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Complex dynamics in unidirectionally coupled overdamped bistable systems
subject to a time-periodic external signal
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Recently, we have studied the emergence of oscillatory behavior in overdamped undriven nonlinear dynamic
systems subject to carefully crafted coupling schemes and operating conditions [V. In ef al., Phys. Rev. E 68,
045102(R) (2003).] The theoretical ideas have been validated in an experimental setup of N=3 coupled
ferromagnetic cores subject to a dc external magnetic “target” signal; the oscillations (corresponding to the
periodic switching of each core between its stable steady states of magnetization) are triggered when the
coupling constant crosses a threshold value, with the oscillation frequency exhibiting a characteristic scaling
behavior with the “separation” of the coupling constant from its threshold value, as well as with the external
signal amplitude. Here, we consider the system response to a time-periodic signal. We demonstrate experimen-
tally that, depending on the signal amplitude and frequency, the response can be either synchronized to the
signal frequency or to one-third this frequency. These phenomena afford unique techniques for time-periodic

signal detection and characterization for a large class of sensors.
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Well-designed coupling schemes, together with the appro-
priate choice of initial conditions, can induce oscillations in
overdamped dynamical systems when a control parameter
exceeds a threshold value [1]. We have demonstrated this
behavior in a specific prototype system: three unidirection-
ally coupled ferromagnetic cores, the basis of a coupled core
fluxgate magnetometer, with readout in the time domain [3]
that is used to detect dc magnetic flux signals. Our analysis
showed that N (taken to be odd, although the oscillatory
behavior is also seen for N large and even) unidirectionally
coupled elements with cyclic boundary conditions would, in
fact, oscillate when a control parameter—in this case the
coupling strength—exceeded a critical value. Note that en-
ergy conservation dictates that at least one of the elements
must have an initial state different from the others for the
oscillations to occur. The oscillations (corresponding to
switching events between the stable magnetization states of
each core) have been exploited to detect very weak “target”
dc magnetic signals, via their effect on the oscillation char-
acteristics. It is important to stress that this behavior is quite
general; it has been demonstrated in coupled overdamped
Duffing elements [1], and applied to the analyses of the fre-
quency selective properties of interacting neural networks
[4]. The emergent oscillations, which can be controlled by
adjusting the system parameters, open up possibilities for the
exploitation of a large class of (normally) nonoscillatory sys-
tems for a variety of practical applications that involve using
the emergent oscillations as a reference.

In this work, we explore the response of our prototype
coupled core magnetometer system to a time-periodic
magnetic-flux signal, applied to each element in the array;
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effectively, we introduce another frequency (in addition to
the network oscillation frequency in the absence of the sig-
nal) into the dynamics. The coupled system response then
shows a richness of dynamical behaviors not seen in its
single driven counterpart. We stress, however, that multista-
bility and the response of one-dimensional (1D) nonlinear
systems to time-periodic external signals have been studied
in the past [2]. We now describe this behavior, starting with
the dynamics [1] for three unidirectionally (cyclically)
coupled flux-gate magnetometers,

7%, = — x; + tanh(c[x; + \x;,; + h(1)]), (1)

where 7 is the device time constant; x;(f) represents the (suit-
ably normalized) magnetic flux at the output (i.e., in the sec-
ondary coil) of unit i, where i=1,2,3, mod 3, and h(z)
=g sin wr is an externally applied “target” magnetic flux
(e<<Uy), with U, being the energy barrier height (absent the
coupling) for each of the elements (assumed identical for
theoretical purposes). The individual dynamics in (1) are de-
rived via a mean-field description of the domain dynamics in
each ferromgnetic core; effectively, the core is treated as a
“single-domain” entity. The individual potential functions for
each element are bistable for ¢>1, with ¢ being a
temperature-dependent system parameter [3]. With a dc ap-
plied signal [h(z)=¢], the bifurcation to oscillatory behavior
occurs at a critical coupling given (for 7=1) by A.=—g+\,
[1], where M\y=(1/c)In(yc+ Ve-1) —tanh[ln(v’;+ Ve=1)1;
note that in our convention, A <0 so that oscillations occur
for [\|>|\.|. The individual elemental oscillations are sepa-
rated in phase by 2#/N, and have period T;=[N/(c(c
— )Y/ VN, =N+1/Y\.—\+2¢]; these oscillations can be
experimentally produced at frequencies ranging from a few
Hz to high kHz and are, always, suprathreshold, i.e., they
correspond to switching events between the stable steady
states of each core. While the oscillations occur [1] even for
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FIG. 1. (Color online) Theoretical phase diagram: Oscillatory
behavior of the coupled flux-gate model (1) in parameter space
(N,€). In the supercritical regime, the oscillations form a traveling
wave pattern. In the subcritical regime, with 4(z) small, the system
oscillates about one of the steady states =1, while with A(z) large,
the system oscillates between two steady states. In both cases the
oscillations form a traveling wave and their frequency is exactly
w/3. For ¢ greater than a critical value, all three waves are in phase
with each other and frequency synchronized with the external signal
h(t) in region (IIT). Note that Ay <0 in our convention (see text).

h(t)=0, their characteristics change when h(r) #0; these
changes can be exploited for signal quantification purposes.

Numerically integrating the system (1), with nonidentical
initial conditions and h(7)=¢ sin wt, reveals three distinctive
regimes of oscillatory behavior that are clearly separated
(Fig. 1) in the parameter space (\,¢€):

(I) The supercritical regime wherein the coupling param-
eter is below the critical value (A <\, i.e., |\|>|\,| in our
convention). In this regime, the coupled system oscillates
with a traveling wave pattern as described above, even for
h(t)=e¢. In the presence of the target signal h(z), the system
responds by oscillating asymmetrically between the two
stable magnetization states of each element. The response
displays a frequency mixing (Fig. 2) of the inherent oscilla-
tions of the coupled system and the target signal. The
bifurcation diagram (not shown) in this regime is quite com-
plex ranging from the simple oscillations [for A(r)=0], to
quasiperiodicity and, eventually, to chaos.

(IT) The subcritical regime wherein the coupling strength
exceeds the critical value (A>X, |\|<|\o|), so that there
are no spontaneous oscillations. For small A4(z), the system
oscillates weakly (with no interwell switching) about the
steady states near =1. With sufficiently large /(7), the system
oscillates between the two steady states in a traveling wave
pattern where the amplitude and frequency of each oscilla-
tion are the same but a phase shift of 277/3 (27r/N for odd N,
in general) exists between the different wave forms. This
behavior is quite similar to that already observed for the
case of dc (or zero) target signal; however, the onset of the
oscillations occurs sooner in parameter space when the ap-
plied signal is time periodic. The oscillation frequency is
exactly /3 (w/N in general).

(IIT) Frequency matching of the output wave form to that
of the target signal. With the control parameter \ held con-
stant in the subcritical regime, increasing & past a critical
value causes the coupled system to switch to another oscil-
lation mode wherein the frequency of the output wave form
precisely matches that of the target signal. For weak signal
detection purposes, the subcritical regime is more relevant
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FIG. 2. Oscillation wave forms associated with the different
regimes in the experimental system. (a) System (emergent) oscilla-
tions (at 44 Hz) in the supercritical regime (see Fig. 1) without an
external field. (b) Characteristic modulation of the oscillations in
the supercritical regime with a small applied ac magnetic-flux sig-
nal (at 150 Hz). (c) Oscillations in the subcritical regime where the
system oscillates at w/3 (50 Hz) with no modulation of the wave
forms. (d) Oscillations in phase with each other and frequency
locked to the external signal. The external signal amplitude ¢ in-
creases from panels (a) to (d). Each core response is transduced
from a core magnetization to a (easily measured) voltage output
(see [1] for details).

since it is relatively easy to extract information about the
target signal via the residence times detection (RTD) method
[1,3], because of the simplicity of the oscillation character-
istics, e.g., constant amplitudes, frequencies, and phases; the
RTD technique is not, however, easy to use in the supercriti-
cal regime.

We first consider the, more interesting, subcritical regime.
We begin with an analytic calculation of the critical coupling
strengths for the onset of the oscillations as function of the
target signal amplitude & and frequency w. These results af-
ford us the capability to set the boundaries, in parameter
space, of the different types of oscillation characteristics in
the subcritical regime (Fig. 1).

For a given w and moderate values of (\,e&) above the
boundary line for the supercritical regime, each element os-
cillates at %w, with an interelement phase difference of
2/3. When the amplitude is large enough, the oscillations
switch to an in-phase pattern with a frequency perfectly
matched to the external signal frequency. This out-of-phase
region is bounded (Fig. 1) by the supercritical region (below)
and the in-phase region (above). To the right, the region
is bounded by the line connecting —\ and the critical signal
amplitude e., where the entrainment between the uncoupled
(A=0) system and the external signal occurs. So the criti-
cal coupling )\th for the onset of the oscillations, for a given
g, 1s

045104-2

RAPID COMMUNICATIONS



SYNCHRONIZATION IN UNIDIRECTIONALLY COUPLED...

A, =)\0—<®>8. (2)
sub e,
Our strategy for finding an analytical expression for A,
rests, therefore, on the ability to compute the critical value
g.. Noting that the critical value &, corresponds to zero cou-
pling (Fig. 1), we start with the reduced elemental dynamics

7% =—x+ tanh[c(x + & sin wt)]. (3)

The change of variable y=x+¢ sin(wt) with rescaling and
relabeling time using wi+ ¢=wt+cos ' (1/V1+w>7), allows
us to transform (3) into the more convenient form

y =—y+tanh(cy) + & sin(wt), (4)

where £=g\1+w’7. Next we approximate —y-+tanh(cy)
near y=1, which is one of the equilibrium (magnetization
steady-state) points, with a second-order polynomial d+by
+ay2, where a, b, and d are constant parameters that depend
on the nonlinearity parameter ¢, and can be found via a Tay-
lor expansion about y=1,

B (462_46,2620)620
(e*+1)3

b (=3+4c—-8c?)e* + (=3 +4c+8cHe* —eb -1
B (e*+1)° ’

e2c
d:—(a+b)+<ezc+1—l>. (5)

We then seek an asymptotic solution of the form y=y,
+8y,+0(8%), to the simplified dynamics y=d+by+ay’
+ & sin(wt). Substitution readily yields the system

Yo=d+byy+ ay(z), (6)

y1=(b+2ayy)y, +sin(wt), (7)

which we now solve. The unperturbed problem (6) is a Ri-
catti equation, which we solve using a three-step standard
approach: (i) search for a particular solution y,=A(a,b,d).
Direct substitution into (6) yields A=(—-b—\bh*>—4ad)/2a,
where (b*>—4ad) must be non-negative. (ii) Use the change
of variable y,=A+u to transform the Ricatti equation into a
Bernoulli equation in u, given by i=(a+2aA)u+au’. (iii)
Transform the Bernoulli equation into a first-order linear dif-
ferential equation by substituting w=1/u, which yields w=
—a—(a+2aA)w. This linear equation can be readily solved
following which back substitution into u and, in turn, into y,
leads to

Yo() = A + ! , (8)

C,e-b+2a0) _ a
! (b +2aA)

where C;=a/(b+2aA)+1/[yy(0)—A]. Direct substitution of
vo into (7), and using standard methods, yields a complete
solution for y; given by
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Cze(b+2¢¢A)t Sin(wt + ¢)
yi(t) = - — - 2
C, - Le(b+2a/‘\)l V(b +2aA)"+ w
" b+2aA

)

where C,=y,(0)[C,—a/(hb+2aA)]*. Combining (8) and (9)
yields a complete solution, up to order O(&?), of (4), whence
it can be shown that the asymptotic behavior of the original
variable x is

lim x(f) = A —

1—®

s 2anr s oor +1 |e sin(wt).
(10)

At the critical amplitude, &, the non-zero-mean periodic so-
lution x(f) merges into a zero-mean periodic solution. This
occurs when
R
AV(b +2aA)? + &*7
.= , .
1+ 0P+ V(b +2aA)* + *7

(1

For the supercritical case one can, analogous to (2), write
down (see Fig. 1)

Ao :)\0+<E>s. (12)
sup &,

We have validated our theoretical results via an experi-
ment consisting of three coupled ferromagnetic cores. The
experimental setup is similar to the previously described case
for dc target field detection [1]; hence, details of the coupling
circuitry and the construction of the flux gates are not repro-
duced there. The system’s behaviors (Fig. 2) agree well with
the theoretical predictions. In the experimental run, the sys-
tem is set up with the coupling strength in the supercritical
regime so that it is oscillating (44 Hz) without any applied
external field (top panel of Fig. 2). The next panel illustrates
the modulation of the oscillation wave forms by a small am-
plitude ac external signal (at 150 Hz) while the system is still
in the supercritical regime; note that the the system remains
oscillating at the natural frequency (44 Hz). Thereafter, in-
creasing the amplitude of the ac signal pushes the coupled
system into the subcritical regime (see Fig. 1), and the re-
sulting oscillations occur [panel (c) of Fig. 2] at % the fre-
quency of the ac signal without the amplitude modulation of
panel (b). The last panel illustrates the case when the ac
signal amplitude is increased sufficiently [into region (IIT)]
so that the system switches to another behavior in the sub-
critical regime where all three wave forms are phase locked
to each other and the oscillation frequency exactly matches
that of the external signal. All four scenarios, illustrated here,
have been predicted by theory, as illustrated in Fig. 1 and
verified in numerical simulations (not shown).

Figure 3 provides experimental confirmation of the vari-
ous oscillation regimes (of Fig. 1). The lines that separate the
various regions are not quite as linear as those of Fig. 1, but
the qualitative validation is evident. The slight inconsisten-
cies arise, possibly from the device differences, because the
ferromagnetic cores were nonidentical and their magnetic
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FIG. 3. Parameter space constructed via the experimental sys-
tem, confirming the different oscillation regions theoretical pre-
dicted in Fig. 1. The coupling strength is expressed as a voltage,
adjusted via a variable resistance. The applied signal is a 150-Hz
magnetic field with varying amplitude.

domains were oriented differently. In addition, the coupling
circuit components were nonidentical so that the coefficient
N\ was not the same for all the components of Eq. (1). Finally,
there was a small dc voltage drift in the coupling circuitry
which we could not completely remove.

Our previous work [1] demonstrated that unidirectional
coupling and a judicious choice of initial conditions (that are,
actually, the most natural for any experimental setup) can
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lead to oscillatory behavior in overdamped bistable systems
even in the absence of an external forcing signal; in the pres-
ence of an additional dc target signal, the change in the os-
cillation characteristics has been exploited to characterize the
target signal. The current work considers the emergent
frequency-dependent phenomena when the coupled system is
subject to a time-periodic external forcing. While a detailed
analysis of each regime in Fig. 1 must be deferred to an
upcoming paper, we note here the richness of behavior in
different regimes of the parameter space of coupling and
forcing signal amplitude; it is particularly noteworthy that
the theoretical phase diagram has been validated experimen-
tally and the experimental time-series response in the differ-
ent regimes agrees with the results (not shown) of numerical
simulations. The emergent behavior can be used to quantify
time-periodic target signals, since the internal oscillation fre-
quency (44 Hz in our setup) can usually be controlled by an
appropriate choice of system parameters. The results of this
work are expected to be applicable to a large class of non-
linear dynamic systems (of which our coupled micro-flux-
gate system is only one example) coupled in this manner.
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