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This work combines the theory of chaotic synchronization with the theory of information in order to
introduce the chaotic channel, an active medium formed by connected chaotic systems. This subset of a large
chaotic net represents the path along which information flows. We show that the possible amount of informa-
tion exchange between the transmitter, where information enters the net, and the receiver, the destination of the
information, is proportional to the level of synchronization between these two special subsystems.
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A communication system, as defined by Shannon �1�, is
composed of an information source that produces a message,
a transmitter that transforms the message into a signal suit-
able for transmission over a channel, such that the message
can be retrieved in the receiver with a minimal amount of
errors. The most outstanding result in Shannon’s theory of
communication is the formula that gives the channel capac-
ity, i.e., the average upper bound for the mutual information
exchange between the transmitter and the receiver, or in
other words, the possible amount of information that can be
transmitted in a physical medium.

In chaos-based communication systems, each step of the
communication can be performed using a chaotic system. As
shown in Ref. �2�, chaotic systems can naturally possess the
properties of a transmitter, since they can be controlled such
that the information of the message is encoded in its chaotic
trajectory. Moreover, a chaotic trajectory is suitable for trans-
mission over noisy and frequency band-limited channels, in
the sense that the receiver can recover the message with a
small amount of errors �3–6�.

A channel as defined by Shannon is a physical medium
that enables information to pass throughout until it arrives to
the receiver. Analogously, we define a chaotic channel as an
active physical medium formed by at least two connected
chaotic systems that enable information from a source to
pass from the first one �the transmitter� to the last one �the
receiver�. A chaotic net, formed by many connected elements
might possess only a few chaotic channels, in the sense that
the channel is the path of connected systems along which
information flows. We define a transmitter and a receiver in
this net to be both elected subsystems of the whole chaotic
net.

A first step to understand the chaotic channel goes back to
the works �7–9� in which it is shown that two coupled cha-
otic systems can become completely synchronized �CS�, i.e.,
the distance between their initially different trajectories tends
to a small value as time tends to infinity �10�. This property
was explored as a communication system, making the pair of
coupled systems to work as an active medium that transports
information from a driving system �the transmitter� to a slave
system �the receiver� �8,9�. The condition under which CS
takes place is given by the conditional exponents �8�. Basi-
cally, two coupled chaotic systems have two sets of condi-
tional exponents. One set is associated with the synchroniza-
tion manifold and the other one associated with the

transversal manifold. The presence of positive transversal ex-
ponents usually indicates that CS does not exist.

A second step is given by Refs. �12,13�. A chaotic trajec-
tory produces to an observer a certain amount of uncertainty
that defines information, quantified by the Kolmogorov-Sinai
entropy HKS �12�, which is the proper way of calculating the
Shannon source entropy of a chaotic set. For systems with a
measurable �the trajectory is bounded to a finite domain� and
ergodic �average quantities can be calculated in space and
time� invariant �with respect to time translations of the sys-
tem and to smooth transformations� natural measure, that is
smooth along the unstable manifold, HKS equals the sum of
the positive Lyapunov exponents �13�. So, as a source of
information, the more chaotic a system is, the more informa-
tion it produces.

A third step is given in Ref. �14�, which showed that the
conditional exponents like the Lyapunov exponents are rel-
evant physical quantities to describe a network that is formed
by coupled chaotic systems. In particular, in addition to Pes-
in’s identity �13�, it was suggested �14� that the summation
of the positive conditional exponents �+ between two sub-
systems of a large network could be a measure of the appar-
ent rate of information production in each pair of sub-
systems, as if they were detached from the whole group.

We show in this paper, by plausible physical reasoning,
that the appropriate quantity to quantify the amount of infor-
mation in the chaotic channel is

IC�Si,Sj� = ���
+ − ���

+ , �1�

where IC�Si ,Sj� represents the mutual information between
the transmitter, Si, and the receiver, Sj. The term ���

+ is the
sum of the positive exponents associated to the synchroniza-
tion manifold between Si and Sj, and ���

+ is the sum of the
positive exponents associated to the transversal manifold be-
tween Si and Sj. The term ���

+ represents the information
�entropy production per time unit� produced by the synchro-
nous trajectories, and it corresponds to the amount of infor-
mation transmitted. The term ���

+ represents the information
produced by the nonsynchronous trajectories, and it corre-
sponds to the information lost in the transmission, the infor-
mation that is erroneously retrieved in the receiver.

Finally, the capacity as defined in Shannon’s work,
is the maximum of the mutual information. So, while
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the capacity of a net that respects certain conditions �13� is
given
by HKS=��k�0�k, with �k representing all the positive
Lyapunov exponents of the net, the capacity of a chaotic
channel between systems Si and Sj is given by C�Si ,Sj�
=max�IC�Si ,Sj��, with the condition that

C�Si,Sj� � HKS, �2�

where the maximum is taken over all possible coupling
strengths. We implement this approach for a system of two
coupled maps, and for a system of three coupled Rössler
oscillators, showing that this approach is valid for both de-
scriptions of dynamical systems, the discrete and the time
continuous. Further we argue how to extend these results to
large networks of coupled chaotic systems, as well.

The discrete channel—a channel of communication
formed by discrete chaotic elements: We model a discrete
channel by two coupled maps xn+1

�1� = �1−c�2xn
�1�+2cxn

�2�

��mod 1� and xn+1
�2� = �1−c�2xn

�2�+2cxn
�1� �mod 1�, with

c�0.25, representing the coupling strength. In here, the
channel is completely described only by the transmitter, the
subsystem of variable x�1�, and the receiver, the subsystem of
variable x�2�. The Lyapunov exponents of these coupled sys-
tems are �1=log�2�+log�1−c� and �2=log�2�+log�1−2c�
−log�1−c�. Therefore, HKS=2 log�2�+log�1−2c�. The syn-
chronization manifold, x�, is defined by the following vari-
able transformation: x� =x�1�+x�2�, and the transversal mani-
fold is defined by x�=x�1�−x�2�. The conditional exponents
are �� =log�2� and ��=log�2�+log�1−2c�. For no coupling
�c=0�, these two mappings work as independent sources of
information, and the capacity for generating information of
these two sources are given by the sum of the capacity of
each one, which in this case is equal to HKS=2 log�2�. The
mutual information should vanish �note that for c=0,
�� −��=0� with the errors produced by the nonsynchronous
trajectories being maxima �note that �� is maxima for c=0�.
This IC function increases as the coupling c increases, once
the larger is c, the larger is the synchronization level, and
consequently the amount of information retrieved in the re-
ceiver. So, we see that it is reasonable to consider that
IC=�� −��. Note that Eq. �2� holds. We get equality for
c=0.25 �C=HKS=log�2�� when CS is reached between the
transmitter and receiver. At this moment, the errors produced
by the nonsynchronous trajectories should vanish. That is
exactly what happens to ��. Therefore, we see again that it is
reasonable to consider that �� is related to the errors caused
by the nonsynchronous trajectories in the decoding of the
information in the receiver. So, when there is no CS, errors
may occur in the transmission ����0�, while when there is
CS, errors may not occur and the channel transmits informa-
tion in its full capacity.

The continuous channel—a channel of communication
formed by continuous chaotic elements: A small chaotic net-
work is modeled by the following system of three coupled
Rössler oscillators: ẋi=−�iyi−zi+Aji�xj −xi�, ẏi=�ixi+ayi,
żi=b+zi�xi−c�, with a=0.15, b=0.2 and c=10, and i,
j=1,2,3, with i� j. Si represents the system of the variables
�xi ,yi ,zi� and Sj represents the system of the variables

�xj ,yj ,zj�. Aji indicates the coupling strength between Sj and
Si. The configuration of the net is set, for most of our ex-
amples, to have S1 and S2 bidirectionally coupled with A12
=A21, and S3 is unidirectionally coupled to S2, that is, A23
�0 and A32=0. �1=1, �2=1.0002, and �3=0.998, and thus
all the systems have different parameters.

Assuming X� i to describe the state variables of subsystem
i, then the synchronization manifold between subsystem Si

and Sj is given by X� ij
� =X� i+X� j, which yields the ordinary

differential equation �ODEs� that describe this manifold.
ẋij

� = ��� j −�i�yij
�− ��i+� j�yij

� � /2−zij
� +Gij

� , ẏij
� = ���i+� j�xij

�

+ ��i−� j�xij
�� /2+ayij

� , żij
� =2b+ �0.5xij

� −c�zij
� +0.5xij

�zij
�. The

transversal manifold is defined as X� ij
�=X� i−X� j, which give us

ẋij
�= ��� j −�i�yij

� − ��i+� j�yij
�� /2−zij

�+Gij
�, ẏij

�= ���i+� j�xij
�

+ ��i−� j�xij
� � /2+ayij

�, żij
�=0.5xij

�zij
� + �0.5xij

� −c�zij
�, with the

terms Gij
� and Gij

� expressing the coupling between the trans-
mitter and the receiver, with other elements in the network.

To calculate the conditional exponents associated to the
communication channel between Si and Sj, we use in the
method of Ref. �15� the following 6�6 Jacobian

�X�̇ ij
�

�X� ij
�

�X�̇ ij
�

�X� ij
�

�X�̇ ij
�

�X� ij
�

�X�̇ ij
�

�X� ij
�

�3�

which is equal to

−�Aji+Aij� −��i+� j�/2−1 0 �� j−�i�/2 0

��i+� j�/2 a 0 ��i−� j�/2 0 0

0.5zij
� 0 0.5xij

� −c 0.5zij
� 0 0.5xij

�

�Aij−Aji� �� j−�i�/2 0 0 −��1+�2�/2 −1

��i−� j�/2 0 0 ��i+� j�/2 a 0

0.5zij
� 0 0.5xij

� 0.5zij
� 0 0.5xij

� −c

For each communication channel, we obtain two positive
conditional exponents. Since ��i−� j� /2�0, and not always
Aij −Aji=0, the Jacobian in �3� cannot be separated into
smaller diagonal blocks, where either only transversal or
only parallel variables are present. Therefore, to discern
which exponent is associated to which manifold, one uses
the fact that the exponent with large magnitude is the one
associated to the synchronization manifold, and the other is
associated with the transversal manifold. This is a require-
ment needed to have the mutual information always positive
or null, between a pair of elements in the network.

If we had a fully connected network with equal coupling
strengths, i.e, Aij =A for all i and j, and the chaotic elements
had equal parameters, thus, the Jacobian in �3� could be eas-
ily separated in two diagonal blocks. The upper left diagonal

block �X�̇ ij
� /�X� ij

� would produce one positive exponent asso-
ciated with the transversal manifold, and the lower right di-

agonal block �X�̇ ij
� /�X� ij

� would produce another positive expo-
nent associated with the synchronization manifold. For a
general network formed by N systems, each system having
dimension D, the conditional exponents associated with each
communication channel between a pair of systems would be
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calculated from a Jacobian with dimension 2D�2D. In prin-
ciple, this approach can be used for any network in which the
Jacobian in the transversal and synchronization variables
produce exponents that can be properly associated with each
manifold. For systems whose Jacobian produces more than
two positive conditional exponents, it is hoped that there is a
threshold, such that exponents with magnitude below it are
associated to the transversal manifold, and above it are asso-
ciated to the synchronization manifold. If that is possible,
Eq. �1� can still be used.

To illustrate our ideas, we calculate the conditional and
the Lyapunov exponents by the method of Ref. �15�. For that,
we integrate the network by a 4th-order Runge-Kutta inte-
grator with time step of 0.02, for a time interval such that the
system S1 makes 2100 cycles, i.e., it crosses the plane y=0
�with x�0� 2100 times. We discard a transient of 100 cycles
and the initial conditions are: xi=6.54, yi=6.0, and zi=0.1.
The results are shown in Fig. 1. In �a�, we consider that there
is no coupling between S2 and S3 �A23=0�, and therefore,
IC�S2 ,S3�=0, and the net can be thought to be formed by two
coupled systems. As we increase the coupling between S1
and S2, the mutual information IC�S1 ,S2� increases from 0 to
IC�S1 ,S2��0.127 bits per time unit, the maximum value for
the mutual information, that is the capacity of the chaotic
channel, between S1 and S2. Two phenomena are important

to characterize the chaotic channel: �i� First, the appearance
of phase synchronization �PS� �10,16� between S1 �transmit-
ter� and S2 �receiver�. Whenever that happens ���

+ �	,
where 	 can be very small, and therefore the error in the
retrieving of information in the receiver, caused by the non-
synchronous trajectories, can be small if 	 is small, and con-
sequently, there is a large chance that the message is com-
pletely recovered, with small probability of errors, as
discussed in Ref. �6�; �ii� The appearance of CS, which for
this particular network makes ���

+ =0, means that the mes-
sage can be completely recovered, with small probability of
errors, with the extra fact that the channel has its maximal
capacity, i.e., IC�S1 ,S2�=C�S1 ,S2�.

Then, we fix the coupling between S1 and S2 �A12=A21

=0.05�, to have PS between S1 and S2, and increase the cou-
pling between S2 and S3. These three coupled systems can be
treated as forming three communication channels, one from
S1 to S2, another from S2 to S3, and finally one from S1 to S3.
Assuming, S1 to be the transmitter and S2 the receiver,
IC�S1 ,S2��0.002. As we increase A23, the channel formed by
S2 and S3 has the same characteristics as shown in �a�, that is,
when S2 and S3 present PS, ���

+ �	, and when S2 and S3 are
in CS �as happens for A23�0.31�, ���

+ =0 �which is true for
this particular network�. With upper triangles, we show
IC�S1 ,S3�. Note that, as the coupling strength between S2 and
S3 increases, no significant change in IC�S1 ,S3� is observed.
As we introduce a coupling between S1 and S3�A13=0.04� the
mutual information IC�S1 ,S3� increases considerably, as it
can be seen by the down triangles, and thus, nonlocal cou-
plings can enhance not only the synchronization level of the
network but also the amount of information transmission.

Note that the capacity of the net, HKS �represented by stars
in Fig. 1� is always larger than or equal to the capacity of the
channel, which agrees with Eq. �2�. In the case of Fig. 1�a�,
as in the discrete channel, equality between HKS and IC hap-
pens when IC is maximum, i.e., IC�S1 ,S2�=C�S1 ,S2�, which
is a consequence of the fact that CS exists between S1 and S2.

The noisy chaotic channel and the recovery of infor-
mation: HKS is a measure of uncertainty about the forward
time evolution of the trajectory realized up to some preci-
sion, when a series of previous observations with the same
precision had been already performed. It does not reflect the
amount of information retrieved from one particular obser-
vation, realized with some specified precision. In order to
understand how much information can be withdrawn from
one single observation in a chaotic system, the accuracy with
which this observation is realized determines this amount of
information, which is a multiple of HKS �4�. From Ref. �4�,
we have that each observation realized in a one-dimensional
map provides �g+1�HKS bits. g is an integer number that is
proportional to the accuracy of the observation and inversely
proportional to the amount of noise in the chaotic trajectory.
Using the deterministic property of chaotic systems, each
observed trajectory point generates more g other trajectories
points, that were not observed. For the continuous chaotic
channel, each observation of the trajectory on a Poincaré
plane can be used to reveal the other g nonobserved cross-
ings of the trajectory in this same plane �17�. So, each ob-
servation gives R bits of information, with R= �g

FIG. 1. �Color online� ��perp
+ in the figure legend stands for the

quantity ���
+ , in Eq. �1�. IC�Si ,Sj� is the mutual information be-

tween Si and Sj calculated from Eq. �1�, and HKS is the
Kolmogorov-Sinai entropy, that gives the capacity of the network.
In �a�, the transmitter is S1 and the receiver is S2. For A12=A21

=0.03, before PS is achieved, the Rössler type chaotic attractor turn
into a three-band-type chaotic attractor, and for that reason
���

+ →0. PS is only achieved for A12=A21=0.05, when the attractor
is, as usual, of the Rössler-type, and CS is achieved for A12=A21

�0.1. In �b�, we can consider as transmitters �receivers� S1 or S2

�S2 or S3�, and the coupling strength between S1 and S2 �and vice-
versa� is A12=A21=0.05. PS �and CS� between S2 and S3 is achieved
for A23=0.23�A23�0.31�. The units are in bits per time unit.
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+1�IC�Si ,Sj�� �T�S2�	 bits, and g being an integer number
proportional to the accuracy of the observation �inversely
proportional to the noise variance�, with �T�S2�	 being de-
fined in Ref. �17�. Note that the average time interval to
obtain all this information is equal to �g+1��T�S2�	, and
therefore, the rate at which one recovers information in the
receiver �R / �g+1��T�S2�� is at most equal to the rate of in-
formation produced in the transmitter �IC�.

Concluding, we define the chaotic channel as a subset
of a net of coupled chaotic systems along which information
flows. We characterize this channel by showing how to
calculate the amount of information exchanged between
two important elements of the channel: the transmitter,
which can be thought of as an entrance door of the informa-
tion in the net, and the receiver, the ending point of the
information. If phase synchronization exists between the

elements of the channel, a transmitted message can be
fully recovered at a rate smaller than if these elements are
completely synchronized, a situation for which the
channel achieves its capacity, this capacity being smaller
than or equal the capacity of the network. This approach
can be used whenever the conditional exponents can
be associated to their appropriate manifold, i.e., either the
synchronization or the transversal manifold. If that is
possible, in principle, this approach could be used to
understand information transmission in more complex
systems, as natural chaotic nets, e.g., the human brain, which
shows evidence of chaotic behavior �18�, or other chaotic
networks.
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