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Structure and spectrum of anisotropically confined two-dimensional clusters with logarithmic

interaction

S. W. S. Apolinario,”< B. Palrtoens,T and F. M. Peeters*

Departement Fysica, Universiteit Antwerpen (Campus Middelheim), Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

(Received 18 April 2005; published 18 October 2005)

We studied the structural and spectral properties of a classical system consisting of a finite number of
particles, moving in two dimensions, and interacting through a repulsive logarithmic potential and held to-
gether by an anisotropic harmonic potential. Increasing the anisotropy of the confinement potential can drive
the system from a two-dimensional (2D) to a one-dimensional (1D) configuration. This change occurs through
a sequence of structural transitions of first and second order which are reflected in the normal mode frequen-
cies. Our results of the ground state configurations are compared with recent experiments and we obtained a
satisfactory agreement. The transition from the 1D line structure to the 2D structure occurs through a zigzag
transition which is of second order. We found analytical expressions for the eigenfrequencies before the zigzag
transition, which allowed us to obtain an analytical expression for the anisotropy parameter at which the zigzag

transition occurs as a function of the number of particles in the system.
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I. INTRODUCTION

Due to strong Coulomb repulsion, an electron gas at low
temperature and density undergoes a phase transition to a
crystalline state called the Wigner crystal, as predicted theo-
retically by Wigner in 1934 [1]. The Wigner crystal is one of
the possible ground states of a strongly correlated electron
system. Wigner crystallization was first observed in an elec-
tron gas confined above the surface of liquid helium by
Grimes and Adams [2]. Several theoretical and experimental
works have considered the properties of a finite number of
particles interacting through a repulsive interparticle interac-
tion potential and kept together by an external confinement
potential. Typical experimental realizations of such two-
dimensional (2D) systems include electrons on the surface of
liquid helium [2], electrons in quantum dots [3], colloidal
suspensions [4], and confined plasma crystals [5]. These sys-
tems and their configurations have been observed experimen-
tally, and are important in solid-state physics and plasma
physics as well as in atomic physics.

Not only clusters with particles interacting through the
Coulomb potential are investigated but also clusters with
logarithmic interaction has attracted attention because they
correspond with real experimental systems. Vortices in a film
of liquid helium interact through a logarithmic potential [6],
and also a low concentration of vortices in a type II super-
conducting 2D film interact through a logarithmic potential
[7]. The logarithmic interaction between vortices was used to
study the stable vortex configurations in a disk shaped super-
conductor [8,9]. Recently, it was shown [10,11] that the ex-
perimental configurations of charged metallic balls on the
bottom of a plane horizontal capacitor were better described
by a logarithmic interparticle potential [12,13] than a Cou-
lomb interaction potential [14-16].
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An anisotropic confinement potential is considered in the
experiment of Ref. [11] which inspired us to investigate the
effect of the symmetry of the confinement on the configura-
tion of the particles. The experimental setup [11] consists of
charged metallic balls on the bottom electrode of a plane
horizontal capacitor, the upper electrode being a transparent
conducting glass. To get the ball charged, a potential V, of
1000 V is applied to this capacitor. And in order to confine
the balls, another potential V. of 2000 V is applied to a
metallic elliptic frame intercalated between the two capacitor
electrodes. The experimental cell is fixed on a plate that
leans on three independent loudspeakers. Initially the cell is
strongly shaken and the system is liquid at this initial stage.
Consecutively, a sequence of appropriate annealing intro-
duced by loudspeakers vibrations induces the system to a
stable configuration. Throughout the experiment, images of
array balls are recorded in real time using a charge-coupled
device camera onto a VHS videocassette recorder. By ana-
lyzing these records and measuring the time spent in each
observed configuration, the “ground state configuration” was
retained as the most frequently observed state. It was shown
that the asymmetry of the confinement induces various rear-
rangements of the particles, according to their number and
the asymmetry of the potential. These rearrangements consist
of a spatial cluster orientation and intershell particle ex-
changes. They also found some metastable configurations
and well defined triangular structures. In our model the par-
ticles interact through a logarithmic interaction potential as
suggested by the experiment. We will show in this paper that
we could reobtain all configurations presented in Ref. [11].
We classified the transitions as first and second order which,
respectively, exhibit a discontinuity in the first and second
derivative of the energy as a function of the anisotropy of the
confinement. Also we show that these transitions affect the
eigenfrequency spectrum of the system. Reference [17] re-
cently investigated a similar system of logarithmically inter-
acting particles but with a circular confinement. Here we will
stress the effects due to anisotropy. Previously Ref. [18] con-
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sidered Coulomb interacting particles in an elliptic confine-
ment potential, but at that time no experimental results were
available. Furthermore, here we found an analytical expres-
sion for all the eigenfrequencies before the zigzag transition.
This allowed us to find an expression for the anisotropy pa-
rameter at which the zigzag transition occurs as a function of
the number of particles in the system.

The paper is organized as follows. In Sec. I we present
our model system. In Sec. IIl we obtain the ground state
properties and structural transitions and compare them with
the experimental results of Ref. [11]. The dynamical proper-
ties before the zigzag transition and some eigenfrequency
modes which are independently of the number of particles
are investigated in Sec. IV. Finally we present our conclu-
sions in Sec. V.

II. MODEL AND NUMERICAL APPROACH

We study a 2D model system of N equally charged par-
ticles in an elliptic confinement potential and interacting
through a repulsive logarithmic potential. The Hamiltonian
of the system is given by

N
H= m(w(z)xx,z + wﬁyy,-z) - E B 1n|ri - rj| (1)

i>j

M=
D | —

I

where m is the mass of the particle, r;=(x;,y;) is the vector
position of the ith particle, 8 gives the strength of the inter-
action, and wy, and w, are, respectively, the confinement
frequencies in the x and y directions. These frequencies are
related by the expression w,,=\aw,, where « is the eccen-
tricity of the elliptic confinement.

We can write the Hamiltonian (1) in a dimensionless form
if we express the coordinates, energy, and temperature in the
units ry=(28)"?>m='"2, Ey=B, and Ty=pk,', where kj is the
Boltzmann constant. The dimensionless Hamiltonian is

N N
H=, (axiz+yi2)—21n|ri—rj|. (2)
i=1

i>j

All the results will be given in dimensionless units. The
ground state configuration is the global minimum of the po-
tential energy which is only a function of the number of
charged particles N and the eccentricity a. Our numerical
method to obtain the ground state configuration is based on
the Monte Carlo simulation technique supplemented with the
Newton method in order to increase the accuracy of the en-
ergy minimum [ 14]. By starting from different random initial
configurations we are able to find all the possible stable (i.e.,
ground state and metastable) configurations. The eigenfre-
quencies are the square roots of the eigenvalues of the dy-
namical matrix

PH
HCVB ij= - . (3)
3 Ire;idrg.j Fa

where {r,;; @=x,y; i=1,...,N} is the position of the par-
ticles in the ground state configuration.
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III. GROUND STATE CONFIGURATIONS
AND STRUCTURAL TRANSITIONS

At low temperature and for circular confinement the ob-
served clusters are self-organized patterns constituted by
“concentric” shells on which the particles are located.
Changing eccentricity a from 1 to 0, we can go from a cir-
cular potential to a 1D system where the concentric shell
arrangements are broken and all particles are aligned along
the x axis. In this last limit the particles are infinitely far from
each other since the system becomes unbound in the x direc-
tion. In this section, we take the system of N=6 particles as
an example to present some general properties of the ground
state configurations and its configurational transition as a
function of the anisotropy parameter «. In particular, we give
a detailed overview of first and second order transitions for
this system. Next, we will analyze the experimental results of
Ref. [11] which focused on small systems with N=4, 5, 6
and 9 particles, large systems with N=16 and 17 particles,
and systems with some well defined triangular structures.

Changing the eccentricity can induce two types of transi-
tions in the ground state configuration. One of the transitions
involves an intershell particle exchange which can happen
continuously or abruptly, as the eccentricity parameter is var-
ied, characterizing, respectively, a second and first order
transition. The other transition is just a continuous spatial
cluster orientation that constitute a second order transition.

We can see these two types of transitions by varying the
anisotropy parameter « from 1 to O for the N=6 system
(see Fig. 1). With a decrease of « the ground state configu-
ration passes through a first order transition involving an
intershell particle exchange from configurations (1,5) to (6)
at «=0.88. These configurations are respectively shown in
Figs. 2(i) and 2(j). Notice that this transition is not continu-
ous in position space as we see in Figs. 1(b) and 1(c), which
show, respectively, jumps in the coordinates x and y around
a=0.88. It is also accompanied by a discontinuity in the
eigenfrequencies [see Fig. 1(a)].

The variation of elliptic eccentricity « induces also con-
tinuous configuration adjustments. These adjustments happen
to reduce the system energy. At such continuous transitions
one of the eigenfrequencies of the ground state goes to zero.
This is the equivalent of the softening of a phonon mode in
an infinite crystal structure. For N=6 particles such a soften-
ing occurs five times over the a=0—1 range. This occurs
first at @=0.2. In Fig. 2(a) we see that for «=0.19 all par-
ticles are aligned along the x axis forming a chainlike struc-
ture while for «=0.21 [see Fig. 2(b)], just after the transition,
the particles are no longer aligned with the x axis. This tran-
sition is called the zigzag transition and is discussed in fur-
ther detail in Sec. IV. Initially only the central particles in the
line take part in the zigzag transition which can be verified
by noticing the different slopes of the y coordinate lines after
a=0.2 in Fig. 1(c). This behavior was also observed previ-
ously for the case of Coulomb interparticle interaction [18]
and it is independent of the number of particles in the sys-
tem. Notice that the oscillation amplitude of each particle
decreases when going from the center of the system to the
edge of the line configuration as shown in Fig. 2(a) by the
length of the eigenvectors.
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FIG. 1. (a) The mode spectrum as a function of the anisotropy
parameter for a cluster of N=6 particles. (b) and (c) are, respec-
tively, the x and y particle coordinates as a function of a.

The eigenfrequency related to the rotational mode goes to
zero at a=0.43 and 0.84 which are related, respectively, with
the alignment and disalignment of two particles with the x
axis as can be seen in Figs. 2(d) and 2(f), respectively. Also
for «=0.86 the rotational mode frequency is zero but now it
is related to the alignment of two particles with the y axis as
we see in Fig. 2(h). Finally, for a=1, the system exhibits a
zero frequency rotational mode because of the rotational
symmetry of the potential.

The experimental work in Ref. [11] showed ground state
configurations for N=4, 5, 6, and 9 and values of « varying
from 0.5 to 1. We also present configurations related to these
systems in Fig. 3. Note that the increase of the confinement
asymmetry, i.e., decreasing of «, results in intra- and/or in-
tershell reorganization of the particles. For a one-shell ar-
rangement, illustrated for N=4 and 5 particles, this reorgani-
zation is characterized by a particular orientation of the
cluster with respect to the major axis of the elliptic confine-
ment. Our results for the ground state configuration for
N=4 and 5 are compatible with the experimental ones of
Ref. [11] except for the configuration of N=5 at a=0.5
where the configuration found in Ref. [11] corresponds to a
saddle point in our model which can be seen in Fig. 4(a).
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FIG. 2. Ground state configurations for different values of the
eccentricity parameter «. The eigenvectors corresponding to the
lowest normal mode are indicated in (a)—(h). The scale is different
in each figure, but the distance between the ticks is always one
length unit.

This difference from the experimental result may be attrib-
uted to the fact that the difference in energy between both
states is very small at @=0.5, namely, AE/E<4.6%.

For a two-shell structure, the asymmetric confinement can
induce shell arrangements in the cluster. The system N=6 is
an example in which a two-shell ground state configuration
(1,5) for circular confinement is transformed into a one-shell
arrangement (6) when « decreases. This behavior is also ob-
served for N=7, 8, and 9 particles. On the other hand, the
experimental paper [11] shows that the increase of the ellip-
tic asymmetry induces, first, a transition from the (1,8) con-
figuration to the (2,7) one, followed by another rearrange-
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ment which results in a return to the initial configuration
(1,8) for @=0.6. However, in our model, the configuration
(2,7) which can be seen in Fig. 4(b) corresponds to a meta-
stable state with energy very close to the energy of the
ground state configuration (1,8). We show the difference of
energy between both configurations in Fig. 5. The energy
difference between both states is very small in the region just
around a=0.8 where the configuration (2,7) was found in the
experimental work [11].

Now we turn our attention to larger systems where a well
defined triangular structure are found (see Fig. 6). These con-
figurations are in good agreement with the results obtained in
Ref. [11]. These configurations are analogous to the “magic
number structures” discussed in Ref. [14]. Independently if
the circular system corresponds to a magic number one the
elliptic potential can induce, for some N and «, a triangular
array arrangement.

In Ref. [11] an experimental procedure was developed to
investigate metastable configurations and they explored the
influence of the anisotropy on the metastable states of the
system. It was noted that the rules of transition between
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FIG. 4. (a) Saddle point configuration for a system with N=35
particles for a=0.5. (b) Metastable state for N=9 and @=0.9.

ground state and metastable configurations appear differently
for systems with different number of particles. To illustrate
this topic, they considered the cases N=16 («=0.7) and 17
(a=0.6) which were also obtained using our theoretical
method and they are shown in Fig. 7. The configuration of
ground state (GS), metastable state (MS), and saddle point
(SP) are, respectively, shown in Figs. 7(a), 7(b), and 7(c) for
N=16 and Figs. 7(d), 7(e), and 7(f) for N=17. These con-
figurations are classified slightly different in Ref. [11]. There
the ground state and first metastable states obtained experi-
mentally correspond, respectively, to the configurations
shown in Figs. 7(a) and 7(c) for N=16 and in Figs. 7(d) and
7(f) for N=17. The inner shell of these configurations plays a
different transformation rule between the ground and first

0 T T T T T T T T T

21

Eq-E (10°)

3

FIG. 5. Difference of energy between the ground state energy E
with configuration (8,1) and the metastable energy E, with configu-
ration (7,2).
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FIG. 6. Example of ground state configurations exhibiting a well
defined triangular arrangement which is accentuated by the thin
lines. The distance between the ticks is one length unit.

metastable states. Reference [11] noted that their ground
state and metastable state for the system N=16 and a=0.7
has, respectively, an inner shell corresponding to the ground
state and metastable state configuration of a system with
N=5 particles. While for the system with N=17 particles and
a=0.6 the opposite situation occurs, i.e., the inner shell of
the ground state and metastable state configurations, corre-

GS MS sp
(a) (b} (©
(d) (e) ®

FIG. 7. Configurations for N=16 and 17 particles with, respec-
tively, @=0.7 and 0.6. From left to right the columns show the
configurations corresponding to the ground state (GS), metastable
state (MS), and saddle point (SP). The distance between the ticks is
one length unit.
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FIG. 8. The eigenmode spectrum as a function of the anisotropy
parameter for a cluster of N=6 and 7 particles.

spond, respectively, to the metastable and ground state con-
figurations of a system with N=5 particles. We noted that the
shape structure of the outer shell played a different rule in
the minimization of the configurational energy. For example,
in the case of N=16 the cluster arrangement with a regular
outer shell, Fig. 7(a), has a lower energy than the metastable
configuration, Fig. 7(b), presenting an irregular outer
shell. In contrast, the system with N=17 the configuration of
lower energy Fig. 7(d), has an irregular outer shell while
the cluster with regular outer shell, Fig. 7(e), has a larger
energy. The energies of the GS, MS, and SP are, respectively,
E=-3.59426, -3.59294, and -3.59175 for N=16 and
E=-4.42750, —4.426 79, and —4.427 37 for N=17. We can
see that the relative difference in energy between the con-
figurations with the same number of particles are very small.

IV. DYNAMICAL PROPERTIES

In this section we investigate in more detail the depen-
dence of the eigenfrequency spectrum on the anisotropy of
the confinement potential. The spectrum for the logarithmic
interaction system was compared with the behavior of the
eigenfrequencies found in Ref. [18] for a Coulomb system.
We also investigate the center of mass mode and breathing
mode eigenfrequency.

Before the zigzag transition we found that a system with
N+1 particles has the same frequencies as a system with N
particle plus two extra frequencies. This is illustrated in Fig.
8 where the eigenfrequencies for the system with N=6 and 7
particles are shown, respectively, by closed and open
dots. We can see that the closed dots completely coincide
with the open dots before the zigzag transition which occurs
at @=0.167 for a system with N=7 particles. We found a
general expression that fits all eigenfrequencies for a system
of N particles before the zigzag transition. These expressions
are

0=\2-2(n-a,

w= GZna, (4)
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FIG. 9. The value of the anisotropy parameter at which the
zigzag transition occurs as a function of the number of particles.
The symbols are the results from our simulations and the curve is
the expression a,=1/(N-1).

with n=1,...,N. We show the fit for n=7 in Fig. 8. The
zigzag transition in a system of N particles occurs when the
eigenfrequency given by the expression w=2-2(N-1)a
becomes zero. From this we can conclude that the zigzag
transition occurs at a,=1/(N-1). In Fig. 9 we show this
expression for «, which fits perfectly with the numerically
obtained zigzag transition points. A similar power law depen-
dence between the anisotropy parameter o and N was also
obtained before for 2D [18] and 3D [19] confined Coulomb
clusters, using a numerical fitting procedure.

We also investigated the eigenfrequency of the center of
mass mode in the x and y directions which could be obtained
analytically. The Hamiltonian equation of motion yields

X;—X;
Uy=—2ax+ 2> S (5)
Jjei i rl|

and of course we have the same for z}y,- but with a=1. The
displacement of the center of mass R,=2.x; along the x di-
rection satisfies the differential equation

d’R,

= 2 v, =—2aR, (6)

and the same for R, but with a=1. We conclude that the
eigenfrequencies of the center of mass related to the direc-
tions x and y are, respectively, ,=\2a and w,=2. These
frequencies are independent of the number of charged par-
ticles and the interparticle potential, which is predicted by
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the generalized Kohn theorem and is identical for quantum
systems [20].

The breathing mode for a=1 is always equal to 2 inde-
pendently of the number of particles. We can demonstrate
this analytically. The mean square radius R2=E,-(xl-2+ yiz) sat-
isfies the following differential equation:

d*R? S
= 2T -4, (ax? +y]) + N(N - 1)/2, (7)
i=1

with T==,(i?+y?) the total kinetic energy. In the case a=1
the former equation reduces to

d’R?

e 2T-4R*+N(N-1)/2. (8)
Thus the frequency of the breathing mode in a circular po-
tential is w=2 independently of the number of particles.

V. SUMMARY AND CONCLUSIONS

The effect of the anisotropy of the confinement potential
was investigated in detail for the case of particles interacting
through a logarithmic potential. We show that changing the
eccentricity of the confinement potential can induce first and
second order transitions and that these transitions interfere in
the eigenfrequencies of the system. The first order transition
causes a discontinuity in almost all eigenfrequency modes
while a second order transition occurs when one specific
eigenfrequency becomes zero, i.e., mode softening. Also we
saw that the center of mass mode is independent of the num-
ber of particles in the system and that the breathing mode in
a circular confinement is always equal to 2.

We noted that the zigzag transition is initiated by particles
located in the center of the line configuration. The eigenfre-
quencies before the zigzag transition for a system of N+1
particles are the same as the eigenfrequencies of a system
with N particles plus two new eigenfrequencies. We pre-
sented two general expressions depending only on the eccen-
tricity parameter and the number of particles that fit all
eigenfrequencies before the zigzag transition. We obtained
an analytical expression for the anisotropy parameter at
which the zigzag transition occurs as a function of the num-
ber of particles in the system.
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