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We propose a method of community detection that is computationally inexpensive and possesses physical
significance to a member of a social network. This method is unlike many divisive and agglomerative tech-
niques and is local in the sense that a community can be detected within a network without requiring knowl-
edge of the entire network. A global application of this method is also introduced. Several artificial and
real-world networks, including the famous Zachary karate club, are analyzed.
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I. INTRODUCTION

It has been shown in the past that many interesting sys-
tems can be represented as networks composed of vertices
and edges �1–4�. Such systems include the Internet �5�, so-
cial and friendship networks �6�, food webs �7�, and citation
networks �8,9�. For example, a social network may represent
people as vertices and edges linking vertices when those
people are on a first-name basis.

A topic of current interest in the area of networks has
been the idea of communities and their detection. A commu-
nity could be loosely described as a collection of vertices
within a graph that are densely connected amongst them-
selves while being loosely connected to the rest of the graph
�10–12�. Many networks exhibit such a community structure
and this motivates our work. This description, however, is
somewhat vague and open to interpretation. This leads to the
possibility that different techniques for detecting these com-
munities may lead to slightly different yet equally valid re-
sults. We emphasize this variation in Sec. II D.

Several techniques have been proposed to detect commu-
nity structure inside of a network. The recent and highly
successful betweenness centrality algorithm due to Newman
and Girvan �13–15� performs well within a variety of net-
works but it is costly to compute �O�n2m� on a graph with n
vertices and m edges� �15�. More importantly, while be-
tweenness centrality has been shown to be a useful quantity
for detecting community structure, it is knowledge not usu-
ally attainable to a vertex within the graph.

In this paper we ask, if a person were to move to a new
town, what actions would he or she take to see what com-
munity or communities they belong to? Most community
detection methods using hierarchical clustering fall within
two categories: divisive and agglomerative �6,15�. Both
forms, including those using betweenness and other methods,
are global algorithms and do not represent feasible actions
that a member of a network could undertake to identify the
network’s community structure. The method proposed here
may better represent actions that members of a network
would undertake to identify their own communities.

II. ALGORITHM

The proposed algorithm consists of an l shell spreading
outward from a starting vertex. As the starting vertex’s near-

est neighbors and next-nearest neighbors, etc., are visited by
the l shell, two quantities are computed: the emerging degree
and total emerging degree. The emerging degree of a vertex
is defined as the number of edges that connect that vertex to
vertices the l shell has not already visited as it expanded
from the previous l−1, l−2,… shells. Note that edges be-
tween vertices within the same l shell do not contribute to the
emerging degree. Let us define the following notation for the
emerging degree and total emerging degree:

ki
e�j� = emerging degree of vertex i

from a shell started at vertex j ,

Kj
l = total emerging degree of a shell of depth

l starting from vertex j . �1�

The total emerging degree of an l shell is then the sum of
the emerging degrees of all vertices on the leading edge of
the l shell. This can also be thought of as the total number of
emerging edges from that l shell �16�. We see that the total
emerging degree at depth l is not necessarily the number of
vertices at depth l+1. At depth 0, the total emerging degree
is just the degree of the starting vertex. At depth l, it is the
total number of edges from vertices at depth l connected to
vertices at depth �l.

It follows from Eq. �1� that

Kj
0 = kj ,

Kj
l = �

i�Sj
l

ki
e�j� , �2�

where Sj
l is the leading edge of the l shell—that is, the set of

all vertices exactly l steps away from vertex j.
In addition, let us define the change in total emerging

degree

�Kj
l =

Kj
l

Kj
l−1 , �3�

for a shell at depth l starting from vertex j.
The algorithm works by expanding an l shell outward

from some starting vertex j and comparing the change in
total emerging degree to some threshold �. When
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�Kj
l � � , �4�

the l shell ceases to grow and all vertices covered by shells
of a depth �l are listed as members of vertex j’s community.

We describe our algorithm roughly as follows. For a start-
ing vertex j, do the following.

1. Start an l shell, l=0, at vertex j �add j to the list of
community members� and compute Kj

0.
2. Spread the l shell, l=1, add the neighbors of j to the

list, and compute Kj
1.

3. Compute �Kj
1. If �Kj

1��, then a community has been
found. Stop the algorithm.

4. Else repeat from step �ii� for the next l shell, until � is
crossed or the entire connected component is added to the
community list.

See the algorithm 1 in Table I for a more exact
pseudocode.

Since there tend to be many interconnections within a
community, so defined, as an l shell grows outward from

some starting vertex within a community, the total emerging
degree will tend to increase. See Sec. III for more discussion
of an idealized graph model with community structure.
When the l shell reaches the “border” of the community, the
number of emerging edges will decrease sharply. This is be-
cause, at this point, the only emerging edges are those con-
necting the community to the rest of the graph which are, by
definition, less in number than those within the community.

By introducing a single parameter � and monitoring �Kj
l,

the l shell’s growth can be stopped when it has covered the
community. It is this fact that allows for the starting vertex to
detect its community locally: at the last depth before � is
crossed, it does not matter where the emerging edges lead.
See Sec. II A for results using our purely local method.

Our method is not perfect, however, and it is possible for
the l shell to “spill over” the community it is detecting. This
is dependent on how the starting vertex is situated within the
graph: if it is closer �or equally close� to some noncommu-
nity vertex or vertices than to some community vertices, the
l shell may spread along two or more communities at the
same time. To alleviate this effect, one can run the algorithm
N times, using each vertex as a starting vertex, and then
achieve a group consensus as to which vertices belong to
which communities. This idea is discussed in Sec. II B.

The idea of having an expanding l shell encompass a
community is not in itself new here. The hub-based algo-
rithm in �16� expands multiple l shells simultaneously from

TABLE I. Algorithm 1, the local algorithm to determine a start-
ing vertex’s community.a

aNote that emerging is a function of the l shell and the graph that
returns the total emerging degree.

FIG. 1. Two local results on the Zachary karate club with �
=1.9. Boxes and diamonds represent the output of algorithm 1 when
starting from vertex 24, while circles and diamonds represent the
output when starting from vertex 17.

FIG. 2. Actual breakdown of the karate club �18�.
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the n vertices of the highest degree �the hubs� until all ver-
tices are within an l shell. While computationally inexpen-
sive, this method has the following drawback: the number of
communities detected is arbitrarily preassigned and the algo-
rithm neglects the possibility of having two hubs within the
same community. In addition, it requires knowledge of the
entire graph; it is a global algorithm, not local.

A. Select local results

We have applied algorithm 1 to the Zachary karate club as
shown in Fig. 1, Figure 2 shows the actual split the club
underwent. We complete two runs, one starting from vertex
17 and another from vertex 24. Five vertices �3, 9, 14, 20,
and 32� were claimed by both runs as members of that start-
ing vertex’s community. Note that this graph and all subse-
quent graphs and dendrograms were drawn using �17�.

We interpret our results as follows. The five vertices that
are listed as members of both starting vertex’s communities
tend to fall on the “border” between the two groups. This
makes sense to us since each vertex is linked roughly equally
to both communities. One can imagine these five members
had the most difficult choice to make when the club split. Far
from being an unwanted result, this overlap could be used to
predict vertices that may be more likely to switch communi-

ties in the future �in an evolving network� or which vertices
are least isolated within a single community.

B. Obtaining global information

Algorithm 1 is a method for a single vertex to determine
something about its community membership. It seems rea-
sonable that, by surveying all the locally determined mem-
bership listings, one should be able to generate an idea of the
global structure of the network. Here we propose a simple
method using a membership matrix to obtain such a picture
and to overcome membership overlap �discussed in Sec.
II A� when determining a “consensus” partitioning of the
network.

For any given starting vertex j, algorithm 1 can return a
vector v j of size N, where the ith component is 1 if vertex i
is a member of the starting vertex’s community and 0 other-
wise. These vectors can be assembled to form an N�N
membership matrix

M = �v1�v2� ¯ �vN�t, �5�

where the jth row contains the results from using vertex j as
the algorithm’s starting point. This allows for a good way to
visualize the resultant data when starting the algorithm from
multiple vertices.

We define a distance between rows i and j of the mem-

FIG. 3. �Color online� Membership matrix M for the Zachary
karate club before sorting, with �=1.2. Gray boxes indicate a value
of 1, white 0.

FIG. 4. �Color online� Sorted membership matrix M̃ for the
karate club, with �=1.2.

FIG. 5. Cumulative row distances for ideal graph 1. Generated
using the membership matrix shown in Fig. 6.

FIG. 6. �Color online� Membership matrix for ideal graph 1.
Note that no sorting was required. �=1, but for these idealized
model graphs, the results are identical for a wide range of � values.
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bership matrix as the total number of differences between
their components:

distance�i, j� = n − �
k=1

n

��Mik,Mjk� , �6�

where ��Mik ,Mjk�=1 if Mik=Mjk and 0 otherwise.
Now we perform a simple sorting algorithm on M. For the

ith row do the following.
1. Find distance �i , j� for all rows j� i.
2. Pick the row that is the smallest distance to row i �call

it row k� and interchange it with row i+1. This requires
swapping rows i+1 and k and swapping columns i+1 and k.
Columns are swapped because a row interchange is equiva-
lent to a renumbering of the involved vertices, so that new
numbering must be kept consistent throughout M.

3. Repeat for row i+1.
Unfortunately, the sorting step can be computationally ex-

pensive. Finding distance �i , j� costs O�N�. When the sorting
algorithm begins at the first row, there are N−1 distances to
find, so the cost of the first sort is O(N�N−1�)�O�N2�. This
is then repeated for the next row, costing O(N�N−2�)
�O�N2�, and so on for each additional row. Since there are
N rows, the total cost is

�
i=1

N

N�N − i� = N�N2 −
1

2
N�N + 1�	 = O�N3� . �7�

The result of this sorting and renumbering is a member-
ship matrix that is much more indicative of structure. Spe-
cifically, we have a sorted membership matrix

M̃ = PtMP , �8�

where P is a permutation matrix effectively resulting from
the above. Well-separated communities appear as blocks
along the diagonal, and imperfections within the blocks can
indicate substructure �see Figs. 3 and 4�.

C. Finding a hierarchy of subcommunities

Sorting the membership matrix already provides a useful
means of visualizing the results of all the different runs of
the local algorithm, but this is not enough to determine how
any present subcommunities relate to larger communities.
Therefore, here we introduce a further operation to apply to

M̃ to generate a dendrogram of the community structure. For
row i, we compute a cumulative row distance �CDi�:

CD1 = 0,

CDi = distance�i,i − 1� + CDi−1 = �
j=2

i

distance�j − 1, j� .

�9�

Plotting the row number i versus the cumulative distance
CDi will yield a collection of points of increasing value fall-

FIG. 7. Row distances for ideal graph 2. Generated using the
membership matrix shown in Fig. 8.

FIG. 8. �Color online� Membership matrix for ideal graph 2.

FIG. 9. Row distances for ideal graph 3, �=0.87. Generated
using the membership matrix shown in Fig. 18.

FIG. 10. Cumulative row distances for the karate club, com-
puted using the membership matrix shown in Fig. 4 ��=1.2�.
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ing into discrete bands that indicate the members of each
community. Note that the row number i is the new sorted
number i for that vertex: one needs to keep track of all the
individual sorting operations to maintain the original number
of that vertex—that is, through the permutations P. This step
of finding these cumulative distances costs �O�N2� opera-
tions. See Figs. 5–10, for plots of examples of these cumu-
lative row distances for various networks. These plots are
useful for visualization but are not strictly necessary to get
the subcommunity hierarchy.

Finally, to yield a dendrogram of the community struc-
ture, the following operation is performed

1. d←1.
2. Compute distance �i−1, i� for all i=2,… ,n.
3. Choose the smallest distance �often zero for identical

rows� and call it Dmin.
4. Cd← empty queue // clustering queue.
5. enqueue first vertex →Cd.
6. For i=2,… ,n:
6.1. If distance �i−1, i��Dmin:
6.1.1. d←d+1.
6.1.2. Cd← empty queue.
6.2. enqueue ith vertex →Cd.
7. Repeat from step 3 for next smallest distance until all

distances have been used.

Essentially, we are moving down the rows of M̃ and
grouping together all the vertices whose corresponding rows
are closer together than Dmin until we arrive at a row that is
farther away than Dmin. Then we start a new group and begin

grouping the subsequent vertices together until we again find
a row that is farther away than Dmin and so forth. This is then
repeated using the next smallest distance as Dmin. This has a
course-graining effect: as we use larger distances for Dmin,
farther vertices will start grouping together.

Grouping the rows of M̃ in this way is equivalent to
grouping the vertices of the graph together into a subcom-
munity hierarchy. This is also similar in form to many ag-

glomerative techniques, with the row distances of M̃ used as
a similarity measure. These groupings can then be used to
generate a dendrogram of the subcommunity structure if we
assume that each vertex is a singleton before we started
grouping and that after the largest distance is used, all verti-
ces are grouped together. See Figs. 11–16 for such dendro-
grams.

D. Impact of �

The algorithm is based on a single parameter � which
controls when to stop the spread of the l shell. When �=0,
the l shell will never stop until the entire connected compo-
nent has been visited. As � increases in size, l shells will
tend to stop growing sooner, until eventually they do not
spread beyond the starting vertex and the final result will be
N singleton communities. This is guaranteed to happen when
��kmax, where kmax is the largest degree in the network.

The impact of varying � is readily apparent in Figs.
17–19. In Fig. 17, the smaller � allowed the l shells to spread
farther: many l shells starting from vertices close to the main
partition �the two edges of highest betweenness� have spread
to the entire network. In Fig. 19, the larger value of � trun-
cated the l shells before they had a chance to spread beyond
the subcommunities of the starting vertices.

In contrasting Figs. 17–19, we emphasize that how one
defines a community through an algorithm bears on the spe-
cific results. It is our contention that there is not a single true
answer for a community partition. We hold that the flexibility
of a parameter like � to allow for various levels of commu-
nity courseness is in fact quite natural: the result is in the eye
of the beholder—of the specific algorithm. In any case, as
can be seen by our examples in Sec. IV, intermediate values
of � lead to community partitions which agree well with
many found in the literature, and we think that they make

FIG. 11. Dendrogram for ideal graph 1. Notice that central
member vertex 16 is idealized here as a community unto itself,
which, in light of the form of the graph in Fig. 20, simply means
that 16 is central between two communities. Notice also the special
placement of members 15 and 17.

FIG. 12. Dendrogram for ideal graph 2. Again, as in Fig. 11,
notice the results for central members 22, 43, and 72 and also the
boundary members 1, 21, 23, 42, 44, and 61.

FIG. 13. Dendrogram for ideal graph 2, �=0.87. Now with
central members, for different scale communities, the dendrogram
becomes more complicated in contrast to those in Figs. 11 and 12.
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good sense in light of our model interpretation as described
in the next section.

One can think of � as a measure of the “friendliness” of
the starting vertex, to use a social network analogy. When �
is small ��	1�, the l shells will spread to much of the net-
work. This can indicate vertices that are more likely to in-
clude other vertices in their respective communities or, in a
social network, people who are more welcoming of their
neighbors. Similarly, when � is large ��
1�, the l shells will
stop growing immediately. This can be indicative of vertices
that are unlikely to include other vertices in their community
or hermitlike people who are unwilling to accept even their
immediate neighbors into their communities, instead prefer-
ring to remain a singleton. In this sense, � can be thought of
as an inverse measure of friendliness or social acceptance.

III. MOTIVATING EXAMPLES

We propose the following idealized models for a network
with simple community structure, and we test our algorithm

first in these cases. Our models demonstrate the high-density
intraconnections and low-density interconnections. We de-
fine an idealized community of size N as a complete sub-
graph �kj = 
k�=N−1�, with one or more additional edges
linking it to one or more additional ideal communities.

These networks represent the extreme fulfillment of the
idea of a community. Each community has the maximum
number of internal links possible while having close to the
minimum number of external links. This results in the num-
ber of emerging edges dropping off very sharply at the bor-
der of each subgraph, leading to nearly identical results when
� and the starting vertices are varied.

Several configurations of these ideal networks are ana-
lyzed �Figs. 20–22�. These networks also provide a means of
visualizing, understanding, and interpreting how the mem-
bership matrix may look for a given community structure. In
addition, these networks contain single vertices situated be-
tween the subgraphs. Since these vertices are equally con-
nected to multiple communities, the results from algorithm 1

FIG. 14. Dendrogram for the karate club, using the membership matrix shown in Fig. 4 ��=1.2�.

FIG. 15. Dendrogram for the books on politics network. Generated using the membership matrix shown in Fig. 25. Note that vertices 35
and 37 are rows 34 and 35, respectively, of the membership matrix.
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starting from these vertices will contain all the subgraphs
that the vertices are linked to. This is evident in the rows of
the membership matrix that overlap two or more blocks.

Through these models, we can better understand how to
interpret the performance of our algorithm; we believe these
models in fact make suitable benchmarks for other commu-
nity partitioning algorithms found in the literature. One can
easily assemble a graph with a given community structure,
apply a community partitioning algorithm to it, and compare
the results of that algorithm with the structure created when
the graph was assembled.

In addition, it is useful to note that these networks require
little or no sorting of their membership matrices. This is
because the vertices are already numbered consecutively:
vertices 1 through i are community 1, vertices i+1 through j
are community 2, etc. This is, of course, a contrived result
and cannot be expected in general.

IV. REAL-WORLD NETWORKS

The proposed algorithm performs extremely well on ide-
alized networks �see Sec. III�, but how does it perform on
real-world networks? Here we analyze the Zachary karate
club, the network of coappearances present in the novel Les
Misérables by Victor Hugo, and the partisan network of
copurchased books on American politics.

A. Zachary karate club

The Zachary karate club is perhaps the most famous net-
work in terms of community structure �19�. The club suf-
fered from infighting and eventually split in half, providing
actual evidence of the community structure, at least at the
topmost level. Thus, it provides an excellent means to com-
pare the accuracy of any proposed detection methods.

For �=1.2, we achieve a reasonable result: three vertices
�3, 14, and 20� are labeled incorrectly as compared with the

FIG. 16. Dendrogram for the Les Mis social network. Generated using the membership matrix shown in Fig. 27.

FIG. 17. �Color online� Membership matrix for ideal graph 3
after sorting, with �=0.25. Note the increased number of “spilled”
vertices in the the middle rows, as compared with Fig. 18.

FIG. 18. �Color online� Membership matrix for ideal graph 3,
�=0.87.
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betweenness partitioning �15� and the actual split the club
underwent �19�. Looking at the network itself �Fig. 23�, all of
the disputed vertices are situated on the “border” of one com-
munity or the other. One would expect these vertices to be
the most likely to be labeled incorrectly because, unlike
more idealized networks, these vertices are almost equally
connected to both communities.

Figures 4, 10, and 14 contain the membership matrix,
cumulative row distances plot, and dendrogram, respectively.

B. Books on politics

A network possessing a fairly simple two-community
structure is the network of copurchased books on American
politics shown in Fig. 24 �20�. As can be seen from Figs. 25
and 15, the results are extremely reasonable.

C. Les Misérables

Another network with an interesting community structure
is the network of character coappearances from the novel Les
Misérables by Victor Hugo �15�. This network, shown in Fig.
26, differs from the karate club and the political books net-
works in that there are several communities of smaller size

rather than two large communities. As can be seen from the
membership matrix in Fig. 27, some of the communities
separated quite well, while others were detected rather
poorly, at least compared to the results in �15�.

V. CONCLUSIONS

In this paper, we have introduced algorithm 1, a method
for detecting community structure. This method is local and
may be applied in situations where other methods are too
inefficient—for example, when one is concerned with a
single community and not the complete community structure
of a graph. A single parameter � is used, making it very easy
to tune the output of the algorithm, as was shown in Sec.
II D.

FIG. 19. �Color online� Membership matrix for ideal graph 3
after sorting, with �=3. The larger value of � stops the l shells
sooner, allowing for the smaller subcommunities to become evident
instead of the main partitioning.

FIG. 20. Ideal graph 1: two complete subgraphs of size 15
bridged by a common vertex.

FIG. 21. Ideal graph 2: Three complete subgraphs, one larger
than the others.

FIG. 22. Ideal graph 3: three complete subgraphs joined to-
gether by multiple edges with singletons attached bridged by a
single vertex to another group of similar �but not identical�
structure.
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We have also proposed one possible method of applying
algorithm 1 globally �see Secs. II B and II C�. Sorting the
membership matrix is expensive and limits this global appli-
cation to smaller networks. In addition, the membership ma-
trix is, unlike an adjacency matrix, not necessarily sparse for
a sparse graph: it will only be sparse when the sizes of the
individual communities are all much smaller than the size of
the network as a whole. This limits the possibility of replac-
ing the membership matrix with a more efficient data struc-
ture.

We feel that algorithm 1 is a useful result, due to both its
simplicity and flexibility. For example, our global application
could be easily altered to become more efficient: one imag-
ines the cost of the sorting algorithm can be offset a great
deal by only starting algorithm 1 from a fraction of the ver-
tices, f , instead of all vertices in the graph. This reduces the
cost of the sorting algorithm by a factor of f3, a real savings

for small f , with the presumed trade-off being a reduction in
accuracy as f decreases. Other applications of algorithm 1
besides the expensive use of the membership matrix may
also be discovered.

The Zachary karate club has become an almost canonical
representative of a community structure. The possibility re-
mains, however, that outside factors may not be represented
in the dataset. If this is true, then the club’s fissure should not
be used as the sole means of justification for a community
detection method. For example, some of the border nodes,
represented as diamonds in Fig. 1, could well have joined
either community, based solely on the network at hand. This
can lead to ambiguity in the final partition. The point is that
the algorithm defines the community; the community should
not define the algorithm.

Another concept, often neglected in determining commu-
nities, is the idea of a relative result. Who is to say that
someone in a town agrees with what community the rest of
the town feels he or she belongs to? It seems feasible that a
vertex that is equally linked to two communities in a graph is
just as likely to correspond to a person who thinks he or she
is a member of both communities as it is to correspond to a
person who feels they are independent of both larger com-
munities. If one considers the output of algorithm 1 to be

FIG. 23. The Zachary karate club. The shading indicates the
membership of the two clusters of the topmost branch of the den-
drogram �Fig. 14�.

FIG. 24. The network of copurchased books on American poli-
tics �20�. Here a link is drawn between two vertices if those books
were purchased together from a major online retailer.

FIG. 25. �Color online� Membership matrix for the books on
politics network. �=1.2.

FIG. 26. The network of character coappearances from the
novel Les Misérables by Victor Hugo. See Fig. 16 for partitioning.
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what the starting vertex “believes” to be his or her commu-
nity, then this method may prove to be a useful tool when
analyzing relative results. This is not useful for many appli-
cations of community detection BOD where a final structure
is necessary, such as minimizing cross talk between parallel
processors in a computer, but it may prove very useful in
areas such as social networks.
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