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The physics of k-core percolation pertains to those systems whose constituents require a minimum number
of k connections to each other in order to participate in any clustering phenomenon. Examples of such a
phenomenon range from orientational ordering in solid ortho-para H2 mixtures to the onset of rigidity in
bar-joint networks to dynamical arrest in glass-forming liquids. Unlike ordinary �k=1� and biconnected �k
=2� percolation, the mean field k�3-core percolation transition is both continuous and discontinuous, i.e.,
there is a jump in the order parameter accompanied with a diverging length scale. To determine whether or not
this hybrid transition survives in finite dimensions, we present a 1/d expansion for k-core percolation on the
d-dimensional hypercubic lattice. We show that to order 1 /d3 the singularity in the order parameter and in the
susceptibility occur at the same value of the occupation probability. This result suggests that the unusual hybrid
nature of the mean field k-core transition survives in high dimensions.
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I. INTRODUCTION

In a number of physical problems long-range order re-
quires more than a single stranded path to propagate over
long distances. One example of this is the propagation of
quadrupolar order in solid �ortho-H2�x�para-H2�1−x mixtures
�1�. This system can be reasonably modeled as a quenched,
site-diluted lattice of electrostatic quadrupoles interacting via
nearest-neighbor interactions on a fcc lattice. Since the low-
est state of two such quadrupoles at displacement r is one in
which one molecule may assume any orientation in the plane
perpendicular to r, it is clear that long-range order cannot
propagate down a long noncollinear single stranded path.
Therefore, to develop long-range order quadrupoles in an
“infinite cluster” must have more than two nearest-
neighboring quadrupoles.

Another such example of multipath long-range ordering is
rigidity percolation �2–6� where each occupied site on a lat-
tice has g degrees of freedom. The degrees of freedom of the
site become fixed as more neighboring sites become
occupied—one occupied neighbor constrains one degree of
freedom. Therefore, in order to participate in the infinite
rigid cluster, an occupied site must have at least g occupied
neighbors. Here, again, is an example of a constraint on the
minimum number of occupied neighbors giving rise to mul-
tiple long-range paths through the system.

More recently, an analogy between multipath percolation
and the onset of elasticity in repulsive soft spheres as the
packing fraction of the system is increased has been put forth
by Schwarz et al. �7� �SLC�. In the analogy overlaps between
particles correspond to occupied neighboring sites. To ensure
local mechanical stability for each particle, d+1 occupied
neighbors are required for each occupied site, otherwise the
site is unstable and it is removed from the system �as op-
posed to running into other particles in the system�. Here, the
d+1 constraint gives rise to multiply connected paths that
eventually span the system. The onset of elasticity in the
repulsive soft sphere system—a type of jamming transition
called point J—is thought to have implications for other phe-

nomena such as the glass transition and the colloidal glass
transition �8,9�.

The particular model of percolation called k-core, or boot-
strap, percolation �7,10,11� turns out to be the relevant model
of interest for such systems. For both the solid ortho-para H2
mixtures and the jamming system, k-core percolation is an
approximate description. However, for rigidity percolation,
at least on the Bethe lattice, g-rigidity percolation is equiva-
lent to �g+1�-core percolation �12�. In k-core percolation,
each bond is independently occupied with probability p and
vacant with probability 1− p. In addition, it is required that
sites with less than k occupied neighbors should be made
vacant. This “culling” operation proceeds recursively until
all remaining unculled occupied sites have at least k neigh-
bors, as illustrated in Fig. 1 for a Bethe lattice where each
site has z neighbors with z=4. Such a model gives rise to
“many” paths emanating to infinity from a single site for
large enough p.

Analysis of k-core percolation on the Bethe lattice by
SLC showed that the critical point has some unusual charac-
teristics. As was known previously �10�, they found that the
transition at p= p0—the p at which an infinite cluster
appears—is a discontinuous one for k�3, and the probabil-
ity P� that a site be in the infinite cluster �after culling�
exhibits the power law behavior:

P� = �0, p � p0,

P + a�p − p0�1/2, p � p0.
� �1�

This result is to be contrasted with k=1 single stranded per-
colation where P���p− p0� for p� p0 �13�. More strikingly,
SLC found a diverging correlation length and that an appro-
priate susceptibility has a power law divergence at the same
threshold value of p at which the order parameter has a dis-
continuity.

An immediate question then arises, is this unusual struc-
ture of the critical point characteristic of infinite d, or does it
survive for finite d? A clear answer to this question could be
provided if a field theoretical formulation of the problem
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were available, but at present, no such field theory exists.
�Although a field theory for the jamming transition based on
force balance, as opposed to local mechanical stability, has
been recently proposed �14�, it is not obvious that this model
is in the same universality class as k-core percolation in finite
dimensions.� As for lattice models in low d spatial dimen-
sions, until recently, numerical studies indicate that the
k-core transition is either continuous or pc=1, i.e., nothing
survives the culling process until the lattice is fully occupied
�15,16�. A case of the former is k=3 on the triangular lattice
�17�, and for the latter, k=3 on the square lattice �15�. In fact,
for k=3 on the square lattice it has been proven by van Enter
�18� that pc=1 �19�. Moreover, it has recently been proven
for hypercubic lattices that pc=1 for k�d+1 �20�. To date,
the only numerical evidence for a k-core transition with a
jump in the order parameter and yet a diverging correlation
length is a k-core-like model in two dimensions studied by
SLC �21�. This result supports the notion that the unusual
nature of the k-core transition found in the mean field sur-
vives in finite dimensions, though simple lattices, like the
square lattice, are probably not the place to look for such a
transition.

Lacking a k-core field theory and the sparsity of finite d
numerical results, we decided to implement an expansion in
1/d. As one sees for the Ising model, this expansion cannot
be used to discuss critical exponents, because these expo-
nents are independent of d for d�dc, where dc is the so-
called upper critical dimension. For the Ising model, dc=4
�22,23� and for ordinary percolation is dc=6 �24,25�. How-
ever, this expansion has been used to generate short series in
1/d for the critical value of the coupling constant in prob-
lems such as the Ising model and self-avoiding walks �26�,
for spin glasses �27�, for lattice animals �28�, and for ordi-
nary percolation �29�. Thus, this expansion is ideally suited
to answer the question or whether or not the unusual k-core

mean field transition survives in finite dimensions. It should
also be noted that the interpolation to continuous dimension
implied by this expansion is precisely the same �30� as that
used by Wilson in his development of the renormalization
group �22�. We will use this expansion to calculate correc-
tions up to order d−3 for the critical coupling constant at
which the discontinuity in the order parameter takes place
and compare it to the critical value at which the susceptibil-
ity diverges. Since we find that these two threshold remain
equal up to this order in 1/d, we conclude that it is likely that
this coincidence is robust and remains true at least for some
range of high d. We note that these results are stronger than
the results of Toninelli et al. �20� showing that the unusual
nature of the transition survives on Husimi trees �a Bethe
lattice with finite loops�, since, like the Bethe lattice, this
structure has an infinite fractal dimension and therefore pro-
vides no information on the situation for finite d.

Briefly this paper is organized as follows. In Sec. II we
review known results for the Bethe lattice to fix our notation.
Section III introduces the notion of perturbing the equation
of state. Section IV introduces the concepts behind the 1/d
expansion. Section V presents the perturbative 1/d correc-
tions to the equation of state, while Sec. VI does the same for
the susceptibility. In Sec. VII we summarize the conclusions
which may be drawn from our result, that to order 1 /d3 at
large d, the k-core transition remains a hybrid transition and
in Sec. VIII we discuss implications of our result for systems
such as glass-forming liquids.

II. BETHE LATTICE EQUATION OF STATE

In this section we construct the self-consistent equation
for the order parameter on the Bethe lattice for k-core bond
percolation. For this purpose we consider a rooted Bethe
lattice, i.e., a lattice emanating from a seed site �as in Fig. 2�
in which the lattice is constructed by recursively adding �
�z−1 sites to each bond. To construct the self-consistent
equation, the missing zth neighbor of the seed site is posited
to survive culling. Therefore, the entire cluster will survive
culling if each recursively added site has k−1 outward bond
connections to infinity. We therefore define the quantity P�

to be the probability that when we add a site to the cluster,
that site is then has k−1 outward bond connections to infinity
which survive culling. The probability that some site on a

FIG. 1. Culling of a cluster for k=3 on a Bethe lattice with
coordination number z=4. The filled circles indicate branches
which are k−1 connected to infinity. Culling removes the bonds at
a, b, and eventually at c, including the lower two sets of filled
circles, but the rest of the cluster survives.

FIG. 2. Diagrammatic representation of the EOS. Left: the un-
perturbed EOS based on a seed site, S, with � emerging bonds.
Right: the perturbation to the EOS from the insertion of a square, so
that now the seed site has �−2 single bonds and an attached square.

A. B. HARRIS AND J. M. SCHWARZ PHYSICAL REVIEW E 72, 046123 �2005�

046123-2



Bethe lattice is in the k-core can then be related to and has
the same type of singular behavior as P� for k�3 �7�. Ac-
cordingly, we have the self-consistent equation of P� as
�7,10�

P� = 1 − 	
m=0

m=k−2
�!

�� − m�!m!
�1 − pP���−m�pP��m, �2�

which we write in terms of Q� pP� as

Q/p = 1 − 	
m=0

m=k−2
�!

�� − m�!m!
Qm�1 − Q��−m � ��Q� . �3�

Starting at p=1, so that Q=1, we consider the effect of re-
ducing p and find that

dQ

dp
= �Q/p2�
1

p
−

d�

dQ
�−1

. �4�

As p is decreased, Q decreases until p reaches a critical value
pc at which

1

p
=

d��Q�
dQ

=
�� − k + 1�!

�� − k + 1�!�k − 3�!
Qk−2�1 − Q��−k+1. �5�

Indeed, when the description of the transition is phrased in
this way, it seems almost obvious that “turning on” finite
spatial dimension will not invalidate Eq. �1�.

III. PERTURBATIVE CORRECTIONS TO �„Q…

Now we wish to perturb the equation of state �EOS�. For
instance, we may consider what terms appear in the expan-
sion of the EOS which depend on the variables papbpcpd,
where a, b, c, and d form a square. We will construct

�� = �H − �B, �6�

where the subscript on � indicates whether it is to be evalu-
ated for the hypercubic �H� lattice or the Bethe �B� lattice.
This expression includes the additional iterative term �which
we only invoke once at order 1 /�2 where � is O�d�� for the
H lattice and it also takes account of terms which appear on
the B lattice but which do not have counterparts on the H
lattice.

To evaluate the derivative with respect to the p’s in this
expansion, we note that each occupied bond carries a factor
of p and each unoccupied bond carries a factor of 1− p. So
for any bare diagram of b bonds, the derivative with respect
to all its p’s will involve a sum of the 2b configurations of
occupied and unoccupied bonds, in which an occupied bond
carries a factor +1 and an unoccupied bond carries a factor
−1. Thus, from a square �which is the configuration giving
the leading correction at relative order 1 /�2� we generate 16
subdiagrams �the first of which is just the one for which all
bonds are occupied and the last of which is the one for which
all bonds are unoccupied�. Accordingly, the derivative with
respect to the four p’s which form a square �the leading
correction to the B lattice� gives rise to Figs. 3 for the H
lattice and to Figs. 4–6 for the B lattice.

If f�x� denotes the contribution to �� from square inser-
tions, which we call �sq, then

�sq = f�a� − 2f�b� − 2f�d� − 2f�i� + 2f�j� + 2f�k� − f�m�

+ 2f�n� − 2f�q� + 2f�r� , �7�

where we noted that f�f�= f�h�= f�l� and f�g�= f�p�. This
equation is represented in Fig. 7. The factors of 2 take ac-
count of the fact that some topologies occur in two equiva-
lent realizations. When we calculate the contributions f we
must include not only the factor papbpcpd= p4, but also the
number of ways �which depends on �� the bonds making up
the square can be selected out of the � available bonds. Since
this factor is of order �2, we see that �sq is of order p4�2

which we will see is of order �−2. As will also be seen later,
if we were only evaluating these corrections to leading order
in 1/�, then we would not need to differentiate between
diagrams �b�, �j�, and �r�, or between �d�, �k�, and �n�. Ac-
cordingly, at order 1 /�3, when we consider the analogous
contribution from hexagons, �hex, we do not have to be ex-
plicit about the configuration of the vacant bond�s� and we
therefore have the hexagon insertions shown in Fig. 8.

Percolation

We can apply the above formulation to calculate the cor-
rections to the critical concentration pc in the ordinary bond
percolation problem, and check the results by comparing to
those obtained by Gaunt and Ruskin �29�. For percolation, a
diagram contributes to the probability of the seed being con-
nected to infinity if one or more of its vertices is connected
to infinity. So, for the rooted Bethe lattice the EOS at the
transition is

P = 1 − �1 − pP��. �8�

FIG. 3. Contributions from the 16 subdiagrams �of diagram �a��
which result from either occupying �full line� or not occupying
�dashed line� each bond of the square on the H lattice. Greek letters
label sets of subdiagrams which cancel one another.

FIG. 4. As above, but for the B lattice. Vertices which are close
to one another would coincide on the H lattice.
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�The only nonpercolating case is if all vertices are not con-
nected to infinity.� Since the percolation transition is continu-
ous, the critical concentration is found by expanding the
EOS in powers of P. At linear order the solution requires that

1 = �pc. �9�

For hypercubic lattices the contribution to �sq from Eq. �7�
is written as

�sq =
1

2
�� − 1�2p4��1 − �1 − pP��−2�1 − P�−1�3�

− 2�1 − �1 − pP��−2�1 − P�−1�3� − 2�1 − �1 − pP��−2

��1 − P�−1�3� − 2�1 − �1 − P�2�1 − pP��−2�1 − P�−1�2�

+ 2�1 − �1 − P��1 − pP��−2�1 − P�−1�2� + 2�1 − �1 − P�

��1 − pP��−2�1 − P�−1�2� − �1 − �1 − P�2�1 − pP��−2

��1 − P�−1�2� + 2�1 − �1 − P��1 − pP��−2�1 − P�−1�2�

− 2�1 − �1 − P��1 − pP��−1�1 − P�−1�3�

+ 2�1 − �1 − pP��−1�1 − P�−1�3�
 , �10�

where the terms in square brackets denote diagrams �a�, �b�,
�d�, etc. from Fig. 7, and

P�−1 = 1 − �1 − pP��−1 + O��−2� . �11�

P�−1 is the probability that a site has at least k−1 connec-
tions to infinity out of �−1 bonds attached to the site. A
generalization of this quantity will be introduced later on.
�sq can be simplified to read

�sq =
1

2
�� − 1�2p4�− 2P�1 − pP��−1�1 − P�−1�3 + 3�1

− pP��−2�1 − P�−1�3 + 3�1 − pP��−2�1 − P�−1�2�1 − P�2

− 6�1 − pP��−2�1 − P�−1�2�1 − P�� . �12�

The factors of �1− pP��−2 and �1− pP��−1 ensure that the
bonds attached to the seed site but not in the square are
isolated from infinity, and the factor Nsq= ��−1�2 /2 counts
the number of possible squares. We construct Nsq using Fig.
9 as follows. Say the bond to which we wish to attach the
square is in the x1 direction. Then there are two cases: either
the square involves a bond in x1 direction or it does not. In
the first case the square involves the x1 bond and one of
2d−2=�−1 choices for the other axis of the square. The x1
bond can be either the first or the second leg of the square,
but we ignore this degeneracy because it simply corresponds
to traversing the square in different senses. So for this case
there are ��−1� configurations. In the second case the square
involves two out of d−1 dimensions, so there are 4�d−1�
��d−2� /2= ��−1���−3� /2 such configurations. In all

Nsq = �� − 1�2/2. �13�

This number would be twice as large if the sense in which
the square was traversed mattered. For hexagons the calcu-
lation is much simpler because we do not need to keep track
of the configuration of vacant bonds, which forces us to dis-
tinguish between P and P�−1 and which leads to corrections
of relative order 1 /�. Using Fig. 8, we write the contribution
to �� from hexagons in leading order of 1 /� as

FIG. 5. As above, but for the B lattice.

FIG. 6. As above, but for the B lattice.

FIG. 7. Diagrammatic representation of Eq. �7�. Note that there
are no diagrams with two unoccupied bonds. This is because for
every H lattice diagram there is a B lattice equivalent with a “cut”
between the two unoccupied bonds resulting in a cancellation.

FIG. 8. As in Fig. 7, contributions to ��Q� from hexagons on
either a H or a B lattice. Diagrams �f�, �g�, and �h� correspond to
sums of graphs on both the H and B lattices. For example, the
square equivalent to hexagon diagram �f� is the sum of diagrams
�b�, �r�, and �j� in Fig. 7. Diagrams similar to these give the contri-
bution to the susceptibility, 	H,A, due to hexagon insertions as we
will eventually show.
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��hex = − 2�3p6�1 − pP��−2�5�1 − P�5�1 − �1 − P��

+ 2�1 − pP��1 − P�5�1 − �1 − P��


= − 2�3p6�1 − pP��−2P�1 − P�5�5 + 2�1 − pP�� .

�14�

Here the factor 2�3 is �to leading order in 1/�� the number
of ways of attaching a hexagon to a site. Note that p
→1/�+O��−3� so that to the order we need, P�−1� P�1
− �1/���. Also note that for this continuous transition we
only need the contribution to �� which are linear in P. Thus
we set ��hex=−14P�−3 and then

�� = −
P

2�2�1 −
1

�
�2

�2 + 3�1 − �1/���
 − 14
P

�3 . �15�

Finally, using 1=�pc+d�� /dP, we get

�pc = 1 + �5/2��−2 + �15/2��−3 + O��−4� , �16�

in agreement with Ref. �29�.

IV. EXPANSION IN POWERS OF 1/�

Before getting into the calculation we should indicate how
the various variables are to be expanded in powers of 1 /�.
Consider Eqs. �3� and �5�. Set

p0 = 	
n


n�−n, Q0 = 	
n

�n�−n, �17�

where the subscripts “0” indicate that the quantities are those
of the Bethe lattice solution. Although we will not invoke the
actual values of the coefficients in these expansions, we will,
for illustrative purposes, determine the leading coefficients
�1�� and 
1�
, where

�



= 1 − e−� 	

m=0

m=k−2
�m

m!
�18�

and

1 = 
�k−2e−�. �19�

By eliminating 
, we obtain an equation which determines
�:

e� = �k−1 + 	
m=0

m=k−2
�m

m!
. �20�

For k=3, numerical evaluation yields the approximate values
�=1.793 282 133 and 
=3.350 918 872. As we shall see, it

is more convenient to express results in terms of p0 and Q0
because our main aim is not to explicitly obtain an expansion
for these quantities in powers of 1 /�, but rather to determine
whether or not the singularity in the EOS state coincides
with the singularity in the susceptibility.

Now we see how the critical coupling constants
pc�d� ,Qc�d� for hypercubic lattices are obtained after �� has
been evaluated. We write

Q

p
= �0�Q� + ���Q,p�,

1

p
=

d�0

dQ
+

d���Q,p�
dQ

, �21�

and set

p = p0 + �p, Q = Q0 + �Q . �22�

In this analysis we note that ����−2, so that to obtain
results to order �−3 we need only consider terms linear in
��, �p, or �Q. Then we have

Q0

p0
+

�Q

p0
−

Q0�p

p0
2 = �0�Q0� + �Q

d�0�Q0�
dQ

+ ���Q0,p0� ,

�23�

which gives

�p = −
p0

2

Q0
���Q0,p0� . �24�

Also

1

p0
−

�p

p0
2 =

d�0�Q0�
dQ

+ �Q
d2�0

dQ2 +
d���Q0,p0�

dQ
, �25�

which gives

�Q = �d2�0

dQ2 �−1�−
�p

p0
2 −

d��

dQ
�

= �d2�0

dQ2 �−1����Q0,p0�
Q0

−
d��

dQ
� . �26�

We introduce the following Bethe lattice quantities. First,
Rr

�−m is defined to be the probability that out of �−m avail-
able bonds, exactly r are k−1 connected outward �i.e. away
from the origin or seed of the cluster� to infinity and we set
Rr

�−1�Rr. �It is also convenient to set Rk−2�R.� This defini-
tion of R is illustrated in Fig. 10. Similarly we define P�−m to
be the probability that a site is at least k−1 connected to
infinity through the set of �−m of bonds and P�� P. Since
Q is of order 1 /�, we see that P�−m is of order 1 /�0 �assum-
ing m is of order unity�. One can likewise show that under
this same assumption Rr

�−m is also of order unity. Note when

FIG. 9. Attaching a square to a site.

FIG. 10. Definition of Rk
�−m �a� and P�−r �b�. Each site has �

+1 bonds.
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the superscript on P is of the form �−n then the superscript
indicates the number of bonds, as defined above. When the
superscript is a purely numerical value like 2, then this indi-
cates an exponent: P2= P� P.

We now express all the above Bethe lattice quantities in
terms of the canonical variables R, P, and Q0� p0P. We have

P�−r = 1 − 	
m=0

m=k−2
�� − r�!

�� − r − m�!m!
Q0

m�1 − Q0��−r−m, �27�

from which we obtain, correct to first order in 1/�, that

P�−r = P − rQ0R + O��−2� . �28�

Also,

Rm
�−1−r = Q0

m �� − 1 − r�!
m!�� − 1 − r − m�!

�1 − Q0��−1−r−m �29�

=Rm�1 + rQ0 −
rm

�
� + O��−2� , �30�

dP

dQ
= �R , �31�

and

dRm

dQ
=

�� − 1�!
�m − 1�!�� − m − 1�!

Q0
m−1�1 − Q0��−m−1

−
�� − 1�!

m!�� − m − 2�!
Q0

m�1 − Q0��−m−2

=
1

1 − Q0
� �� − 1�!

�m − 1�!�� − m − 1�!
Q0

m−1�1 − Q0��−m

−
�� − 1�!

m!�� − m − 2�!
Q0

m�1 − Q0��−m−1�
=

1

1 − Q0
��� − m�Rm−1 − �� − m − 1�Rm� = �� − m + Q�

��Rm−1 − Rm� + Rm + O�1/�� . �32�

V. 1/� EXPANSION FOR THE EQUATION OF STATE

In this section we will implement the 1/� expansion for
the EOS. Note that we are considering the effect of having a

square �or hexagon� of bonds with one vertex at the seed site
�Fig. 2�. All structures emanating from this square �or hexa-
gon� or from the other �−2 bonds which intersect the seed
site, may be assumed to be treelike because the occurrence of
more than one loop only influences terms of relative order
1 /�4 and we do not consider this order. Accordingly we
implement Eq. �7�. For squares we have f�n�= ���
−1�2p4 /2��f�n�, where n indicates the diagram as labeled in
Eq. �7�. Since the insertion of the square �or hexagon� can
contribute a maximum of two more paths to the boundary �or
infinity� at the seed site, we will break up diagram �a� of Fig.
7 into factors associated with having two, one, and zero
paths to infinity as illustrated in Figs. 11–13, respectively.
Thereby we find

�f�a� = �Rk−3
�−2 + Rk−2

�−2 + P�−2���P�−1�2 + 2R�P�−1�2 + 3R2P�−1

+ R3� + �Rk−2
�−2 + P�−2��2 + 4R�P�−1�1 − P�−1 − R�

+ P�−2��1 − P�−1 − R�2 + 2R�1 − P�−1 − R�2 + 3R2�1

− P�−1 − R��

= Rk−3
�−2��P�−1�2 + 2R�P�−1�2 + 3R2P�−1 + R3� + Rk−2

�−2

+ P�−2 − Rk−2
�−2��1 − P�−1 − R�2 + 2R�1 − P�−1 − R�2

+ 3R2�1 − P�−1 − R�� . �33�

In constructing this expression we noted that if the square
had two paths to infinity, then the remaining �−2 bonds
emanating from the seed site had to have at least k−3 paths
to infinity which we take into account with the factor of the
form Rk−3+Rk−2+ P. �P is the probability of having at least
k−1 paths to infinity.� The factor Rk−2+ P and P take account
of having at least k−2 or k−1 paths to infinity, respectively.

FIG. 11. Configurations of diagram �a� of Fig. 7 which have two
paths to infinity. The heavy line is a bond which is �k−1�-connected
to infinity and carries a factor P�−1. The dashed line carries a factor
Rk−2 which may survive culling if it is connected to two live bonds. FIG. 12. As in Fig. 11, configurations of diagram �a� of Fig. 7

which have one path to infinity. The symbol K denotes a bond
which is definitely culled and therefore carries a factor �1− P�−1

−Rk−2�.

FIG. 13. As in Figs. 11 and 12 configurations of diagram �a� of
Fig. 7 which have no paths to infinity.
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Similarly, for the other diagrams of 7 we have

�f�b� = �P�−2 + Rk−2
�−2�P�−1�1 + R + R2� + P�−2�1 − P�−1�1 + R

+ R2��

= P�−2 + Rk−2
�−2P�−1�1 + R + R2� , �34�

�f�d� = �P�−2 + Rk−2
�−2 + Rk−3

�−2��P�−1�2�1 + R� + �P�−2 + Rk−2
�−2�

��P�−1�1 − P�−1�1 + R�� + �1 − P�−1�P�−1�1 + R�


+ P�−2�1 − P�−1��1 − P�−1�1 + R��

= P�−2 + Rk−2
�−2 + Rk−3

�−2�P�−1�2�1 + R� − Rk−2
�−2�1 − P�−1��1

− P�−1�1 + R�� , �35�

�f�i� = P�−2�1 − P��1 − P�
�−1�1 + R� − PR2� + �Rk−2

�−2 + P�−2�

���1 − P��P�−1�1 + R� + PR2� + P�1 − P�
�−1�1 + R�

− �PR2��
 + �Rk−3
�−2 + Rk−2

�−2 + P�−2�P�P�−1�1 + R�

+ PR2�

= Rk−2
�−2 + P�−2 + Rk−3

�−2P�P�−1�1 + R� + PR2� − Rk−2
�−2�1

− P��1 − P�−1�1 + R� − PR2� , �36�

�f�j� = �P�−2 + Rk−2
�−2��P�−1�1 + R� + PR2� + P�−2�1 − P�−1�1

+ R� − PR2�

= P�−2 + Rk−2
�−2�P�−1�1 + R� + PR2� , �37�

�f�k� = �P�−2 + Rk−2
�−2 + Rk−3

�−2�PP�−1�1 + R� + �P�−2 + Rk−2
�−2�

��P�−1�1 − P��1 + R� + P�1 − P�−1�1 + R��
 + P�−2�1

− P��1 − P�−1�1 + R��

= P�−2 + Rk−2
�−2 + Rk−3

�−2PP�−1�1 + R� − Rk−2
�−2�1 − P��1

− P�−1�1 + R�� , �38�

�f�m� = P�−2�1 − P�−1 − RP�2 + 2�P�−2 + Rk−2
�−2��1 − P�−1

− RP��P�−1 + RP� + �Rk−3
�−2 + Rk−2

�−2 + P�−2��P�−1

+ RP�2

= P�−2 + Rk−2
�−2 + Rk−3

�−2�P�−1 + RP�2 − Rk−2
�−2�1 − P�−1

− RP�2, �39�

�f�n� = P�−2 + Rk−2
�−2 + Rk−3

�−2P�−1�P�−1 + RP� − Rk−2
�−2�1 − P�−1�

��1 − P�−1 − PR� , �40�

�f�q� = P�−1�1 − P�−1�1 + R + R2� − R3P� + �R + P�−1��P�−1

+ R2�1 + R� + R3P�

= P�−1 + R�P�−1�1 + R + R2� + R3P� , �41�

�f�r� = �P�−1 + R�P�−1�1 + R + R2� + P�−1�1 − P�−1�1 + R

+ R2��

= P�−1 + RP�−1�1 + R + R2� . �42�

With these results we are now ready to evaluate Eq. �7� and
it reads

�sq =
�� − 1�2p4

2
�Rk−3

�−2�R3 + 3R2P�−1 − 3R2P2� − 2R4P

+ Rk−2
�−2�R3 − 3R2P�−1 + 3R2P2�� . �43�

Since the contributions from hexagons only need to be
evaluated to leading order in 1/�, the configuration of vacant
bonds is irrelevant and we may omit the superscripts on R
and P. Accordingly, for hexagons it is convenient to classify
�as indicated by the subscript� the value of m, the number of
paths to infinity. For diagram x we write

fm�x� = 2�3p6�fm�x� , �44�

where 2�3 is the number of hexagons �to lowest order in
1/�� that can be attached to a bond and

�f2�a� = P2�1 + 2R + 3R2 + 4R3� + 5R4P + R5, �45�

�f1�a� = 2P�1 − P − R��1 + 2R + 3R2 + 4R3� , �46�

�f0�a� = �1 − P − R�2�1 + 2R + 3R2 + 4R3� + 5R4�1 − P − R� ,

�47�

�f1�b� = P�1 + R + R2 + R3 + R4 + R5� , �48�

�f0�b� = �1 − P − R��1 + R + R2 + R3 + R4� + R5�1 − P� ,

�49�

�f2�c� = P2�1 + R + R2 + R3 + R4� , �50�

�f1�c� = �1 − P�P�1 + R + R2 + R3 + R4� + P�1 − P − R��1 + R

+ R2 + R3� + P�1 − P�R4, �51�

�f0�c� = �1 − P��1 − P − R��1 + R + R2 + R3� + �1 − P�2R4,

�52�

�f2�d� = P2�1 + R + R2 + R3��1 + R� , �53�

�f1�d� = P�1 − P − RP��1 + R + R2 + R3� + P�1 + R���1 − P

− R��1 + R + R2� + �1 − P�R3� , �54�

�f0�d� = �1 − P − RP���1 − P − R��1 + R + R2� + �1 − P�R3� ,

�55�

�f2�e� = �P�1 + R + R2��2, �56�

�f1�e� = 2P�1 + R + R2���1 − P − R��1 + R� + R2�1 − P�� ,

�57�

�f0�e� = ��1 − P − R��1 + R� + R2�1 − P��2, �58�

�f1�f� = P�1 + R + R2 + R3 + R4� , �59�
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�f0�f� = ��1 − P − R��1 + R + R2 + R3� + �1 − P�R4� ,

�60�

�f2�g� = P2�1 + R + R2 + R3� , �61�

�f1�g� = P�1 − P��1 + R + R2 + R3� + P��1 − P − R��1 + R

+ R2� + �1 − P�R3� , �62�

�f0�g� = �1 − P���1 + R + R2��1 − P − R� + �1 − P�R3� ,

�63�

�f2�h� = P2�1 + R + R2��1 + R� , �64�

�f1�h� = �1 − P − RP�P�1 + R + R2� + P�1 + R��1 − P − RP

− R2P� , �65�

�f0�h� = �1 − P − RP��1 − P − RP − R2P� , �66�

where the numbering of contributions is as in Fig. 8. Thus
for the contribution of hexagons to the EOS �indicated by the
superscript H�, the sum over diagrams gives

�2
H = f2�a� − 2f2�c� − 2f2�d� − f2�e� + 2f2�g� + 2f2�h�

= 2�3p6�− 5R4P�
2 + 5R4P� + R5� , �67�

�1
H = f1�a� − 2f1�b� − 2f1�c� − 2f1�d� − f1�e� + 2f1�f�

+ 2f1�g� + 2f1�h�

= 2�3p6�10R4P�
2 − �10R4 + 2R5�P�� , �68�

and

�0
H = f0�a� − 2f0�b� − 2f0�c� − 2f0�d� − f0�e� + 2f0�f�

+ 2f0�g� + 2f0�h�

= 2�3p6�− 5R4P�
2 + �5R4 + 2R5�P� − R5� . �69�

It is a check on our results that 	n�n
H=0. Now we match

each of these contributions to possible configurations of the
other �−2 bonds from the seed site. Thus, from hexagons we
get

�hex = P�0
H + �P + R��1

H + �P + R + Rk−3��2
H

= Rk−3�2
H − R�0

H. �70�

VI. 1 /� EXPANSION FOR THE SUSCEPTIBILITY

A. Formulation of the susceptibility

In this section we consider the 1/� expansion for the
two-point �i , j� susceptibility 
ij. For k-core percolation we
calculate this quantity in the ordered phase, because for the
Bethe lattice there are no finite k-core clusters. Here we de-
fine 
=	 j
ij, where


ij = ��i� j� − ��i��� j� , �71�

where �i is an indicator variable which is unity if the site i is
in the k-core and is zero otherwise. Also the angle brackets

indicate an average of configurations of bonds in which each
bond is independently present with probability p and absent
with probability 1− p.

Now we formulate the 1/� expansion for the ordered
phase of k-core percolation. On the Bethe lattice the long-
range part of this correlation function comes from the prob-
ability of configurations in which two sites are only in the
k-core by virtue of the presence of a path of occupied bonds
connecting sites i and j. �Of course each site on this path
must belong to the k-core.� In this connection, it is important
that the sites not be in the k- if any bond is removed. Such
contributions are either already counted in lower order or are
canceled when the second term in Eq. �71� is subtracted off.
Thus the configuration in panel �a� of Fig. 14 is an allowed
configuration contributing to 
ij, but that in panel �b� can not
be extended. In Ref. �7�, this consideration led to equiva-
lently restricting the sum to the “corona.” Thus, as the path is
progressively lengthened, if we reach a point where the ori-
gin of the path is certainly in the k-core no matter how the
path is extended, then this path is said to be “truncated,” and
is discarded as not contributing to the singularity in 
.

For the present work we obtain the results of Ref. �7� as
follows. For a path to satisfy the “corona” constraint, it must
consist of a path for which each vertex is k−2 connected to
infinity if the bonds along the path are not considered. With
this construction one sees that at each vertex, whether the
whole structure is or is not k-connected to infinity, depends
on what happens further down the path. Thus, for the Bethe
lattice each vertex in the path leading from site i to site j
carries a factor pRk−2

�−1= pRk−2= pR. When 
ij is summed over
j, one obtains a geometric series in the ratio, r, given by

FIG. 14. Configurations for k=3 illustrating “truncation” of dia-
grams. Here the side branches are assumed to be �k−1�-connected
to infinity. In the top panel a configuration is shown where the
k–core depends on the state of the further bonds indicated by filled
circles. In the lower panel, the configuration is �k=3�-connected no
matter what happens further down the chain. Since the k–core does
not depend on further bond occupation probabilities this diagram
cannot be extended.
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r = �pRk−2, �72�

which coincides with the singularity in the EOS �7�.
A convenient way to describe the 1/� expansion as ap-

plied to the susceptibility, is to regard the 1/� corrections as
a vertex correction, as illustrated in Fig. 15 for insertions of
a square. This vertex correction amounts to replacing Rk−2 by
Rk−2+�R, where �R is the contribution from the dashed box
�which replaces each vertex�. Analogous corrections arise at
relative order 1 /�3 from insertions of hexagons. However,
insertions involving two or more loops lead to corrections of
order 1 /�4 and higher and are beyond the scope of the
present calculation. �Note that for the last diagram, SQ3, we
need an extra factor of 2 because the two sides of the square
are inequivalent, so that it occurs ��−1�2 ways.� The dia-
grams for a square insertion into a chain diagram for the
susceptibility are shown more explicitly below.

The condition for a divergent susceptibility is that the
perturbed ratio r be unity, or

1 = r = �pR + �p�R . �73�

We now evaluate the ratio r at the singularity in the EOS, so
that p and Q are given by Eqs. �22�, �24�, and �26�. Working
to leading order we write

r = ��p0 + �p��R�Q0� +
dR

dQ0
�Q� + �p�R

= 1 +
�p

p0
+

1

R

dR

dQ0
�Q + �p0�R

= 1 −
p0

Q0
�� +

1

R

dR

dQ0
��

dR

dQ0
�−1���

Q0
−

d��

dQ
� + �p�R

= 1 + ��R −
d��

�dQ
�R−1. �74�

Here we noted that for the Bethe lattice �p0R�Q0�=1 and
d� /dQ=�R. There are now three scenarios, depending on
whether the ratio r is �a� less than, �b� equal to, or �c� greater
than unity. In case �a� the discontinuity in the EOS preempts
the divergence of the susceptibility and the transition is a
conventional first order transition, except for a fractional
power law in the EOS for p above threshold. Case �b� �con-
sistent with the expansion up to order 1 /�3� indicates that the
coincidence of the singularities in the EOS and the suscepti-
bility is robust and survives for large but finite spatial dimen-
sion.

B. Diagrams for the susceptibility

Now we consider the effect of inserting squares or hexa-
gons into the Bethe lattice diagrams for the susceptibility.

For squares we write

�rsq = �� − 1�2 p4

2
�R/Rk−2, �75�

where the square insertions are discussed below. Similarly,
for hexagons we write

�rhex = 2p6�3�R/Rk−2, �76�

where the hexagon insertions are also discussed below.

C. Percolation

As an example we first carry out the calculation for the
two-point susceptibility of percolation and we confine our
attention to the disordered phase, i.e., P�=0. �The calcula-
tion for the ordered phase is quite similar.� First, consider the
squares. The sum of the contributions from diagrams �a�
through �j� of Fig. 16 vanishes. For diagram �k� there are
Nsq= ��−1�2 /2 ways to attach the pseudosquare �which can
be traversed in two senses�. So the dashed box of diagram �k�
carries the factor

�rSQ1 = − p4�−2�1 − �2/��� . �77�

The contribution from Fig. 17 is �rSQ2=−��−1�3 /�5 and
that from Fig. 18 is �rSQ3=−�1/2���−1�3 /�5. So the total
contribution from squares is

�rsq = − �5/2��−2 + �13/2��−3. �78�

The contribution from hexagons is

�rhex = − 14�−3. �79�

When these contributions are summed, one finds that the
threshold for the divergence of the susceptibility agrees to
order 1 /�3 with that in Eq. �16� found from the EOS and
with the previous work of Gaunt and Ruskin �29�. Of course,
this was hardly surprising, but the present calculation illus-
trates the more complicated calculation needed for k-core
percolation.

FIG. 15. The factors associated with the dashed box in the first
three diagrams renormalize the vertex �the filled circle� in the last
diagram. We label these contributions SQ1, SQ2, and SQ3,
respectively.

FIG. 16. Diagrams for square SQ1 of 15 on either H or B lattice.
Diagram �k� occurs on the Bethe lattice but must be subtracted off
because its counterpart on the hypercubic lattice has a different
topology.
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D. k-core percolation, squares

We now consider the contributions to the susceptibility
from insertions of squares as in Fig. 16. We calculate the
factor �R associated with the dashed box. In the results
given below we include the prefactors �e.g., ±2 or ±1� writ-
ten in Fig. 16. We find

�R�a� =
x�� − 2�

2�
�Rk−4

�−3��P�−1�2 + 2R�P�−1�2 + 3R2P�−1 + R3�

+ Rk−3
�−3�2P�−1�1 − P�−1 − R� + 4RP�−1�1 − P�−1

− R�� + Rk−2
�−3��1 − P�−1 − R�2�1 + 2R�

+ 3R2�1 − P�−1 − R��
 , �80�

where x= ��−1�2p4 and we used Nsq= ��−1�2 /2. Also, the
factor ��−2� /� takes account of the fact that the line leaving
the square has only �−2 choices because it has to avoid the
square. This factor appears for the other diagrams, except
that for �b� and �f� the counting is less obvious and is dis-
cussed in Appendix A. We have

�R�b� = − x
�� − 2�

�
�Rk−2

�−2�1 − P�−1�1 + R + R2� − R3P�

+ Rk−3
�−2�P�−1�1 + R + R2� + R3P�
 , �81�

�R�c� = − x
�� − 2�

�
�Rk−2

�−3�1 − P��1 − P�−1�1 + R� − R2P�

+ Rk−3
�−3P�1 − P�−1�1 + R� − R2P� + Rk−3

�−3�1 − P�

��P�−1�1 + R� + R2P� + Rk−4
�−3P�P�−1�1 + R� + R2P�
 ,

�82�

�R�d� = − x
�� − 2�

2�
�Rk−2

�−3�1 − P�−1 − RP�2 + 2Rk−3
�−3�1 − P�−1

− RP��P�−1 + RP� + Rk−4
�−3�P�−1 + RP�2� , �83�

�R�e� = − x
�� − 2�

�
�Rk−2

�−3�1 − P�−1�1 + R + R2��

+ Rk−3
�−3P�−1�1 + R + R2�
 , �84�

�R�f� = x
�� − 2�

�
�Rk−2

�−2�1 − P�−1�1 + R + R2��

+ Rk−3
�−2P�−1�1 + R + R2�
 , �85�

�R�g� = x
�� − 2�

�
�Rk−2

�−3�1 − P�−1�1 + R� − R2P�

+ Rk−3
�−3�P�−1�1 + R� + R2P�
 , �86�

�R�h� = − x
�� − 2�

�
�Rk−4

�−3�P�−1�2�1 + R� + Rk−3
�−3�1

− P�−1�P�−1�1 + R� + Rk−3
�−3P�−1�1 − P�−1 − RP�−1�

+ Rk−2
�−3�1 − P�−1��1 − P�−1 − RP�−1�� , �87�

�R�i� = x
�� − 2�

�
�Rk−4

�−3P�−1�P�−1 + RP� + Rk−3
�−3�1 − P�−1�

��P�−1 + RP� + Rk−3
�−3P�−1�1 − P�−1 − RP� + Rk−2

�−3�1

− P�−1��1 − P�−1 − RP�� , �88�

�R�j� = x
�� − 2�

�
�Rk−4

�−3PP�−1�1 + R� + Rk−3
�−3�1 − P�P�−1�1

+ R� + Rk−3
�−3P�1 − P�−1 − RP�−1� + Rk−2

�−3�1 − P��1

− P�−1 − RP�−1�� . �89�

Also

�R�k� = − R5p4�� − 1�2. �90�

So, in all from Fig. 16 we get

	
y=a

k

�R�y� =
x�� − 2�

�
PR3�Rk−2

�−2 − Rk−3
�−2�

+
x�� − 2�Rk−4

�−3

2�
�− 3R2P2 + 3R2P�−1 + R3� − xR5

+
x�� − 2�

2�
Rk−3

�−3�6R2P2 − 6R2P�−1�

+
x�� − 2�

2�
Rk−2

�−3�3R2�P�−1 − P2� − R3� . �91�

We next consider the contributions from the diagrams of
Fig. 17. We get

FIG. 17. Diagrams for square SQ2 of 15 on either H or B
lattice.

FIG. 18. Diagrams for square SQ3 of 15 on either H or B
lattice.
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�R�a� =
x�� − 1�

2�
�2R�Rk−2

�−2�2�1 − P�−1 − R� + 2RP�−1�Rk−3
�−2�2

+ R2�Rk−3
�−2�2 + R2Rk−2

�−2Rk−3
�−2� . �92�

In Fig. 19 we show the evaluation of the last term in this
result. Note that for a diagram with a loop, it can matter
which way the diagram is entered.

�R�b� = − 2
� − 1

�
xR2�Rk−3

�−2�P�−1 + RP� + Rk−2
�−2�1 − P�−1

− RP�� , �93�

�R�c� = − x
�� − 1�

�
R�Rk−3

�−2P + Rk−2
�−2�1 − P��2, �94�

�R�d� = − 2
x�� − 1�

�
RRk−2

�−2�Rk−3
�−2P�−1 + Rk−2

�−2�1 − P�−1�� ,

�95�

�R�e� = 2x
� − 1

�
R2�Rk−3

�−2P�−1 + Rk−2
�−2�1 − P�−1�� , �96�

�R�f� = 2
x�� − 1�

�
RRk−2

�−2�Rk−3
�−2P + Rk−2

�−2�1 − P�� . �97�

So, in all we get from the diagrams of Fig. 17

	
y=a

f

�R�y� = − 2x
� − 1

�
�Rk−3

�−2 − Rk−2
�−2�R3P +

x�� − 1�R
�

�P�−1

− P2��Rk−2
�−2 − Rk−3

�−2�2 +
x�� − 1�

2�
R2�Rk−3

�−2 − Rk−2
�−2�

��Rk−3
�−2 + 2Rk−2

�−2� . �98�

For the diagrams of Fig. 18 we have

�R�a� =
x�� − 1�

�
�R2Rk−2

�−2Rk−3
�−2 + �Rk−3

�−2�2�R + P�−1�2

+ 2Rk−2
�−2Rk−3

�−2P�−1�1 − P�−1 − R� + �Rk−2
�−2�2�1 − P�−1

− R��1 − P�−1 + R�� , �99�

as is illustrated in Fig. 20.
For the other diagrams in Fig. 18 we find

�R�b� = − x
�� − 1�

�
�Rk−2

�−2�2R2, �100�

�R�c� = + 2xR3Rk−2
�−2, �101�

�R�d� = − 2xR3�Rk−2
�−2�1 − P� + Rk−3

�−2P� , �102�

�R�e� = − 2xR�Rk−2
�−2�1 − P�−1�1 + R� − R2P� + Rk−3

�−2�P�−1�1

+ R� + PR2�
 , �103�

�R�f� = − 2x
� − 1

�
�Rk−2

�−2�1 − P� + Rk−3
�−2P��Rk−2

�−2�1 − P�−1

− RP� + Rk−3
�−2�P�−1 + RP�� , �104�

�R�g� = − 2x
�� − 1�

�
Rk−2

�−2�Rk−2
�−2�1 − P�−1 − RP�−1�

+ Rk−3
�−2P�−1�1 + R�� , �105�

�R�h� = 2x
� − 1

�
Rk−2

�−2�Rk−2
�−2�1 − P�−1 − RP� + Rk−3

�−2�P�−1

+ RP�� , �106�

�R�i� = 2xR�Rk−2
�−2�1 − P�−1 − RP�−1� + Rk−3

�−2�1 + R�P�−1� ,

�107�

�R�j� = − x
�� − 1�

�
�Rk−2

�−2�1 − P�−1� + Rk−3
�−2P�−1�2,

�108�

FIG. 19. Diagrams for Eq. �92�. In the left-hand diagram the
bottom site will be culled if the bond x is culled. In that case the
entire cluster will be culled. So the stability of this cluster depends
on the state of bonds below x, and therefore this diagram can be
extended. In contrast, the right-hand cluster survives culling no
matter what may be the state of bond x. Hence this diagram trun-
cates and we discard it.

FIG. 20. Evaluation of �R�a� of Eq. �99�.
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�R�k� = 2x
� − 1

�
�Rk−2

�−2�1 − P�−1� + Rk−3
�−2P�−1��Rk−2

�−2�1 − P�

+ Rk−3
�−2P� . �109�

So, in all from the diagrams of Fig. 18 we get

	
y=a

k

�R�y� = 4xR3P�Rk−2
�−2 − Rk−3

�−2� + x
� − 1

�
��Rk−2

�−2�2�− 2R2

+ 2R�P�−1 − P2�� + �Rk−3
�−2�2�R2 + 2R�P�−1 − P2��

+ Rk−2
�−2Rk−3

�−2�R2 − 4R�P�−1 − P2��
 . �110�

E. k-core percolation, hexagons

Now consider the diagrams of Fig. 8, but for the suscep-
tibility instead. Here and below the vertices �or vertex�
which are part of the chain are indicated by filled circles.
With y=2�3p6 we have �with R�Rk−2�

�R�a� = y�Rk−4�P2�1 + 2R + 3R2 + 4R3� + 5R4P + R5�

+ 2Rk−3P�1 − R4 − P�1 + R + R2 + R3� + R�1 − R3�

− RP�1 + R + R2� + R2�1 − R2� − R2P�1 + R� + R3�1

− R� − R3P� + R��1 − P − R�2�1 + 2R + 3R2 + 4R3�

+ 5R4�1 − P − R��
 , �111�

�R�b� = − 2y�Rk−3P�1 + R + R2 + R3 + R4 + R5� + R�1 − P�1

+ R + R2 + R3 + R4 + R5��
 , �112�

�R�c� = − 2y�Rk−4P2�1 + R + R2 + R3 + R4� + Rk−3P�1 − P��1

+ R + R2 + R3 + R4� + Rk−3P�1 − P�1 + R + R2 + R3

+ R4�� + R�1 − P��1 − P�1 + R + R2 + R3 + R4��
 ,

�113�

�R�d� = − 2y�Rk−4P2�1 + R��1 + R + R2 + R3� + Rk−3P�1 + R�

��1 − P�1 + R + R2 + R3�� + Rk−3P�1 − P�1 + R���1

+ R + R2 + R3� + R�1 − P�1 + R���1 − P�1 + R + R2

+ R3��
 , �114�

�R�e� = − y�Rk−4P2�1 + R + R2�2 + 2Rk−3P�1 + R + R2��1

− P�1 + R + R2�� + R�1 − P�1 + R + R2��2
 , �115�

�R�f� = 2y��Rk−3P�1 + R + R2 + R3 + R4�� + R�1 − P�1 + R

+ R2 + R3 + R4��
 , �116�

�R�g� = 2y�Rk−4P2�1 + R + R2 + R3� + Rk−3P�1 − P��1 + R

+ R2 + R3� + Rk−3P�1 − P�1 + R + R2 + R3�� + R�1

− P��1 − P�1 + R + R2 + R3��
 , �117�

�R�h� = 2y�Rk−4P2�1 + R��1 + R + R2� + Rk−3P�1 − P�1 + R��

��1 + R + R2� + Rk−3P�1 + R��1 − P�1 + R + R2��

+ R�1 − P�1 + R���1 − P�1 + R + R2��
 . �118�

In addition we have the analog of diagram �k� of Fig. 16:

�R�i� = − 2yR7. �119�

We call the sum of these contributions 	H,A. We have

	H,A = 2�3p6�Rk−4�− 5P2R4 + 5PR4 + R5� + 2Rk−3P�5R4P

− 5R4 − R5� − 5R5P2 + �5R5 + 2R6�P − R6 − 2R7� .

�120�

Now we consider the diagrams of Fig. 21. We have

�R�a� = 2y�Rk−3
2 �P2�1 + 2R + 3R2� + 4PR3 + R4�

+ 2Rk−3R�P�1 − P − R��1 + 2R + 3R2�� + Rk−3R5

+ R2��1 − P − R�2�1 + 2R + 3R2� + 4�1 − P − R�R3�
 ,

�121�

�R�b� = − 4yR5�R�1 − P� + Rk−3P� , �122�

�R�c� = − 4y�RRk−3��1 + R + R2 + R3 + R4�P� + R2�1 − P�1

+ R + R2 + R3 + R4��
 , �123�

�R�d� = − 4y�R�1 − P� + Rk−3P��R�1 − P�1 + R + R2 + R3��

+ Rk−3P�1 + R + R2 + R3�
 , �124�

�R�e� = − 4y�R�1 − P�1 + R�� + Rk−3P�1 + R�
�R�1 − P�1

+ R + R2�� + Rk−3P�1 + R + R2�
 , �125�

�R�f� = 2yR6, �126�

�R�g� = 4y�RRk−3��1 + R + R2 + R3�P� + R2�1 − P�1 + R + R2

+ R3��
 , �127�

�R�h� = 4y�R�1 − P� + Rk−3P��R�1 − P�1 + R + R2��

+ Rk−3P�1 + R + R2�
 , �128�

	i = 2y�R�1 − P�1 + R�� + Rk−3P�1 + R�
2. �129�

We call the sum of all these contributions 	H,B. We have

FIG. 21. Susceptibility hexagons on either H or B lattice.
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	H,B = 4�3p6�Rk−3
2 �4R3�P − P2� + R4� + Rk−3�8R4�P2 − P�

− 4R5P + R5� − 4R5P2 + 4R5P + 4PR6 − 2R6
 .

�130�

Next we consider the diagrams of Fig. 22.

�R�a� = 2y�Rk−3
2 �R4 + 4R3P + 2R2P2 + RP2� + RRk−3�2RP�1

− P − R� + 4R2P�1 − P − R� + R4� + R2�R�1 − P

− R�2 + 2R2�1 − P − R�2 + 4R3�1 − P − R��
 , �131�

�R�b� = − 4yR4�R�1 − P�1 + R�� + Rk−3P�1 + R�
 ,

�132�

�R�c� = − 2yR3�R�1 − P� + Rk−3P�2, �133�

�R�d� = − 4yR2�R�1 − P�1 + R + R2 + R3�� + �Rk−3P�1 + R

+ R2 + R3��
 , �134�

�R�e� = − 4yR�R�1 − P� + Rk−3P��R�1 − P�1 + R + R2��

+ �Rk−3P�1 + R + R2��
 , �135�

�R�f� = − 2yR�R�1 − P�1 + R�� + Rk−3P�1 + R�
2,

�136�

�R�g� = 4yR2�R�1 − P�1 + R + R2�� + Rk−3P�1 + R + R2�
 ,

�137�

�R�h� = 4yR�R�1 − P�1 + R�� + Rk−3P�1 + R�
�R�1 − P�

+ Rk−3P� , �138�

�R�i� = 4yR4�R�1 − P� + Rk−3P� . �139�

We call the sum of these contributions 	H,C. We find that
	H,C=	H,B.

Next we consider the diagrams of Fig. 23.

�R�a� = y�Rk−3
2 �R4 + 4R3P + 2R2P2� + RRk−3�4R2P�1 − P

− R� + R4� + R2�2�1 − P − R�2R2 + 4�1 − P − R�R3�
 ,

�140�

�R�b� = − 4yR3�R�1 − P�1 + R + R2�� + Rk−3P�1 + R + R2�
 ,

�141�

�R�c� = − 4yR2�R�1 − P�1 + R�� + Rk−3P�1 + R�
�R�1 − P�

+ Rk−3P� , �142�

�R�d� = 2yR2�R�1 − P� + Rk−3P�2, �143�

�R�e� = 4yR3�R�1 − P�1 + R�� + Rk−3P�1 + R�� .

�144�

We call the sum of these contributions 	H,D. We have 	H,D
=	H,B /2. Then the total contribution to the renormalization
of R from hexagons is

�Rhex = 2p6�3�Rk−4�5R4�P − P2� + R5� + Rk−3
2 �20R3�P − P2�

+ 5R4� − 25R5�P2 − P� + Rk−3�50�P2 − P�R4 − 22PR5

+ 5R5� + 22R6P − 11R6 − 2R7
 . �145�

VII. CONCLUSION

We now have all that we need to evaluate whether or not
the perturbed ratio r, i.e., the right-hand side of Eq. �74�, is
unity or not to order 1 /�3. Using Eqs. �145� and �70� we see
that the contributions from the hexagons do not contribute to
the rhs of Eq. �74�. Furthermore, using MATHEMATICA �31�,
we summed the contributions from the squares in Eqs. �43�,
�91�, �98�, and �110�, which led to the result �at the transition
in the EOS� that

r = 1 + �3�p4/2�R2�R − Rk−3���2 − k�R + �QRk−3� + O��−4� .

�146�

In writing this result we have assumed that the effect of 1 /d
perturbations is merely to shift the location of the pole in the
susceptibility. It is not obvious that this is a correct assump-
tion, since we do not know a priori that for finite d the
suceptibility diverges �as it does in the other problems for
which we cited the use of the 1/d expansion� �32�. A discus-
sion is given in Appendix B to justify this assumption.

Since p�1/�, the term proportional to p4 is of order �−3.
Note that to leading order in 1/� we have that

Rm = ��Q�m�m!�−1e−�Q, �147�

which implies that �2−k�R+�QRk−3=O�1/��, so that to or-
der �1/��3, the result of Eq. �146� is that r=1, which means
that to this order the singularity in the EOS and the diver-
gence in the susceptibility coincide. Note that this result is
not a trivial one in that it implicitly involves Eq. �147�. Also,
it can hardly be a coincidence that the subtleties of diagram
counting lead to this result. It would not totally surprise us if
this result could be obtained to all orders in 1/� by some
type of Ward identity, even in the absence of a field theoret-
ical formulation.

FIG. 22. Susceptibility hexagons on either H or B lattice.

FIG. 23. Susceptibility hexagons on either H or B lattice.
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The coincidence of the two singularities suggests that the
unusual nature of the k�3-core transition survives in large,
but finite, spatial dimensions. Given the absence of numeri-
cal confirmation of such a transition in simple isotropic
k-core models on square, cubic, and triangular lattices, our
results motivate further numerical studies of models that are
more mean-field-like in the sense that the range �number� of
nearest neighbors �+1 is larger than previous models. Of
course, to compare with our results one would need to study
hypercubic lattices at large d. Since “culling” leads to non-
local truncations, it will not be easy to simulate systems at
large d to check our work. However, should such a program
be undertaken, one might want to have actual expressions for
the shift in the critical point and the shift in the jump of the
order parameter due to finite dimensionality. To get the shift
in pc, one needs to evaluate the rhs of Eq. �24�, using Eqs.
�43� and �70�. This result will include all corrections up to
and including order 1 /�3. However, it is necessary to expand
the quantities such as p0, Q0, and Rm in powers of 1 /�, as is
indicated by Eqs. �17� and �29�. Furthermore, to get the shift
in the jump in the order parameter involves evaluating the
right-hand side rhs of Eq. �26� and for this we had recourse
to MATHEMATICA �31�.

In order to assess the implications of our work when
placed in context with known results we refer to the phase
diagram in the k-d plane in Fig. 24 where we indicate exist-
ing results for k-core percolation. The two regimes which are
most securely established are �a� for k=2 the model has �33�
the same critical point as ordinary percolation and �b� for k
�d+1 the critical concentration for percolation has been
shown �20� to be pc=1. The present work suggests that the
hybrid transition found for d=� persists into the regime k
�d��. In addition, numerical work indicates that the tran-
sition may be continuous for k=d=3 �15,34�. Since this is
the only data point which gives a continuous transition for
k�2, it is important to confirm this result on larger samples,
although our discussion will assume the validity of this re-
sult. The 1/d result of the present work indicates that the
hybrid transition occurs for k�3 at large d, so it is clear that
the continuous transition seen at k=d=3 must disappear as d
is increased for k=3. The details of this boundary between
hybrid and continuous transitions is unclear at present, ex-
cept that it seems almost certain that k=3 is essentially dif-
ferent from k=2. Furthermore, at present there is no evidence
of yet another phase between the hybrid phase and the pc
=1 phase at high d. This phase boundary might remain at
k=d+1. Alternatively, since finite-dimensional fluctuations
reduce pc in the hybrid phase from its mean-field or Bethe
lattice value, it is possible that the phase boundary between
these two phase falls below the line k=d+1, as indicated by
the question mark in Fig. 24. From the perspective of Fig. 24
it would be interesting to develop a realization of k-core
percolation for noninteger k.

It is interesting to note how the 1/� expansion for k-core
percolation compares to that for other systems. For self-
avoiding walks �26�, the Ising model �26�, spin glasses �27�,
and for percolation �29�, the expansions for the critical value
of the coupling constant involves coefficients of 1 /�n, which
are rational fractions �i.e., the ratio of two finite integers�. In
contrast, for lattice animals one sees the appearance of the

transcendental number e in the coefficients of 1 /�n �28�.
From Eq. �20� one sees a similar result for k-core percola-
tion. It has been noted �7� that the unusual mean-field value
of the correlation length exponent for k-core percolation is
identical to that for lattice animals �35�. Thus, it is not sur-
prising that these two models show similar unusual charac-
teristics in their 1 /� expansion for the critical coupling con-
stant.

VIII. DISCUSSION

The model of k-core percolation sets a constraint on the
number of occupied neighboring bonds �or sites in the cor-
responding site problem�. So the physics of k-core pertains to
systems with nontrivial constraints such as the onset of long-
range orientational order in solid ortho-para H2 mixtures and
the onset of rigidity in a mechanical system. Given the
equivalence between rigidity percolation and �g+1�-core
percolation on the Bethe lattice �12�, the results here suggest
that provided g is at least 2 in high dimensions, the percola-
tion transition should be of a hybrid nature where there is a
jump in the order parameter accompanied with a diverging
length scale. We note that there exists a field theory �36� of
rigidity percolation that exhibits a purely first-order transi-
tion, which is very different from the hybrid nature of k-core
percolation. Given our results, as well as the results of SLC,
it seems that this task of constructing a field theory for rigid-
ity percolation should be revisited.

FIG. 24. Summary of known results for k-core percolation on
the d-dimensional hypercubic lattice. Triangles represent ordinary
percolation for k=1 and biconnectedness for k=2 �whose critical
exponents are governed by the fixed point of ordinary percolation
�33��. Circles represent systems for which pc was shown to be unity
for d=2 by van Enter �18� and by Toninelli et al. �20� for larger d.
The filled square represents the result of Ref. �16,34� for d=k=3
where the transition appears to be continuous. This result therefore
suggests the existence of a region labeled “Cont” of a continuous
transition with a critical point probably similar to that of ordinary
percolation. The filled diamonds represent the present work sug-
gesting that the hybrid transition marked H survives for large d �but
with k not comparable to d�. The question marks indicate that the
boundaries between the continuous transition �filled square� and the
hybrid transition, as well as that between pc=1 and the hybrid re-
gime, are unclear at present.
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Other systems with nontrivial constraints include the dy-
namics of an interface separating two magnetic domains in a
random field Ising model �37�. When the disorder is strong, it
is likely that more than several neighbors must have flipped
previously in order to propagate the interface, again, giving
rise to k-core physics. However, finite-dimensional simula-
tions of such interfaces have only uncovered ordinary perco-
lation exponents so far �37�, as opposed to some sort of
hybrid transition.

While not directly related to k-core percolation, spin
glasses are systems where a set of nontrivial constraints can-
not all be satisfied. This property is otherwise known as frus-
tration. Curiously enough, it turns out that the p�3-spin
glass model also exhibits the unusual hybrid transition in
mean field with the same exponents as k-core �38�. It would
also be interesting to see if a 1 /d expansion for this system
yields the same results that we find for k-core.

The physics of glass-forming liquids, the glass transition,
has received a lot of intense investigation over the years
yielding a wide range of approaches �39�. One approach to
modeling glassy dynamics is based on kinetically con-
strained spin lattice models, like the Frederickson-Andersen
�FA� model �40�. In this model, down spins on a lattice de-
note coarse-grained regions of high mobility of the liquid,
while up spins denote regions of low mobility. There is a
magnetic field favoring up spins creating large regions of
low mobility. Therefore as the temperature of the system is
lowered, more and more regions of low mobility are created
eventually leading to kinetic arrest of the liquid over large
time scales. An important kinetic constraint on the motion of
the spins is introduced where a randomly selected spin can
flip only if the number of neighboring downs spins is equal
to or greater than some integer whose maximum is �+1.
This constraint models the caging effect observed in glass-
forming liquids where particles become trapped by transient
cages made up of their neighbors.

There is an exact mapping between k-core percolation and
the clustering of low mobility regions in the FA model
�41,42�. The mapping to k-core is not unexpected given that
up and down spins can be mapped to occupied and unoccu-
pied sites, and therefore, the kinetic constraint maps to the
k-core condition. See Refs. �41,42� for details. Given this
mapping, our conclusions apply to that type of lattice model,
and in high d one should observe a hybrid transition at finite
temperature, provided k is not comparable to d. We note that
this regime may not be directly relevant for the glass transi-
tion due to the existence of finite clusters, i.e., the cube in
d=k=3 �43�. Then the density of particles in the liquid phase
is not homogeneous. However, recent experiments on metal-
lic glasses show short-range icosahedral order even in the
liquid phase so it is not clear if the density should be as-
sumed to be homogeneous, at least over some time scale
�44�. Therefore, a thorough understanding of k-core beyond
mean field is of the utmost importance to understanding such
transitions as the glass transition and the onset of orienta-
tional ordering in solid ortho-para H2 mixtures, and our work
seems to be the first analytic result to deal with its finite-
dimensional fluctuations.
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APPENDIX A: COUNTING SQUARES

Here we consider in detail the counting of squares with
excluded volume corrections which represent corrections of
order 1 /� relative to leading corrections due to insertion of
squares. More specifically, we consider the enumeration of
pseudo square insertions at a single vertex, like those shown
in Fig. 25. Here there are two distinct types of square inser-
tions, all of which have to be subtracted off because their
topology is different on a hypercubic lattice than on a Bethe
lattice. In panel �a� the situation is simple, in that no sides of
the square are equivalent to the other bonds even on a hy-
percubic lattice. The diagram in panel �b� has to be sub-
tracted off, but note that because two bonds coincide on the
hypercubic lattice, this diagram is in the class of diagrams of
the topology of Fig. 18, which here is shown in panel �c�. To
avoid subtracting this diagram twice, we do not allow it in
the enumeration of diagrams we wish to subtract off here.
Thus we wish to enumerate pseudo squares �diagrams which
would involve a square on the hypercubic lattice�, but only
those in which all bonds are distinct from the bonds of the
chain into which the square is inserted. If the two bonds
�u-S and S-v� entering the vertex are in the same direction
there are of order �2 ways to form the square. So the number
of configurations of this type is of order �2. We next count
the number of configurations when the bond S-v is perpen-
dicular to the incoming bond. There are then �−1 ways to
choose this bond. As shown in panels �d�, �e�, and �f�, the
square can then either �d� be in the same plane as bonds
u-S and S-v �and there are two ways to do this�, or �e� the
square can have two bonds parallel to either bond u-S or
bond S-v �there are four ways to do this� and then there are
�−3 ways to choose the other bonds of the square to be
perpendicular to bonds u-S and S-v, or �f� all bonds of the
square can be perpendicular to the bonds u-S and S-v �there
are ��−3���−5� way to do this. So in all, the number of
configurations, Ns, of the square and of bond S-v is

FIG. 25. Enumeration of the susceptibility diagrams for the Be-
the lattice. Bonds which are parallel involve the same local dis-
placement and sites which are close to one another coincide when
the diagram is implemented on the hypercubic lattice.
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Ns = ��2 + O���� + �� − 1��2 + 4�� − 3� + �� − 3��� − 5��

= �3�1 + �4/��� + O��� . �A1�

This justifies the prefactors for diagrams �b� and �f� of Fig.
16.

The analysis for the diagrams of Fig. 17 is similar. In
panels �a� and �b� of Fig. 26 we show diagrams which have
a different topology on the Bethe lattice than on the hyper-
cubic lattice and therefore which must be subtracted off. In
panel �c� we show a special case when bond Q-R coincides
with a bond �U-w� in the chain. As before, although we do
need to subtract off this diagram, we do not include it in the
present enumeration because it is of the topology of panel �d�
which is included in our analysis of Fig. 18. If bond S-T of
panel a is parallel to the incoming bond then there are �−1
ways to complete the square and �−1 ways to add the bond
exiting the square. When bond S-T of panel �b� is perpen-
dicular to the incoming bond �there are �−1 ways to do
this�, there are �−2 ways to complete the square and then
�−1 ways to add the bond exiting the square. Thus in all, Ns,
the number of ways of configuring the square and the exit
bond U-w is

Ns = �� − 1�2 + �� − 1��� − 2��� − 1� = �3�1 − �3/��� + O��� .

�A2�

This calculation justifies the prefactors for diagrams �b� and
�e� of Fig. 17.

The diagrams of Fig. 18 are more straightforward because
for them one does not have to consider the possibility of
double counting the subtractions.

APPENDIX B: SHIFT OF SINGULARITY IN THE
SUSCEPTIBILITY

In Sec. VI we evaluated the ratio r in the series for the
susceptibility and interpreted the result as giving a shift in
the singularity. Here we justify this interpretation. Note that
the vertex renormalization �in which the unperturbed ratio r0
is replaced by r0+r0�� gives the susceptibility as


 = 	
n

r0
n�1 + n�� . �B1�

In writing this result we noted that for a chain of n bonds the
vertex renormalization could be placed at any one of order n
vertices. Of course, there are end effects, so that really, if we
include end effects, we would write


 = 	
n

r0
n�1 + n� + �� , �B2�

where both � and � include all contributions of order �−2 and
�−3. Now we consider the contributions of two vertex renor-
malizations. If the two vertices do not interfere with one
another then their contribution is r0�2. For a chain of n
bonds, there are of order n2 /2 such configurations. So in
analogy with Eq. �B2�, these contributions are of the form

�
 = 	
n

r0
n�n2�2/2 + n� + �� , �B3�

where � comes from configurations involving two squares or
higher order configurations, none of which were counted up
to order �−3 in Eq. �B2�. These contributions involve either
one square �or hexagon� near an end point and the other in
the interior of the chain, or two interfering structures in the
interior of the chain. Also � comes from configurations in
which all insertions are near an end of the chain.

It seems reasonable to assume that the dominant contribu-
tion to 
 can therefore be written as


 = 	
n

r0
n�1 + n� + n2�2/2 + ¯ � → 	 rn, �B4�

where r=r0�1+��, as we found in Sec. VI. The analysis of
this appendix indicates that is appropriate to identify r as the
renormalized ratio of a geometric series.

One might ask whether this identification is unique. Could
the result of Eq. �B4� arise from a rounded transition for
which


 =
1

2	
n

r0
n��1 + ��n + �1 + �*�n� �B5�

for a suitably chosen value of the complex-valued parameter
�? This form of 
 yields �keeping only relevant terms�


 = 	
n

r0
n�1 + n�� + �*�/2 +

1

4
n2��2 + �*2�� . �B6�

For this to be of the form of Eq. �B4� we find that � must
satisfy

1

4
��2 + �*2� =

1

8
�� + �*�2, �B7�

which implies that �*=�. Therefore, we cannot have a
rounded transition by having the real-valued critical point for
the Bethe lattice split into a complex conjugate pair of criti-
cal points �which would give a Lorentzian susceptibility with
a width of order �−2�. So the form of Eq. �B4� is only con-
sistent with a shifted pole in the susceptibility, as we implic-
itly assumed in Sec. VI.

FIG. 26. Enumeration of the susceptibility diagrams for the Be-
the lattice. Bonds which are parallel involve the same local dis-
placement and sites which are close to one another coincide when
the diagram is implemented on the hypercubic lattice.
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