge-
Kutta method with a fixed step.

Results of the numerical simulations are presented in Fig.
3, where the crosses show the dependence of the fluctuation
variance 	x

2 on B. We used a slow change of the parameter B
�quasistationary mode� and fluctuation variance 	�

2 =10−8.
The dash-dotted line corresponds to the fluctuation variance
	0

2 estimated in the linear mode �13� describing fluctuation
growth in the direction toward the bifurcation threshold. The
figure shows that the numerical results correspond well to the
linear estimate for B�Bmin, which is in line with �18�. With
a closer approach to the bifurcation point B=0, the fluctua-
tion variance reaches saturation at 	max

2 , marked by a hori-
zontal dashed line obtained from the estimate �19�.

For the considered quasistationary mode, at noise vari-
ance 	�

2 =10−8, the fluctuation amplification factor Kmax �17�
was 1.55�106. This value agrees in magnitude with the the-
oretical estimate Kmax=6.17�106.

Figure 4 presents our results on the numerical simulations
where we show the main property of the saturation regime:
the dependence of the fluctuation variance 	x max

2 on the
mean square of the noise forcing 	� is linear. The dash-
dotted line corresponds to the maximum fluctuation variance
	x max

2 �in nonlinear mode on the saturation level� obtained
by formula �Eq. �19��. The data of numerical simulations are
marked by crosses. The dashed line corresponds to the result
of approximation by power dependence 	x max

2 =0.192	�
1.2. It

should be noted that in these numerical simulations the phe-
nomenon of correlation time increase appears �10�. This
make difficulties and a long time for numerical simulations;
therefore in the case of weak noise �	�=10−7–10−5� the val-
ues of maximum fluctuation variance are less than expected.

FIG. 2. Bifurcation diagram of the nonlinear oscillator
�Eq. �1��.

FIG. 3. Prebifurcation noise amplification for a bifurcation of
spontaneous symmetry breaking. Fluctuation variance 	x

2 versus pa-
rameter B in the quasistationary mode �	�

2 =10−8, ��=3.5�10−3,
�=0.1, A=0.5�.
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Our qualitative estimate �Eq. �19�� is in satisfactory agree-
ment with the numerical results. The estimate �Eq. �19��
turns out to be only 40% larger as compared to numerical
data.

The described results are in qualitative agreement with the
data obtained earlier for period doubling bifurcations �6�: in
both cases, the fluctuation mean square 	x

2 is proportional to
the mean square noise deviation 	�, whereas the amplifica-
tion factor Kmax is inversely proportional to 	�.

VII. NOISE-DEPENDENT HYSTERESIS IN THE VICINITY
OF THE BIFURCATION POINT

Next we study the phenomenon of noise-dependent hys-
teresis in our system. Such a hysteresis occurs when after
passing through the bifurcation point, the system for a con-
siderable time remains on the unstable branch and only after
some time makes a rather quick transition to another stable
state �13,14�. The greater the speed of the control parameter
change, the more distinct is the hysteretic phenomenon.

In a quasistationary mode, when the parameter B changes
slowly, the bifurcation in the system occurs at the critical
value B=B*=0. Under a fast change of B, bifurcation of
stable state doubling happens only some time after the criti-
cal value B*=0 is passed, the delay “time” being dependent
on the speed of change of the parameter �.

Figure 5 presents results of numerical simulations of the
bifurcation transition in the nonlinear oscillator when B var-
ies via Eq. �3�. For illustrative purposes, Fig. 5 combines the
bifurcation diagram of the model that is stable for constant B,
but shows a hysteresis of x�B� for varying B. With the
change of B, the system, after passing the value B=B*, still
resides for some time in the vicinity of the unstable branch
�this time depends considerably on speed ��, and only after
that switches to one of the two stable states of the equilib-
rium. At a high transition speed �=300 �plot 3�, the delay
time �t3 is considerably greater than the delay time �t2 at
�=0.3 �curve 2� and the delay time �t1 under a very slow
transition with the speed �=0.03 �plot 1�. Under both for-
ward and backward transitions through the bifurcation point,

the system is known to slow down in the vicinity of the
former stable points. This delay phenomenon causes the
emergence of a hysteretic loop. Note that under the forward
transition through the bifurcation point, the system is more
sensitive to noise than under the backward transition. Figure
6 illustrates the phenomenon of hysteresis for the nonlinear
oscillator at �=3 �forward sweep� and −3 �backward sweep�.
As is clearly seen from this figure, the hysteretic loop dimin-
ishes with noise. This effect can be used to measure weak
noise in nonlinear systems as suggested earlier for systems
with period doubling bifurcations �14�.

FIG. 4. Dependence of the maximum fluctuation variance 	x max
2

in the saturation regime on the mean square of the noise forcing 	�

���=3.5�10−3, �=0.1, A=0.5�.

FIG. 5. Bifurcation diagram and solutions for the differential
equation �1�: slow transition through the bifurcation point,
�=0.03 �plot 1�; fast transition, �=0.3 �plot 2�; very fast transition,
�=300 �plot 3�.

FIG. 6. Forward and backward transition through the bifurcation
point at speeds �=3 �plot 1� and −3 �plot 2�; the impact of noise
	�

2 =1.87�10−7 at �=3 �plot 3�.
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VIII. PROBABILITY SYMMETRY BREAKING
IN NONLINEAR OSCILLATOR UNDER BIFURCATION

OF STABLE STATE DOUBLING

As is shown in �15,16� for period doubling bifurcations,
dynamic bifurcations under low noise are characterized by a
probability symmetry breaking. Under considerable noise,
the probabilities of the transitions into two equitable final
states are the same, each equaling 50%, while in the absence
of noise, the final state of the system is fully predictable and
depends only on the initial conditions and the speed of
change of the control parameter. The phenomenon of prob-
ability symmetry breaking is also observed in bifurcations of
spontaneous symmetry breaking. In the absence of noise, the
system transits with 100% probability into one of the two
possible final states determined by the speed of the transition
and the initial conditions. Under the impact of noise, the
probabilities of transition of a nonlinear oscillator with vary-
ing parameters into either of the two final states tend to be-
come equal.

Figure 7 illustrates the phenomenon of probability sym-
metry breaking in the nonlinear oscillator. In the absence of
noise, for the initial value x0=0 and the initial derivative
value x��0�=1, for the speed �=3, the dependence of x on B
is shown in plot 1. Under the impact of noise, the system
may transit into either the “upper” state �plot 2�, or the
“lower” state �plot 3�, and it will happen considerably earlier
than in the absence of noise �for numerical tests, we took the
noise variance 	�

2 =1.87�10−6�. Figure 8 shows the depen-
dence of final state probabilities on the initial values x0. As
seen in this figure, at noise variance 	�

2 =1.87�10−7, the
limits of the final state attraction zones are smeared by noise.
In contrast to discrete maps �16�, the pattern of the final state
attraction zones for a nonlinear oscillator depends not only

on initial values and the bifurcation transition speed, but on
the initial value of the derivative as well. In the case of low
speeds, the attraction zones are split up, resulting in even
greater system sensitivity to noise.

When the transition through a bifurcation point slows
down, the prebifurcation noise amplification pushes the final
state probabilities to become equal. Meanwhile, under fast
bifurcation transitions, the fluctuations in the vicinity of the
bifurcation point decrease and the predictability of the final
state rises.

IX. CONCLUSION

This work investigates fluctuations in a nonlinear oscilla-
tor subject to bifurcations of spontaneous symmetry break-
ing. Analytical estimates of prebifurcation noise amplifi-
cation are obtained for both linear and nonlinear approxima-
tions. It is shown that the variance of the forced fluctuations
	x

2 in the saturation mode �near the bifurcation point� is pro-
portional to the mean square of the noise forcing 	�, 	x

2

�	�, whereas in the linear mode �far from the bifurcation
threshold�, it is proportional to the noise variance 	�

2 , 	x
2

�	�
2 . Analytical estimates are in good agreement with

numerical results.
The prebifurcation fluctuation amplification is shown to

facilitate the establishment of probability symmetry of the
final equilibrium states. Under a slow change of the oscilla-
tor parameter, the impact of weak noise results in equalizing
the probabilities of the two possible final states. Under a fast
bifurcation transition, the effect of prebifurcation noise am-
plification weakens, the system becomes less sensitive to
noise, and the final states become more predictable �prob-
ability symmetry breaking�.

Finally, it is demonstrated that the bifurcation of sponta-
neous symmetry breaking in a nonlinear oscillator with vary-
ing control parameter is accompanied by a delay phenom-
enon, whose parameters strongly depend on the level of
noise, a noise-dependent hysteresis.
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FIG. 7. Probability symmetry breaking in the nonlinear oscilla-
tor. Bifurcation diagram and solution for Eq. �1� at �=3 �plot 1�;
solutions in the presence of noise with variance 	�

2 =1.87�10−7

�plots 2 and 3�.

FIG. 8. Final state attraction zones �solid lines�; smearing of
attraction zone limits by noise with variance 	�

2 =1.87�10−7 at
�=3 �dots�.
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