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We derive the differential equation describing the time evolution of the work probability distribution func-
tion of a stochastic system which is driven out of equilibrium by the manipulation of a parameter. We consider
both systems described by their microscopic state or by a collective variable which identifies a quasiequilib-
rium state. We show that the work probability distribution can be represented by a path integral, which is
dominated by “classical” paths in the large system size limit. We compare these results with simulated ma-
nipulation of mean-field systems. We discuss the range of applicability of the Jarzynski equality for evaluating
the system free energy using these out-of-equilibrium manipulations. Large fluctuations in the work and the
shape of the work distribution tails are also discussed.
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I. INTRODUCTION

Recent improvements in micromanipulation techniques
have made it possible to observe experimentally work fluc-
tuations and to measure the probability distribution of the
work exerted on a system subject to external manipulation.
In particular, the probability distribution of the work has
been measured in RNA pulling experiments �1,2� and for
micrometer-sized colloidal particles dragged through a fluid
�3�. Usually, because of technical limitations, this class of
experiments is characterized by time scales much faster than
the typical system relaxation time. This hinders the possibil-
ity to perform the experiments in quasistatic conditions and
thus to obtain direct measurements of the system thermody-
namic state variables. The importance of the knowledge of
work distributions in such experiments resides in the fact that
one can evaluate the free energy difference between the final
and the initial state of the system by exploiting the Jarzynski
equality �JE� �4–6�

�e−�W� = e−��F. �1�

According to previous work �2�, a precise knowledge of the
tails in the distributions provides information on how many
experiments are needed in order to evaluate correctly the free
energy difference of a system using nonequilibrium experi-
ments. Thus a priori estimates of P�W� are in principle
needed to evaluate the actual usefulness of this approach.

In two recent works �7,8�, we introduced and discussed a
differential equation describing the time evolution of the
probability distribution of the work done on a system by
manipulating an external field �force� �, according to a given
protocol ��t�. In particular, in Ref. �7�, we considered the
case of a system characterized by a discrete phase space,
while in Ref. �8� we considered a mean field system charac-
terized by a generic equilibrium free energy F��M�.

The aim of this paper is to extend those works by exploit-
ing an approach due to Felix Ritort �9�. In particular, we first

derive explicitly the differential equations governing the time
evolution of P�W , t�. We then derive an expression of the
work probability distribution of a system described by a col-
lective variable, on the hypothesis that, during the manipula-
tion, the system finds itself in a quasiequilibrium state con-
strained by the value of that coordinate. We solve the
resulting equation by path integrals and show that, in the
limit of large system size, the path integral is dominated by
the classical path which satisfies canonical equations of mo-
tion, and suitable boundary conditions. The expression for
the probability distribution function follows straightfor-
wardly. We highlight the analogy between the path function-
als obtained in this way and classical thermodynamics. We
apply the obtained results to some simple systems and we
explore in particular the possibility of the existence of expo-
nential tails in the work probability distribution: such tails
are related, via the thermodynamic analogy, to phase transi-
tions in the path distribution. We show that, contrary to what
was conjectured in Ref. �9� on the basis of numerical evi-
dence, such tails are not present in a paramagnet, or in a
ferromagnet above the critical temperature, but are present in
a mean-field ferromagnet below the critical temperature, pro-
vided the manipulating protocol is fast enough. The implica-
tions of our results are further discussed.

II. PROBABILITY DISTRIBUTION OF THE WORK FOR
THE MICROSCOPIC COORDINATES

In this section, we see how the probability distribution
function of the work W exerted on a system can be evaluated
by considering the joint probability distribution of W and the
microscopic state of the system. This equation was derived in
Refs. �7,10� �see also �6��. Let us first consider a system
whose microscopic state i can take on a finite number of
values. To each such state is assigned an energy value Hi���,
where � is a parameter which is manipulated according to
some protocol ��t�, starting at t=0. We assume that the evo-
lution of the system is described by a Markovian stochastic
process: given, for all pairs �i , j�, the transition rate kij�t�*Corresponding author. Email address: imparato@na.infn.it
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from state j to state i at time t, the system satisfies the set of
differential equations

�pi

�t
= �

j��i�
�kij�t�pj�t� − kji�t�pi�t�� , �2�

where pi�t� is the probability that the system is found at state
i at time t. Let pi

eq��� represent the equilibrium distribution
corresponding to a given value of �. We have

pi
eq��� =

e−�Hi���

Z�

, �3�

where Z�=�ie
−�Hi���=e−�F� is the partition function corre-

sponding to the value � of the parameter, and F� the corre-
sponding free energy. We require that the transition rates
kij�t� are compatible with the equilibrium distribution pi

eq���,
i.e., that, for any i,

�
j��i�

�kij�t�pj
eq
„��t�… − kji�t�pi

eq
„��t�…� = 0. �4�

We assume that the system is at equilibrium at t=0, and
therefore that pi�t� satisfies the initial condition

pi�t = 0� = pi
eq
„��0�… . �5�

As pointed out in Ref. �7�, the function pi�t� does not provide
sufficient information on the work performed on the system
during the manipulation process. We can, however, consider
the joint probability distribution �i�W , t� that the system is
found in state i, having received a work W, at time t. If the
system is in the state i at time t, the infinitesimal work �Wi
done on it in the interval �t reads

�Wi = �̇
�Hi„��t�…

��
�t . �6�

We have thus

�i�W,t + �t� � �i�W − �Wi,t� + �t �
j��i�

�kij�t�� j�W − �Wj,t�

− kji�t��i�W − �Wi,t��

= �i�W,t� − �t�̇Hi�„��t�…�W�i�W,t�

+ �t �
j��i�

�kij�t�� j�W,t� − kji�t��i�W,t�� . �7�

The last equality is obtained by substituting the expression
for �Wi given in Eq. �6� and by taking the first order expan-
sion in �t of the right-hand side �rhs�. We are now able to
write the set of differential equations which describe the dis-
tribution functions �i�W , t�

��i

�t
= �

j��i�
�kij�t�� j�W,t� − kji�t��i�W,t�� − �̇Hi�„��t�…

��i

�W
.

�8�

The joint probability distribution �i�W , t� satisfies the initial
condition

�i�W,0� = ��W�pi
eq
„��0�… . �9�

We are interested in the state-independent work probabil-
ity distribution P�W , t� defined by

P�W,t� = �
i

�i�W,t� . �10�

It is convenient to introduce the generating function of �i
with respect to the work distribution, defined by

�i��,t� =	 dWe�W�i�W,t� . �11�

�Notice that we adopt here, for later convenience, the oppo-
site sign convention with respect to that adopted in Ref. �8�.�
We assume that �i�W , t� vanishes fast enough, as 
W
→	,
for �i�� , t� to exist for any �. The function �i satisfies the
initial condition

�i��,t0� =
exp�− �Hi„��0�…�

Z��0�
, �12�

and evolves according to the differential equation

�t�i��,t� =	 dWe�W�t�i�W,t� =	 dWe−�W� �
j��i�

�kij� j

− kji�i� − �̇
�

��

��i

�W� = �
j��i�

�kij� j − kji�i�

+ ��̇
�Hi„��t�…

��
�i��,t� . �13�

Exploiting Eq. �4�, it is easy to verify that if �=−�, for any
i at any time t, the solution of Eq. �13�, with the initial
condition �12�, reads

�i�− �,t� =
e−�Hi„��t�…

Z��0�
=

Z��t�

Z��0�
pi

eq
„��t�… . �14�

We can thus straightforwardly verify the Jarzynski equality:

�e−�W� =	 dWe−�WP�W,t� = �i 	 dWe−�W�i�W,t�

= �
i

�i�− �,t� =
Z��t�

Z��0�
�

i

pi
eq���t�� =

Z��t�

Z��0�

= e−��F„��t�…−F„��0�…�. �15�

It is thus possible, in principle, to evaluate the probability
distribution function of the work W by solving the equations
�8� or �13� for all the microscopic states i. This approach has
been implemented in Ref. �7� for a simple model of a
biopolymer.

III. COLLECTIVE VARIABLES

The approach discussed in the previous section becomes
quickly unwieldy as the complexity of the system increases:
the dimension of the system �8� is equal to the number of
microscopic states of the system. Clearly the system phase
space must be sufficiently small for this protocol to be car-
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ried out, as in the case discussed in �7�. In all the other cases,
where the system considered is characterized by a large num-
ber of degrees of freedom, one usually introduces some col-
lective variables, and an effective free energy, in order to
reduce the complexity of the problem. The assumption un-
derlying this approach is that the system reaches on a com-
paratively short time scale a quasiequilibrium state con-
strained by the instantaneous value of the collective
coordinate. Thus on the time scale of the experiment, the
state of the system can be well summarized by the collective
coordinate, with the corresponding free energy playing the
role of the Hamiltonian.

Thus we consider in the following a system characterized
by a generic equilibrium free energy function F��M�, where
� is again the parameter which is manipulated, and M is
some collective �mean-field� variable. �We shall consider in
the following the case in which M is a scalar, but the analysis
holds also if M is a collection of real variables.� We assume
that the system dynamics is stochastic and Markovian: let
P�M , t� denote the probability distribution function of the
variable M at time t, then its time evolution will be described
by the differential equation

�P

�t
= ĤP , �16�

where Ĥ is a differential operator which depends on the

parameter �. We require that the operator Ĥ is compatible
with the equilibrium distribution function of the system, i.e.,
that the relation

Ĥe−�F��M� = 0 �17�

holds for any value of �.
The developments which follow were first obtained in

Ref. �9� for a collection of noninteracting spins.
We will consider a general mean-field system, described

by a collective variable M and a generic free energy function
F��M�. �The derivation can be easily generalized to the case
in which M has more than one component.� The work done
on a system during the manipulation, along a given stochas-
tic trajectory M�t�, is given by

W = 	
0

t

dt��̇�t��
�F�„M�t��…

��
. �18�

Using the same arguments as for the discrete case, one finds
that the time evolution of the joint probability distribution
��M ,W , t� of M and W is described by the differential equa-
tion

��

�t
= Ĥ� − �̇

�F�

��

��

�W
. �19�

It can be easily shown that the solution of Eq. �19� satisfies
the Jarzynski equality �1� identically �8�.

Equation �19� becomes much easier to treat if one intro-
duces the generating function ��M ,� , t� for the work distri-
bution:

��M,�,t� =	 dWe�W��M,W,t� . �20�

Equation �19� becomes thus

��

�t
= Ĥ� + ��̇

�F�

��
� , �21�

with the initial condition

��M,�,0� =
e−�F��0��M�

Z��0�
. �22�

These equations are exact for a collection of free spins, or for
a mean-field Ising model. The partial differential equation
�21� replaces the 2N ordinary differential equations �13�, with
i� 
−1, +1�N, that one would obtain without the use of the
collective coordinate M.

We now derive a path integral representation of the solu-

tion of Eq. �21�, taking for the differential operator Ĥ the
expression

Ĥ · = �
k=0

	
�k

�Mk 
gk�M� · � . �23�

�The coefficients gk�M� also depend on �, but this depen-
dence is understood to lighten the notation.� Let us introduce
the generating function of ��M ,� , t�:


��,�,t� =	 dMe−�M��M,�,t� . �24�

Multiplying both sides of Eq. �21� by exp�−�M�, and inte-
grating over M, we obtain

�t
��,�,t� =	 dMe−�M�Ĥ + ��̇��F���

=	 dMe−�M��
k

�k

�Mk �gk�� + ��̇��F���
=	 dMe−�M��

k

�kgk + ��̇��F��� . �25�

Then the function 
�� ,� , t� satisfies


��,�,t + �t� =	 dMe−�M
1 + �t�H��,M� + ��̇��F���� ,

�26�

where the function H�� ,M� is defined as

H��,M� = �
k

�kgk�M� . �27�

Given 
�� ,� , t�, we can evaluate ��M ,� , t� from the ex-
pression

��M,�,t� = 	
−i	

+i	 d�

2�i
e�M
��,�,t� . �28�

�In the following, we shall understand the integration limits
on �.� We obtain therefore
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��M,�,t + �t� =	 d�

2�i
	 dM�e��M−M��
1 + �t�H��,M��

+ ��̇��F�����M�,�,t�

� 	 d�

2�i
	 dM�e��M−M��+�t�H��,M��+��̇��F��


 ��M�,�,t� . �29�

Iterating, we obtain

��M,�,t + Nt�t� =	 dM0	 �
i=0

Nt d�idMi

2�i
��M − Mt�


 exp
S��,M����M0,�,0� , �30�

where the “action” S�� ,M� is given by

S��,M� = �
i=1

Nt


�i�Mi − Mi−1� + �t�H��i,Mi�

+ ��̇��F��ti�
�Mi��� . �31�

In the continuum limit, Eq. �30� becomes

��M,�,tf� =	 dM0	
M�0�=M0

M�tf�=M

D�DM


 exp
S��,M����M0,�,0� , �32�

where

S��,M� = 	
0

tf

dtL�t� . �33�

The “Lagrangian” L is given by

L�t� = ���Ṁ + H��,M� + ��̇
�F�

��
��

��t�,M�t�,��t�
. �34�

Let N indicate the size of the system, and let us define the
“intensive quantity” m=M /N. We can thus define, in the
thermodynamic limit N→	, m=const, the densities

f��m� = lim
N→	

F��Nm�
N

, �35�

H��,m� = lim
N→	

H��,Nm�
N

. �36�

The Lagrangian density “per spin” then reads

��t� = lim
N→	

L�t�
N

= �ṁ + H��,m� + ��̇
�f�

��
. �37�

In this way, the path integral appearing in Eq. �32� assumes a
form suitable for a saddle-point approximation for large sys-
tem sizes N, as pointed out in �8,9�. The parameter N plays a
role akin to the inverse of Planck’s constant � in the quasi-
classical approximation of Feynman’s path integral for quan-
tum amplitudes �11�. The result is the leading term in an
asymptotic expansion in powers of N−1, which corresponds

to the mean-field solution of a statistical model. In Ref. �9� it
was shown that the approximation works well for free spins.
In Ref. �8� it was shown that for a mean-field spin system
above the phase transition the approximation works rather
well for system sizes N of the order of 10 and larger, but
deteriorates as the transition is approached. It would be in-
teresting to investigate in full the behavior of a finite-size
system, in a situation when the corresponding infinite-sized
system exhibits a phase transition. For a sufficiently fast ma-
nipulation protocol, in a large but finite system, the probabil-
ity that a fluctuation overcoming the free energy barrier
spontaneously arises should be very small. We expect there-
fore that the results of the infinite-size limit should hold bet-
ter for faster protocols than for slower ones. These issues
will be dealt with in future work.

In the leading approximation, the path integral in Eq. �32�
is dominated by the classical path ��c�t� ,mc�t�� solution of
the differential equations

�S
���t�

= 0 ⇒ ṁ = −
�H

��
; �38�

�S
�m�t�

= 0 ⇒ �̇ =
�H

�m
+ ��̇

�2f�

�m��
. �39�

We shall now see that the requirement that the system is in
equilibrium before the manipulation starts imposes an initial
condition on these equations. In order to evaluate the integral
over M0 in Eq. �32� with the saddle-point method, we note
that ��M ,� ,0� appearing on its rhs, is given by Eq. �22�.
Furthermore, from the definition of ��t�, Eq. �37�, it follows
that

	
0

tf

dt��t� = mtf
�tf

− m0�0 + 	
0

tf

dt�− �̇m + H + ��̇��f�� .

�40�

Thus substituting Eq. �40� into Eq. �32�, and taking the de-
rivative with respect to m0=M0 /N, we obtain the saddle-
point condition

��t = 0� = − �� �f�

�m
�

t=0
. �41�

In this way one can devise a strategy to evaluate
��M ,� , tf� for a given manipulation protocol ��t� when the
system size N is large enough. One has to solve the classical
evolution equations �38� and �39� with a two-point boundary
condition: namely, Eq. �41� should be imposed at t=0, and
the condition Nm�tf�=M should be imposed at the final time
tf. Once the relevant classical path ��c�t� ,mc�t�� has been
evaluated, one can obtain the action density s��c ,mc�
=limN→	S��c ,Nmc� /N from the expression

s��c,mc� = 	
0

tf

dt��t� . �42�

Then, taking into account the initial condition �22�, we ob-
tain the following asymptotic expression for ��Nm ,� , tf�:
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��Nm,�,tf� � exp
N†s��c,mc� − �f��0�„mc�t = 0�…‡� .

�43�

However, we are essentially interested in the state-
independent work probability distribution

P�W,tf� =	 d�e−�W���,tf� , �44�

where we have defined

���,tf� =	 dM��M,�,tf� . �45�

We shall now see that evaluating ��� , tf� identifies a well-
defined boundary condition on �c�tf�. We have indeed

���,tf� =	 dMdM0	
M�0�=M0

M�tf�=M

D�DM


 exp�N	 dt��t����M0,�,0� . �46�

In order to evaluate the integral over M with the saddle-point
method, we notice that, upon derivation of the rhs of Eq. �40�
with respect to mtf

, we obtain the condition

�f � ��tf� = 0. �47�

Thus, the equation of motions �38� and �39� have to be
solved with the initial and the final conditions �41� and �47�:
let ��c

*�t� ,mc
*�t�� denote the solution of Eqs. �38� and �39�

satisfying these conditions. For each value of �, taking into
account the initial value condition �22�, the following saddle-
point estimation for ��� , tf� is obtained by Eq. �46�:

���,tf� �
exp
− Ng����

Z0
, �48�

where

g��� = �f�0
�m0

*� − 	
0

tf

dt�c
*�t� . �49�

In this equation, �c
*�t� is ��t� evaluated along the classical

path ��c
*�t� ,mc

*�t��. In order to evaluate the integral on the rhs
of Eq. �44�, we use the saddle-point method again, and ob-
tain

P�Nw,tf� = N exp
− N��*�w�w + g„�*�w�…�� , �50�

where �*�w� is the solution of

g���*� = − w , �51�

and N is a normalization constant. Notice that the saddle-
point estimate for P�W , tf� obtained in this way implies that
the distribution becomes more and more sharply peaked
around its maximum value as N→	. This is compatible with
the expectation that the work fluctuations become relatively
smaller as the size of the system increases, and in the limit
N→	, which can be thought of as the limit of a macroscopic
system, no work fluctuations are observed, and the work
done on the system during the manipulation takes one single

value, corresponding to the most probable value of P�W , tf�.
In Ref. �8� we showed that the JE is identically satisfied at

the level of classical paths. For completeness, this derivation
is reproduced in the Appendix.

IV. A MEAN-FIELD SYSTEM WITH LANGEVIN
DYNAMICS

We wish to discuss a few properties of the work distribu-
tion obtained by the present method by considering a definite
example. The case of free Ising spins has been considered
�within a slightly different formalism� in Ref. �9�. We shall
return to it in Sec. VI. We thus take an Ising-like system with
mean-field interaction, with free energy

F�M� = −
J

2N
M2 − hM − TS�M� , �52�

where S�M� is the usual entropy for an Ising paramagnet,

S�M� = − kB��N + M

2
�log�N + M

2
�

+ �N − M

2
�log�N − M

2
�� , �53�

expressed as a function of the continuous variable M. We
assume that the system evolves according to Langevin dy-
namics. The corresponding Fokker-Planck differential opera-
tor reads

Ĥ · = �0N
�

�M
�� �F

�M
� · + �−1 �

�M
· � , �54�

leading to the Hamiltonian

H��,m� = �0��� �f

�m
� + �−1�2� , �55�

where the free energy density f�m� is given by

f�m� = −
J

2
m2 − hm + �−1��1 + m

2
�log�1 + m

2
�

+ �1 − m

2
�log�1 − m

2
�� . �56�

The stochastic process described by this operator can be
simulated by integrating the corresponding Langevin equa-
tion, using the Heun algorithm �12�: for each realization of
the process, the work W done on the system can be evalu-
ated. The resulting histogram of w represents an estimate of
the work probability distribution. This estimated distribution
can be then compared with the expected distribution �valid
asymptotically for N→	� obtained by the classical paths.

We consider the case where the system is subject to the
external manipulation of the magnetic field h�t�, according to
the simple protocol

h�t� = h0 + �h1 − h0�
t

tf
; 0 � t � tf . �57�

The equations of motion �38� and �39� become
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ṁ = −
�H

��
= − �0

�f

�m
− 2kBT�0� , �58�

�̇ =
�H

�m
+ ��̇

�2f

�m��
= �0

�2f

�m2� − �ḣ . �59�

In the following we will take �=1. In Fig. 1, we consider the
case where the system is above the critical temperature, i.e.,
�J�1. In this case, as expected, the peak of the distribution
moves towards the value of the work done on the system
along a reversible trajectory wrev=�f =0, as the transforma-
tion becomes slower. But the most important indication
emerging from such a figure is that the JE cannot be applied
to obtain an independent estimation of the free energy differ-
ence between the final and initial states of the transformation
if N is too large. In fact, we plot in the same figure the

quantity P̂�w� defined as

P̂�w� = exp�− �Nw�P�w� , �60�

on the one hand we find �dwP̂�w�=exp�−��F�=1 as pre-
dicted by the JE, while on the other hand the histogram ob-
tained by the simulations exhibits no point �no realization of
the process� with w�0=wrev. Thus the work distribution ob-
tained by the simulation of the process cannot reliably be

used for estimating �F. This is a typical example of how the
lack of knowledge of the tails of the work distributions in
micromanipulations experiments hinders the possibility of
using Eq. �1� to evaluate free energy differences.

We now consider a system below the transition tempera-
ture, i.e., for �J�1. In Fig. 2 the work probability distribu-
tion obtained by the theory here discussed is plotted for J
=1.1, h0=−h1=−1, and for two values of the final time tf. In
the same figure, the probability distribution obtained by
simulations is also plotted. As for the case �J�1 �Fig. 1�,
the JE is satisfied, i.e., �exp�−�W��=1, there is a good agree-
ment between the theory and the histograms obtained by
simulations. But also in this case, such simulations cannot be
used for estimating �F, since the histograms exhibit no point
with w�wrev.

Since the amplitude of work fluctuations is expected to be
relatively large in a small system, we calculate now the work
probability distribution for smaller systems and compare
them with the results of simulations. First, we consider the
case N=10, Fig. 3: it can be seen that the histogram of the
work obtained by simulations is closer to the thermodynamic
value of the work wrev=0 than the distribution function ob-
tained by the theory discussed in the present paper. Indeed,
since P�Nw , t�, as given by Eq. �50�, is exact only in the limit
N→	, that expression fails to describe the actual work dis-
tribution for small N. Furthermore, even for N=10, there are

FIG. 1. Results for the system described by the differential operator �54� with equilibrium free energy �52�, manipulated according to the
protocol �57�, with J=0.5, h0=−h1=−1, and �a� tf=2, �b� tf=4. Continuous line: probability density P�w� of the work “per spin” w=W /N,

with N=100. The histogram of the work is obtained by 10 000 simulations of the process, see text. Dotted line: P̂�w� as given by Eq. �60�,
whose integral verifies the Jarzynski equality. Vertical line: thermodynamic value of the work wrev=�F /N.

FIG. 2. Results for the system described by the differential operator �54� with equilibrium free energy �52�, manipulated according to the
protocol �57�, with J0=J1=1.1, h0=−h1=−1, and �a� tf=2, �b� tf=4. Continuous line: probability density P�w� of the work “per spin” w

=W /N, with N=100. The histogram of the work is obtained by 10 000 simulations of the process, see text. Dotted line: P̂�w� as given by Eq.
�60�, whose integral verifies the Jarzynski equality. Vertical line: thermodynamic value of the work wrev=�F /N.
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few points in the histogram with w�wrev, and thus no reli-
able estimate of �F can be obtained from the simulations.

We further decrease the value of N and take N=2, see Fig.
4. In this case the agreement of the histogram with the the-
oretical curve is worse than the case N=10, as expected. But
the small size of the system entails a broader work distribu-
tion, and thus enables a sufficient sampling of trajectories
with w�wrev. In the same figure, the histogram of the distri-
bution exp�−�Nw�P�w� is plotted: from this histogram we
obtain the estimate for the free energy difference �fexp
=−N−1kBT ln�exp�−�Nw�P�Nw��exp, where �¯�exp is the
mean over all realizations of the process. We obtain �fexp
�0.015, against a theoretical value of wrev=�f =0, and a
most probable value of the work wmp�0.6.

V. PATH THERMODYNAMICS

The work distribution can be interpreted in terms of path
thermodynamics, as first suggested in Ref. �9�. Indeed,
g���=−limN→	 log ��� , tf� /N plays the role of a path Gibbs
free energy. Thus

��w� = − lim
N→	

1

N
log P�Nw,tf� �61�

plays the role of the corresponding Helmholtz free energy.
The two functions are related by a Legendre transformation:

��w� = inf
�
„g��� + �w… = g„�*�w�… + �*�w�w , �62�

where �*�w� is the solution of Eq. �51�. Thus � and w appear
like thermodynamically conjugate variables. Notice that if
�� ,w*���� are a pair of mutually conjugate variables, then
w*��� is a monotonically increasing function of �. Indeed the
relation between ��w� and � reads

��„w*���… = � . �63�

It is clear that the most probable value of the work wmp
corresponds to the value �=0.

In Ref. �9�, w is taken to play the role of the internal
energy, and thus −��w� that of the entropy. Therefore �
=���w� can be considered as an inverse temperature. We
have preferred to draw the analogy with more familiar func-
tions.

Indeed, one can generalize this point of view by going
back to the joint probability distribution function ��M ,W , t�.
If we define

��m,w� = − lim
N→	

log ��Nm,Nw,tf� , �64�

we obtain straightforwardly

��m,w� = inf
�,�

„���,�� + �m + �w… , �65�

where ��� ,�� is defined in terms of 
�� ,� , t�, which we
have defined in Eq. �24� by

���,�� = − lim
N→	

1

N
log 
��,�,tf� . �66�

One may notice that the � appearing in this equation may be
identified with � f =��tf�.

VI. LARGE FLUCTUATIONS AND EXPONENTIAL TAILS

It was suggested in Ref. �9�, on the basis of numerical
evidence, that, for slow protocols, the work distribution ex-
hibits exponential tails. Here we discuss this intriguing ques-
tion. From Eq. �61� we see that if P�Nw , tf��exp�−N�0w� in
some interval w−�w�w+, one has

��w� = �0w + const, �67�

in the same interval. A linear behavior in the Helmholtz free
energy is the signature of a first-order phase transition. In the
corresponding Gibbs free energy one has an angular point,
i.e., a point �0 in which

FIG. 3. Results for the system described by the differential op-
erator �54� with equilibrium free energy �52�, manipulated accord-
ing to the protocol �57�, with J0=J1=0.5, h0=−h1=−1, and tf=2.
Continuous line: probability density P�w� of the work “per spin”
w=W /N, with N=10. The histogram of the work is obtained by

10 000 simulations of the process, see text. Dotted line: P̂�w� as
given by Eq. �60�, whose integral verifies the Jarzynski equality.
Vertical line: thermodynamic value of the work wrev=�F /N.

FIG. 4. Results for the system described by the differential op-
erator �54� with equilibrium free energy �52�, manipulated accord-
ing to the protocol �57�, with J0=J1=0.5, h0=−h1=−1, and tf=2.
Continuous line: probability density P�w� of the work “per spin”
w=W /N, with N=2. The histogram of the work is obtained by
10 000 simulations of the process, see text, and is plotted with a full

line. Dotted line with black diamonds: histogram of P̂�w�
=exp�−�Nw�P�w�. Vertical line: thermodynamic value of the work
wrev=�F /N.
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lim
�→�0

−
g���� = w−; lim

�→�0
+

g���� = w+. �68�

Thus a horizontal plateau in a plot of �* vs w corresponds to
an exponential tail in P�Nw , tf�.

We shall now follow Ref. �9�, by considering a system of
N noninteracting spins �i= ±1, evolving according to the
Glauber dynamics. The collective coordinate M is the total
magnetization M =�i�i, �a discrete variable� and the role of
� is played by the magnetic field h. The system evolves
according to the master equation

�P

�t
= �p↓��N + M + 2

2
�P�M + 2,t� − �N + M

2
�P�M,t��

+ p↑��N − M + 2

2
�P�M − 2,t� − �N − M

2
�P�M,t��� ,

�69�

where the spin flip rates p↑,↓ are given by

p↓ = �0�h�e−�h, p↑ = �0�h�e�h, �70�

in which �0�h� is a microscopic “attempt frequency” for spin
flip. In this case, the free energy Fh�M� reads

Fh�M� = − hM − TS�M� , �71�

where S�M� is given by Eq. �54� as a function of M.
We can make the connection with our formalism by mo-

mentarily considering M as a continuous variable, and by
expressing the shift operator

T±f�M� = f�M ± 2� �72�

in the following way:

T± = e±2��/�M�. �73�

The master equation �69� then assumes the form

�P

�t
= ĤP ,

where the differential operator Ĥ is given by

Ĥ · = ��e2��/�M� − 1��N + M

2
�p↓ · + �e−2��/�M� − 1�


�N − M

2
�p↑ · � , �74�

where it is understood that the derivative on M acts on all
instances of M it finds on its right. Then the Hamiltonian H,
as given by Eqs. �27� and �36�, has the form

H = ��e2� − 1�
1 + m

2
p↓ + �e−2� − 1�

1 − m

2
p↑� . �75�

Equations �38� and �39� yield the equations of motion for the
classical path:

ṁ = e−2�p↑�1 − m� − e2�p↓�1 + m� , �76�

�̇ =
1

2
��e2� − 1�p↓ − �e−2� − 1�p↑� − �ḣ . �77�

A different and more complicated approach, used in Ref. �9�,
leads to the same results.

We shall suppose that the applied magnetic field h is ma-
nipulated according to the simple protocol �57�

h�t� = h0 + �h1 − h0�
t

tf
, 0 � t � tf .

We also suppose that �0�h�=�0 / �e�h+e−�h� so that the func-
tions p↑, p↓ are explicitly given by

p↑�t� = �0
e�h�t�

e�h�t� + e−�h�t� , �78�

p↓�t� = �0
e−�h�t�

e�h�t� + e−�h�t� , �79�

where �0 is a constant.

Let us now consider the quasistatic limit ḣ→0, with �ḣ
→�=const. It is then possible to neglect the left-hand side
�lhs� of Eqs. �76� and �77�, yielding

m = tanh��h − 2�� , �80�

2� = p↓�e2� − 1� − p↑�e−2� − 1� . �81�

Combining these equations, one obtains an expression for m
as a function of h:

mc =
sinh��h� − 2� cosh��h�

�1 + �sinh��h� − 2� cosh��h��2
. �82�

Thus mc depends on t via h, in terms of this equation. It also
depends on the parameter �. One can check that mc�t ,��
exhibits an extremum as a function of t in the interval �0, tf�,
if 
�
��c=1/2, otherwise it is strictly monotonic. In order to
discuss an explicit example, we set �=1, h1=−h0=10. In
Fig. 5, the function mc�t ,��, as given by Eq. �82�, is plotted
for three different values of the parameter �: the function
clearly exhibits a different behavior for ���c and ���c.

FIG. 5. Plot of mc�t ,�� as a function of t, as given by Eq. �82�,
for three values of the parameter �. The external field is manipu-
lated according to Eq. �57�, with tf=100. The function is monotonic
for ���c.
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Thus as � becomes greater than its critical value �c, we
expect a singular behavior of the curve �� ,w����, where

w��� = − 	
0

tf

dtḣ�t�mc�t,�� , �83�

and mc�t ,�� is given by Eq. �82�. Evaluating w��� we obtain
the curve plotted in Fig. 6: one can see that it exhibits, for

�
=�c, a pronounced minimum in d� /dw rather than a hori-
zontal plateau.

The simplicity of the system allows us to check this pre-
diction by directly solving the equations �13� for the gener-
ating function ���� , t�, �= ±1, for the transition rates given
by Eqs. �78� and �79�. One thus obtains the function �1�� , tf�
for the single spin, from the expression

�1��,tf� = �
�=±1

����,tf� . �84�

Since g���=−log��1�� , tf��, we can obtain the curve
�w ,�*�w�� from Eq. �51� and compare it with the predicted
curve for the quasistatic limit, as given by Eq. �83�. Such a

comparison is shown in Fig. 7: as the value of ḣ= �h1

−h0� / tf decreases the agreement between the theory and the
curve predicted by Eq. �83� improves.

We checked that this behavior depends on the details of
the dynamics by considering the same paramagnetic system,
but evolving by a Langevin rather than a Glauber dynamics,
with the method reported in Sec. IV. As shown in Fig. 8, the
corresponding �w ,�� curve exhibits no plateau, and therefore
there are no exponential tails in the work distribution. These
results are confirmed by a detailed analysis of the quasistatic
limit.

Let us now turn again to the ferromagnetic mean-field
system with Langevin dynamics. In the left panel of Fig. 9,
we plot mc

* as a function of t for different values of �, ob-
tained by numerical solution of Eqs. �58� and �59�, for J
=0.5 and tf=2. It can be seen that the shape of mc

*�t� varies
continuously as � is varied. Accordingly there is no horizon-
tal plateau in the �* vs w plot, implicitly defined by Eq. �51�,
as shown in the right panel of Fig. 9. The same behavior is
obtained by varying tf and implementing a slower or a faster
protocol �data not shown�. According to the above discus-

sion, the work distribution exhibits no exponential tails for
the case �J�1.

We now investigate whether a different behavior can ap-
pear when the system is manipulated across the symmetry-
breaking transition it exhibits at �J=1. Let us look at the
behavior of the classical path mc

*�t ,�� corresponding to the
�f=0 boundary condition, both above ��J�1� and below
��J�1� the transition.

In the left panel of Fig. 10, we plot mc
* as a function of t

for different values of �, obtained by numerical solution of
Eqs. �58� and �59�, for J=1.1 and tf=2: we observe no dis-
continuity in mc

*�t ,�� as � is varied, and thus w is a continu-
ous function of �, see Fig. 10 �right panel�.

We now consider a faster protocol, tf=0.2, with the same
value of J and h0: the results are plotted in Fig. 11. One can
clearly see that mc

*�t ,�� exhibits a discontinuity for �=0.5,
jumping from negative to positive values. Accordingly,
w��*� exhibits a discontinuity at �*=0.5, as shown in the
right panel of Fig. 11.

If we now evaluate the path Helmholtz free energy ��w�
from Eq. �62�, we obtain the results shown in Fig. 12. As

FIG. 6. Plot of � as a function of w in the quasistatic limit, as
given by Eq. �83�. The line is a guide to the eye.

FIG. 7. Plot of �=�ḣ as a function of w, for different values of

ḣ= �h1−h0� / tf. Thick full line: ��w� in the quasistatic limit, as ob-
tained by Eq. �83�. The other curves are obtained from the evolution

equations �13�. Dashed line tf=20 �ḣ=1�, dotted line tf=200

�ḣ=0.1�, the curve with tf=2000 �ḣ=0.01� is practically indistin-
guishable from the quasistatic limit.

FIG. 8. Plot of � as a function of w for the paramagnet evolving
according to a Langevin dynamics. Manipulation protocol �57�,
with h0=−h1=−5, tf=1000.
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discussed in Sec. V, ��w� should be obtained by a linear
interpolation between �w+ ,��w+�� and �w− ,��w−��, where
w± are the values of w either side of the discontinuity. This
corresponds to an exponential tail in the distribution of the
work. In this case, the existence of an equilibrium phase
transition shows up as a path phase transition, i.e., an expo-
nential tail, provided that the manipulation protocol is fast
enough. The same behavior is obtained for h0=−h1=−0.1,
tf=0.2 �no discontinuity� and tf=0.02 �discontinuity, data not
shown�. This last result suggests thus that the presence of
exponential tails in the work probability distribution is due to
a path “phase separation,” which is induced by a sufficiently
fast manipulation protocol: inspection of Fig. 11 indicates
that the trajectories mc

*�t ,�� form two groups, as � is varied,
and none of the trajectories belonging to each of the two
groups crosses the line m=0, differently from what happens
for a slower protocol, see Fig. 10. We checked that the re-
sulting distribution ��w� satisfies the following relation,
which is a consequence of Crooks’ identity �5� and of the
symmetry h�tf− t�=−h�t� satisfied by our protocol:

��w� − ��− w� = − �w . �85�

It would be interesting to see if such a “path phase transi-
tion” takes place in more realistic models.

VII. DISCUSSION

In this work, we have examined the distribution of the
work W exerted on a system which is manipulated out of
equilibrium. We have first obtained its expression by consid-
ering the joint distribution of the microscopic state of the
system and of the work. The expression one obtains is in
principle exact, but is amenable to a numerical solution only

for very simple systems. We have then considered a system
whose quasiequilibrium state can be described by one �or
more� collective variables, to which an effective free energy
function is associated. The resulting equation for the joint
distribution of the collective variables and work is a partial
differential equation which can in principle be numerically
solved. However, we found that it is possible to explore a
different direction. Indeed, following Ref. �9�, one sees that
one can express the solution to this equation as a path inte-
gral. In the limit of system size N going to infinity, the path
integral is dominated by the classical paths, which satisfy a
“canonical” system of ordinary differential equations, with
suitable boundary conditions. Building on this information, it
is possible to estimate the work probability distribution func-
tion for large system size, in the form

P�W� � exp�− N��w�� ,

where w=W /N, and ��w� plays the role of a work free en-
ergy density, or of a function of large deviations. This quan-
tity is obtained as a Legendre transform of g��� as given by
Eq. �49�. It is natural to interpret the relations between these
quantities as corresponding to those between the Helmholtz
and the Gibbs free energy densities in thermodynamics.
Within this picture, the parameter � can be viewed as the
intensive field conjugated with the extensive variable w,
which acts as an order parameter for the single path. Thus
horizontal plateau in the �* vs w plot indicates a first-order
phase transition in the paths. In this case the work distribu-
tion exhibits an exponential tail in a given range of w, de-
pending on the manipulation details. Our results suggest that
the system exhibits such path “phase separation” for suffi-
ciently fast manipulation protocols, and below the mean-field
equilibrium transition temperature, whereas above it one can

FIG. 9. Left: plot of mc
* as a

function of t for different values
of �, with J=0.5, h0=−h1=−1,
and tf=2. The values of � vary be-
tween �=−5 �bottom curve� and
�=5 �top curve�, with a step ��
=0.2. Right: plot of �* as a func-
tion of w, as defined by Eq. �51�.

FIG. 10. Left: plot of mc
* as a

function of t for different values
of �, with J=1.1, h0=−h1=−1,
and tf=2. The values of � vary be-
tween �=−5 �bottom curve� and
�=5 �top curve�, with a step ��
=0.2. Right: plot of �* as a func-
tion of w, as defined by Eq. �51�.
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find only a marked inflection point in the �* vs w plot, but
not a horizontal plateau.

The results we obtain are interesting in their own right,
since they exhibit a number of nontrivial properties of the
classical paths. However, their usefulness for assessing the
feasibility of the use of the Jarzynski equality for the recon-
struction of the equilibrium free energy landscape can be a
priori doubted. Indeed, the P�W� one obtains in this way is
only asymptotically valid for large N, and in this case, the
probability of observing, in an actual experiment, a sufficient
number of large fluctuations to evaluate the Jarzynski aver-
age �1� with some confidence, is extremely small. We found,
however, that the estimated distribution is not too far from
the actual distribution for system sizes as small as 2, at least
when the manipulation protocol is not too fast and does not
cross an equilibrium phase transition line �8�. In this case the
JE can be successfully applied to the work distribution ob-
tained by simulations: the estimate of the free energy differ-
ence differs little from the expected value.

It is reasonable to expect, for our mean-field-like systems,
that the existence of a first-order transition could cause some
problems. Formally, in the limit N→	 and for a manipula-
tion protocol with a finite speed, the system would remain
close to the free energy minimum it finds itself in until it
reaches the spinodal line. In a finite system, if the protocol is
slow enough, the system can cross the free energy barrier
and reach the real minimum in a finite time. We found that
the classical paths are able to interpolate between the minima
for slow enough protocols, whereas they tend to split in dif-

ferent phases for fast ones. Thus this effect takes place even
for mean-field systems.

It is possible to extend this work to more realistic sys-
tems, provided that the basic assumption of the existence of
relevant collective variables holds. One should also consider
what information can be gathered by exploiting other ma-
nipulation protocols.

ACKNOWLEDGMENTS

We thank F. Ritort for his interest in our work. This re-
search was partially supported by MIUR-PRIN 2004.

APPENDIX: DERIVATION OF THE JARZYNSKI
EQUALITY FOR THE CLASSICAL PATHS

We report here, for completeness, the derivation of the
Jarzynski equality at the level of classical paths, obtained in
Ref. �8�. We first show that, for �=−�, the solution of the
classical equations of motion �38� and �39� satisfies an equa-
tion analogous to Eq. �41� at all times, namely

Q � − � − �
�f�

�m
= 0. �A1�

By multiplying both sides of Eq. �17� by e−�M and integrat-
ing by parts over M one obtains

	 dMH��,M�e−�F��M�−�M = 0, �A2�

where H�� ,M� is given by Eq. �36�. Evaluating this integral
by the saddle-point method in the large N limit, we obtain

H��,m*� = 0, �A3�

if � and m* are related by Eq. �A1�. By differentiating Eq.
�A3� with respect to � at fixed � we obtain

�� �H

��
+

�H

�m
�

m*

�m*

��
�

�

= 0. �A4�

Let us now take the derivative of Eq. �A1� with respect to �
at fixed �. We obtain

��
�2f�

�m2

�m

��
�

�

= − 1. �A5�

By multiplying both sides of Eq. �A4� by �2f� /�m2 and sub-
stituting Eq. �A5�, we obtain the following relation:

FIG. 11. Left: plot of mc
* as a

function of t for different values
of �, with J=1.1, h0=−h1=−1,
and tf=0.2. The values of � vary
between �=−5 �bottom curve�
and �=5 �top curve�, with a step
��=0.2. Thick line: �=0.5.
Right: plot of �* as a function of
w, as defined by Eq. �51�.

FIG. 12. Path Helmholtz free energy for the system described by
the differential operator �54�, manipulated according to the protocol
�57�, with J=1.1, h0=−h1=−1, and tf=0.2.
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�
�2f�

�m2

�H

��
−

�H

�m
= 0, �A6�

which holds when � and m are related by Eq. �A1�. We can
now evaluate the time derivative of the lhs of Eq. �A1�, when
� and m satisfy Eqs. �38� and �39�. We have

Q̇ = − �̇ − �
�2f�

�m2 ṁ − �
�2f�

�m��
�̇

= − � �H

�m
− �

�2f�

�m��
�̇� + �

�2f�

�m2

�H

��
− �

�2f�

�m��
�̇ .

�A7�

The second and the last terms cancel out. Substituting Eq.

�A6�, we see that also the first and the third terms cancel out.
Thus if � and m satisfy Eqs. �38� and �39� at all times, and
satisfy Eq. �A1� at a given time, they satisfy this last equa-
tion at any time.

Thus, for �=−�, the Lagrangian, evaluated along the
classical path, is given by

Lc = N��ṁ − ��̇
�f�

��
� = N�− �

�f�

�m
ṁ − �

�f�

��
�̇� = − �N

df�

dt
,

�A8�

where we have exploited Eq. �A1�. Substituting this expres-
sion in Eq. �32� one recovers Eq. �14� and the Jarzynski
equality.
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