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Escape or switching at short times
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In the standard Arrhenius picture [S. Arrhenius, Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 4, 226
(1889); L. Néel, Ann. Geophys. (C.N.R.S.) 5, 99 (1949)] of thermal switching or escape from a metastable to
a stable state, the escape probability per unit time Py(f) decreases monotonically with time 7 as P(t) ~ e,

where the decay time 7= 7yeV/%s7,

with U the energy barrier, kg7 the thermal energy, and 7, the time between

escape attempts. Here, we extend the Arrhenius picture to shorter times by deriving general conditions under
which P(7) is peaked rather than monotonic, and showing that in the simplest scenario the peak time 7p

diverges with 7 as In(7p).
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A basic paradigm for understanding the natural world is
the escape or “switching” of a classical system from a meta-
stable to a stable state through thermal activation over an
energy barrier. In the standard Arrhenius picture [1,2], the
escape probability P(r) decays with time 7 as

Py(1) ~ '™, (1)
the decay time 7, being given by 7,= r,eV*s”. Here 7, mea-
sures the time between escape attempts, 7 is the temperature,
U the energy barrier, and kp Boltzmann’s constant. These
relations are among the best known in all of science, and are
used ubiquitously to predict the decay of metastable systems.
While formula (1) holds for long times, > 75, its legitimacy
for shorter times is far from clear, however. For familiar
problems such as the classic model of radioactive decay [3]
or the switching of a single Ising spin [2,4], where escape is
a Poisson process involving a single transition out of a meta-
stable well, formula (1) holds for all £=0. Recent work has
suggested that this simple monontonic decay of P(z) does
not hold for all switching problems, however: Numerical ex-
periments on spatially extended Ising systems [5-7] and
laboratory measurements on switching in sub-micron sized
magnetic tunnel junctions [8] found Py(¢) curves with peaked
shapes [Fig. 1(a)]. To complicate matters further, neither
newer experiments on different tunnel junctions [9] nor ex-
periments on switching in tiny single-domain magnetic par-
ticles [ 10] showed any deviation from the monotonic Arrhen-
ius behavior. Thus the validity of Eq. (1) [or other more
complex, monotonically decreasing forms for P(z) [11]] at
all but asymptotically long times remains unclear, the subject
of apparently conflicting experimental claims.

In this paper, we attempt to resolve the problem by ex-
tending the Arrhenius picture to shorter times through simple
derivation of the general conditions under which P(¢) is ei-
ther peaked or monotonic, and by showing that, when P(z)
is peaked, the peak time 7p commonly diverges with 7, as
In(75). We also argue that switching curves found to be
monotonic in some previous numerics on the two-
dimensional Ising model and experiments on magnetic tun-
nel junctions actually have a peaked structure, verifying this
claim explicitly in the Ising case through numerical study.
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In switching problems [12], the states are divided into two
groups: “switched” and “unswitched.” The system starts in
an unswitched state (or states), and P(r) is defined as the
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FIG. 1. (Color online) (a) Schematic semilog plot of P(z) vs t,
contrasting monotonic (e.g., Arrhenius) decay (dashed line) against
peaked shape; (b) single, direct switching transition in system with
discrete states produces P,(z) with pure exponential decay; (c) in
system with discrete states, P(z) has peak if switching must pass
through initially unoccupied border states (shaded) to switch; (d)
system with continuous states switches through biased diffusion
across border, producing peak in P(r).
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probability per unit time of the first passage to a switched
state occurring at time . We now argue that P(¢) can de-
crease monotonically for all r=0 only in special cases
wherein the system can make, with nonzero probability, a
direct transition from the (unswitched) initial state(s) to the
switched final state. Though some prominent examples of
escape, such as the switching of a single binary variable
(e.g., an Ising spin) between its two states, fall into this cat-
egory [Fig. 1(b)], they are the exceptions rather than the rule.
More typical are systems that must pass through a set of
unswitched intermediate states in order to switch, giving rise
to switching probabilities with peaked shapes.

Let us first consider systems with discrete state spaces,
that is, consisting of a set of N variables S, for «
=1,2,...,N, each of which can assume a set of discrete val-
ues. Let there be a probability Q(i’|i) per unit time of the
system making a transition from state i={S,} to state i’
={S!}. Typically, only pairs of states i and i’ which differ
from each other by a modest number of S,’s have Q(i|i')’s
that are nonzero. (In Ising model dynamics, e.g., only single-
spin or at most few-spin flips are generally allowed.) It is
useful to define the subset, {iz}, of “border” states: un-
switched states from which direct transitions to switched
states occur with nonzero probability. Then P(7)
=2, P; (1)q;,, where P, (1) is the probability of the system
occupying the border state iy at time ¢, and i, is the total
probability per unit time of the system undergoing a transi-
tion into a switched state from the state ip.

If none of the border states is occupied at #=0, then
P, (t=0)=0 for all iz, so P (t=0)=0. The occupation prob-
abilities of the border states must (barring pathological tran-
sition probabilites), increase continuously with ¢ for suffi-
ciently small 7, and so, therefore, does P, (¢). This initial
increase of P,(¢), together with its exponential decay for
large 7, implies that P (f) must achieve a maximum at some
t=7p>0 [Fig. 1(c)].

If, on the other hand, some of the border states are occu-
pied initially, then direct transitions into switched states can
occur at =0. In this case P (t=0) will have the nonzero
value P((t=0)=%; P; (t=0)g; . As t increases, P,(7) can then
either decrease monotonically or increase initially and ex-
hibit a peaked structure, depending upon the details of the
initial occupation and transition probabilities. In simple mod-
els of radioactive decay, e.g., or the switching of a single
binary variable, such as an Ising spin, there are only two
states: the (unswitched) border state that is occupied initially,
and the switched state. In such cases, switching is a Poisson
process, and Py(¢) decreases exponentially for all =0 [Fig.
1(b)].

Now consider problems with continuous- rather than
discrete-valued variables, such as magnetic systems de-
scribed by Brown’s stochastic generalization [13] of the
Landau-Lifshitz-Gilbert ~ equations of micromagnetics
[14,15]. Again one divides the (now continuous) state space,
with N dimensions say, into “unswitched” and “switched”
regions, separated by a border. Such problems are conve-
niently formulated in terms of the standard multivariate
Fokker-Planck equation [16,17] for the probability density
p(x,1) of the system being at the point X in phase space at
time 7z, where x is an N-component vector
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1
ap(x,1) == o[ A(D)p(x,0)] + Eaiaj[Bij(f)P(f’ nl. (2

Here the functions A; and B;; describe the deterministic and
noisy parts of the dynamic, respectively, and summation over
repeated component indices i and j is implied. Starting from
its initial state, the system executes through phase space the
biased diffusive motion governed by Eq. (2), until it switches
by crossing the border into the “switched” region. This is
represented by imposing the “absorbing” boundary condition
[17] p(x,£)=0 for every point x on the border.

P(7) is then given by the integral over the entire border of
the component of the probability current density normal to
the border. In the Fokker-Planck formulation, this current is a
linear function of p(x,f) and its spatial derivatives. Since
some distance in phase space typically separates the initial
state(s) from the border, p(x,f) and its spatial derivatives
vanish at the border at t=0. Hence the current density also
vanishes at the border at r=0, whereupon P (t=0)=0. This
current density must increase from zero for small ¢, reflecting
the initial growth from zero of the occupation probability of
the points in phase space along all possible paths to the bor-
der from the initial point(s), and of the border states them-
selves. As the normal current at the border increases from
zero with time, so does P,(f), which therefore must have a
peaked structure as in the discrete case, barring pathologies
in the functions that appear in the Fokker-Planck equation.

To reach the border and switch, in other words, the system
must perform, through the state space, a continuous random
walk biased adversely by the deterministic dynamics [18],
and hence by the energy function if there is one [Fig. 1(d)].
Assuming that the noise is not pathological, this initial in-
crease is presumably continuous and gradual [19].

To derive an asymptotic relation between 7 and 7, from
simple arguments, we start with the case of discrete vari-
ables. The dynamics of the switching problem can be de-
scribed by the familiar master equation [16] dP/di= QP for
the unswitched states {i;}; here the elements of the vector P
and the matrix Q are P; (1) and O(iyljy), respectively, with
Q(iy|iy) the negative of the total probability per unit time of
the system undergoing a transition out of state i;;. When Q
can be diagonalized, P,-U(t), and hence P(r), can be ex-
pressed as the eigenvector expansion [17] P,(f)=3;A;eM,
where \; is the ith eigenvector, A;,; <\; <0 for all i, and the
A; are coefficients [20]. For large ¢, this expansion is domi-
nated by the terms corresponding to the leading eigenvalues,
all of which must be negative to reflect the vanishing of P (r)
at r=00,

Further assuming that the two leading eigenvalues, \; and
N\, (where \,<\,;<0), provide an adequate description of
the peaked P(¢) for all ¢, one has

Ps(t) ~Ale)‘lt+A26)‘21, (3)

for coefficients A; and A,. The dominance of the leading
term A;eM’ for asymptotically large ¢, clearly implies that
7p=—1/\,. The constraints that P (r) be positive for all ¢
=0 and have a peaked structure [i.e., a positive time deriva-
tive, P/(1)>0, for ¢ near zero], further require that A;>0,

046121-2



ESCAPE OR SWITCHING AT SHORT TIMES

A+A,=0, and A\ +A,\,>0; this last inequality implies
A;<0. One can then solve Eq. (3) for the peak
time 7p by setting P/(r=7p)=0. This yields 75
=In(-A,No /AN /(N —Ny).

In the limit A;=0, the eigenvalue N, governs the long-
time relaxation of probability towards the equilibrium or
steady-state distribution, and so typically has a finite, non-
zero value in this limit. In the simplest case, where the ratio
A,/A, does not vanish as A\;—0, the asymptotic result 7p
~In(-=1/\;)=In(7p) as A;—0 follows immediately. (Note
that A,/A; cannot diverge, since that would violate the con-
dition A;+A,=0.)

Even if A,/A vanishes as A — 0, it will typically do so as
a power of \;. In Ising-like systems, e.g., one anticipates
A,/A; vanishing exponentially in 1/7 as T—0, i.e., as a
power of \. Then 7 continues to diverge as In(7p). One can
show explicitly that this is what occurs in the single-variable
“ladder” model [8], which is described by the matrix Q with
a particularly simple form.

Different outcomes and more complex scenarios may also
be possible. If, for example, both A; and A, in Eq. (3) are
positive, then the positivity of P (¢) near =0 requires a third
term in the eigenvector expansion. Assuming that \,,A;, and
the ratios of the A;’s approach finite constants as A; — 0, 7p is
then easily shown to approach a constant as 7, diverges.
While such behavior has not yet been observed in any solved
or simulated models, including the Ising model discussed
below, its occurrence has not been ruled out.

Turning to the case of continuous variables, the Ansatz
p(x ,t)=P>\l_()?)e‘)‘i’ turns the Fokker-Planck equation for the
switching problem (with absorbing boundary conditions at
the border) into an eigenvalue problem with eigenvalues \;
and eigenfunctions Pxi(f) [16,17]. (Here we assume a dis-
crete eigenvalue spectrum and the existence of a complete
set of eigenfunctions.) P,(f), the integral over the border of
the component of the probability current density normal to
the border, can then be expressed in the same form as in the
discrete-variable problem, viz., Py(f)=3,A;e™!, for coeffi-
cients A;. Again, in the simplest scenario where only the two
leading terms need be retained, 7, diverges as In(7p).

The relation between 7p and 7, just derived is consistent
with the results of existing calculations of P(r) and 7 on
single-variable models with discrete [8] and continuous [21]
variables, but remains to be tested on a many-body system.
Accordingly, we performed Monte Carlo simulations of the
classical two-dimensional nearest-neighbor ferromagnetic
Ising model on a square lattice in a magnetic field. The
model is described by the familiar Hamiltonian

H=-JX58,-hXS, (4)
Cij) i

with exchange constant J(>0), and magnetic field &; here
S;=x1 is a binary variable on the ith site of a two-
dimensional square lattice of linear size L,X; designating a

sum over nearest-neighbor pairs of sites.
Simulations were performed at temperature 7, following
the protocol described in Ref. [7]: The system is initialized
with all spins pointing down, then updated according to the
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FIG. 2. Semilog plot of Py(f) vs ¢ for Ising model with param-
eters L=20, J=1, kgT=1.81535, and (top to bottom) h/J=0.125,
0.115, 0.105, 0.90. The inset shows detail of short-time behavior.

standard Metropolis Monte Carlo algorithm [22], with single
spin flips at randomly chosen sites as the only allowed
moves. After each attempted pass through the system (i.e., L?
spin updates), one computes the total magnetization, M, halt-
ing the simulation and recording the time elapsed, i.e., the
number of passes completed, when M first exceeds 0. This
time is defined as the switching time. Many repetitions of
this procedure generate the switching probability P(z).

One can also iterate the master equation of the system
directly, thereby calculating the probability of the system re-
maining unswitched, and hence P (), as a function of
elapsed time ¢. This obviates the need for any random num-
bers or repetitions, allowing one to achieve much longer
times and reduced error. Even though one need only keep
track of the unswitched states, the exponential growth with L
of their number limits this method to very small L.

Figure 2 shows the semilog P,(¢) vs  curves produced by
these simulations, for fixed values of the linear system size
(L=20), exchange strength, and temperature, and a series of
different magnetic field values. These curves indeed have the
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FIG. 3. Semilog plot of 7p vs 75 for (a) L=20, J=1.0, h
=0.15, and kzT taking values between 1.81535 and 1.60 (circular
symbols, from simulations); (b) L=3, J=1.0, h=2.0, and kgT be-
tween 1.2 and 0.3 (triangular symbols, from master equation).
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peaked shape predicted by our arguments, the linear decrease
at large ¢ indicating the expected exponential decay.

Figure 3 shows a semilog plot of 7p vs 7, covering
roughly two orders of magnitude in 7, for simulations per-
formed with L=20 and a series of temperature values. The
data seem consistent with 7 growing as In(7p), as per the
prediction above. Figure 3 also shows data acquired for L
=3 and a series of different temperatures, obtained from di-
rect numerical solution of the master equation for the system,
rather than from simulations. These data obey 7p~In(7p)
over four decades in 7.

In earlier Ising model simulations with parameters very
similar to those of our Fig. 2, the probability, P(z)=1
= [4Ps(u)du, of the system not having switched at time 7 was
found to exhibit pure exponential decay [7]. This implies a
monotonic exponential decrease of P(¢) and no peak, which
seems to contradict our findings. Since, however, an obvious
peak in Pg() manifests itself as a much less obvious inflec-
tion point in P(z), we feel confident that Py(¢) in Ref. [7]
actually does have a peak, so there is no real discrepancy
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between the two sets of results. A similar statement applies to
measurements of P(7) in magnetic tunnel junctions [9] simi-
lar to those studied in Ref. [8]: We believe that direct mea-
surements of P(¢) on the sample of Ref. [9] would in fact
show the peaks found in Ref. [8].

In summary, the picture of switching that emerges from
our arguments is one wherein, apart from well known cases
that turn out to be rather special, P,(¢) has a peaked structure
with the peak time 7, commonly growing as In(7,) asymp-
totically, where 7, ~ V%87 is the characteristic time for the
exponential decay of P(¢) at large ¢. Empirically, moreover,
7p seems to set a rough time scale beyond which P(¢) de-
creases exponentially. This scenario generalizes the vener-
able results of Arrhenius and Néel to shorter times, providing
at least a qualitative picture of switching on all time scales.
Though typically 7p<<7), recent experiments [8,9] make
clear that modern magnetic and other devices have evolved
to the point where even very modest peak times have prac-
tical relevance.
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