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Experimental verification of near-wall hindered diffusion for the Brownian motion
of nanoparticles using evanescent wave microscopy
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A total internal reflection fluorescence microscopy technique coupled with three-dimensional tracking of
nanoparticles is used to experimentally verify the theory on near-wall hindered Brownian motion [Goldman et
al., Chem. Eng. Sci. 22, 637 (1967); Brenner, Chem. Eng. Sci. 16, 242 (1967)] very close to the solid surface
(within ~1 um). The measured mean square displacements (MSDs) in the lateral x-y directions show good
agreement with the theory for all tested nanoparticles of radii 50, 100, 250, and 500 nm. However, the
measured MSDs in the z direction deviate substantially from the theory particularly for the case of smaller
particles of 50 and 100 nm radius. Since the theory considers only the hydrodynamic interaction of moving
particles with a stationary solid wall, additionally possible interaction forces like gravitational forces, van der
Waals forces, and electro-osmotic forces have been examined to delineate the physical reasons for the

discrepancy.
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Total internal reflection fluorescence microscopy
(TIRFM), also know as evanescent wave microscopy, has
been used in observing secretory granules in cells as they
approach within a few hundred nanometers of the cell
boundary or membrane [1]. This technique has also been
used by colloidal chemists to monitor the instantaneous sepa-
ration distance of a microsphere (>1 um) from a flat plate
[2]. The evanescent wave decays exponentially with the el-
evation of the sphere and the amount of light scattered by the
sphere is analyzed to determine its elevation. More recently,
the scope of TIRFM has been broadened to dynamically
track far smaller nanoparticles suspended in the flow region
extremely close to a solid surface [3,4]. Using a ratiometric
concept for TIREM [3,5], three-dimensional detection of
Brownian motion has been achieved for 100-nm-radius par-
ticles suspended in water. The normal component (D) of
the measured Brownian diffusivity shows substantial devia-
tion from the early developed theory for near-wall hindered
Brownian diffusion [6-8] while the lateral components (D)
show good agreement with the theory.

This paper presents our experimental and analytical at-
tempts to explore the physics that can explain the discrepan-
cies. The measurements for three-dimensional Brownian mo-
tions have been extended for four different monodispersed
batches of nanoparticles with different radii from 50 to 500
nm. Various short- and long-range interactions between the
particles and the solid surface, including the gravitational
potential, van der Waals potential, and electrostatic potential
due to the electro-osmotic forces, have been examined to
determine the discrepancy of the data from the overly sim-
plified theory. Understanding particle-particle and particle-
wall interactions allows us to control equilibrium self-
assembly of colloidal structures on substrates that is crucial
to numerous complex fluid and advanced material technolo-
gies.
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The Stokes-Einstein diffusion theory [9] assumes spheri-
cal particles in a dilute suspension of an identical specific
gravity so that their diffusivity can be calculated solely from
the balance of the thermal kinetic motion with the viscous
drag force, i.e., the Stokes law
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where k is the Boltzmann constant, 7 the suspension tem-
perature in absolute Kelvin scale, u the dynamic viscosity of
the fluid, and M° represents a unit tensor of 3 X 3 elements
for the free or unhindered Brownian motion. However, when
particles are present very close to a solid wall, the Brownian
motion can be substantially hindered. The dynamics of the
particles close to the wall become significantly non-Gaussian
and the average particle displacement can differ from the
random and isotropic most probable displacement. The pres-
ence of the anisotropic solid boundary at a finite distance
necessitates corrections to Eq. (1). Thus a near-wall “hin-
dered” diffusion coefficient, the free diffusion unit tensor
MO, is substituted by the hindered diffusion tensor MH.
D=, @
6mTna
where MH=[)\IJ], )\ij=0 A l#], )\11=)\22=)\”, and )\33=)\J_.
Goldman et al. [6] analyzed the slow viscous motion of a
sphere in a quiescent viscous fluid and used an asymptotic
solution of the Stokes equation to analyze rotational and
translational motion close to the wall. The hindered motion is
incorporated to the Stokes drag increase, and thus leads to
the reduction of the Brownian diffusivity. He deduced a cor-
rection term to account for the hindered particle movement
parallel to the plane wall as
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where A=a/(a+h). Brenner [7] provided an analytical ex-
pression in the form of an infinite series to account for the
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FIG. 1. (a) Operating principle of high-numerical-aperture (oil-
immersion type) objective based TIRFM. The penetration depth z,
of the evanescent wave is 272 nm. (b) 100-nm-radius nanoparticles
at the illumination conditions described in (a).

correction term for motion normal to the surface. An ap-
proximation [8] has been derived from a regression of the
infinite series expression to derive the hindered diffusion ten-
sor in the normal direction as

6h% + 2ah

A=
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(4)
Based on our literature survey, the hindered diffusion theory
is yet to be experimentally examined for the case of nano-
particles. The ratiometric TIRFM technique [1,5] allows
three-dimensional tracking of nanoparticles in the submi-
crometer region from a solid surface so that experimental
determination of A, and A |, and hence D, and D, can be
possible.  Tested  nanoparticles are  yellow-green
(505 nm/515 nm) carboxylate coated fluorescent spherical
beads in four different sizes of 50, 100, 250, and 500 nm
radii, with less than +5% variations in their radii. The poly-
styrene spheres have a specific gravity of 1.055 and carry
weak negative charges because of their COOH™ group at-
tached to carboxylate. The evanescent wave field is gener-
ated by an argon-ion laser tuned at 488 nm fed into a 60X,
1.45NA TIRF lens (Fig. 1). Monodispersed nanoparticles are
tracked over a span of 120 images to determine the mean
square displacement (MSD). The MSD of each component (
X, v, or 7) is defined as two times the Brownian diffusivity
weighted by the time increment between two successive im-
aging frames, i.e., 2DyAt. The measured values of the lateral
MSD components, {(x?) or {y*), agree well with the theoreti-
cal predictions (Fig. 2). The theoretical curves represent the
average hindrance values for the region spanning from ~2=0
to 2z, with z, being the evanescent penetration depth at
which its intensity decreases to ¢! from the initial illumina-
tion intensity at the glass substrate—fluid interface. Small dis-
crepancy is observed only for the case of the 50 nm radius,
but the discrepancy is within the experimental uncertainty
represented by the extended error bar. However, the normal
component {z%) deviates from the theory showing progres-
sively substantial underestimation with decreasing particle
sizes, particularly for 100 and 50 nm particles, whereas (z°)
measurements for the bigger 250 and 500 nm particles show
good agreement with the theory. We were intrigued by the
persistently underestimated z-component MSD data observed
for the smaller nanoparticles.
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FIG. 2. Comparison of the measured mean square displacement
(MSD) values with predictions based on the theory [6,7] accounting
for only the hydrodynamic particle-wall interactions.

In addition to the hydrodynamic interaction between a
neutrally buoyant single sphere and the wall, at least four
additional effects can be considered, namely, particle-to-
particle interactions, sedimentation, electrostatic and electro-
osmotic forces, and short-range van der Waals forces be-
tween the suspended particles and the glass wall. The
remainder of the Brief Report presents examinations of these
factors for their possible alteration of the hindered Brownian
motion beyond the hydrodynamic effect. The extremely low
volume fraction of 0.001% used for our experiments pro-
vides the average interparticle distance being larger than 100
times their radius, so that the resulting interparticle effect
could be considered negligible [10,11]. The next concern is
the effect of particle sedimentation due to the density mis-
match between the tested nanoparticles (specific gravity
1.055) and water. The ratio of the gravitational to the diffu-
sive forces of a freely suspended sphere gives the effective
sedimentation measure as dimensionless Péclet number Pe:

Lu,,, 4ma’Apg
e - =

5

where the system length L is set to the particle diameter 2a.
The correction coefficient for the sedimentation speed (u,,)
based on the volume fraction is about 0.995 given the present
low volume concentration, and the sedimentation speed is
assumed identical to the terminal velocity [12]. Table I
shows the sedimentation speeds, the Reynolds numbers, and
the Péclet numbers that are all very low for the four tested
particles. In particular, the low Péclet numbers imply negli-

TABLE I. Sedimentation velocity (u,,,), Reynolds number (Re),
and Péclet Number (Pe) for nanospheres of radius a.

a (nm) Ugeq(m/s) Re Pe
500 2.73x1078 1.43% 1078 0.03896
250 6.81x107° 1.79x 107° 0.00789
100 1.09x107° 1.14x 10710 0.00099
50 2.73 % 10710 1.43x 10711 0.00021

042101-2



BRIEF REPORTS

gibly small gravitational sedimentation to occur.

The time-independent interactions between a sphere and a
substrate surface refer to the gravitational forces, the van der
Waals forces, and the electrical double layer forces. Thus, the
total potential energy carried by a particle located at height A,
measured from the substrate surface, is given by

(h) = dy(h) + dyaw(h) + B (h). (6)

The gravitational potential ¢,(h) under a constant gravity is
expressed as

4
U,(h)=F,h= gwa3gAph. (7)

Another contribution to the total potential comes from the
short-ranged dispersion interaction that becomes more im-
portant with increasing particle concentrations [12]. For the
present low 0.001% volume fraction, we take Hamaker’s lin-
earized superposition formula assuming negligibly small
particle-to-particle interactive forces [13]. The van der Waals
potential ¢y,y(h) is thus given by

’ A123[1+ 1 +1< ) )] @
= —| — 4 — nl —— s
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where d=h/a, and A|,; represents the Hamaker constant for
sphere (1) immersed in water (2) with a glass (3) substrate.
For the case of larger particles on the order of micrometers,
Bevan and Prieve [8] successfully used this formula to inter-
pret the sphere-wall interaction potentials. Analytical expres-
sions for the electrostatic forces and free energies of interac-
tion for spherical particles are available as the linear
superposition approximation, which is valid when the par-
ticles are far apart and the double layer overlapping is rela-
tively weak. Alternatively, one can use the Derjaguin ap-
proximation for thin double layers relative to the particle size
[2] to derive the free energy between a sphere and a planar
wall. The electrical double layer interactions can also be ob-
tained by superimposing the electrostatic potential profile
that is derived from the nonlinear Poisson-Boltzmann equa-
tion considering two isolated plane double layers, and then
applying Derjaguin’s approximation to analogously calculate
the interaction forces between two spherical double layers.
Part of the difficulty of calculating the forces and interaction-
free energies is due to the nonlinear nature of the Poisson-
Boltzmann theory that renders the problem analytically in-
tractable except for the simplest geometries.

Recent studies [2,14] have derived analytical expressions
for sphere-wall interactions for various boundary conditions.
Based on the Derjaguin approximation, we use a constant
charge model, i.e., particles which maintain a uniform fixed
surface charge density during interaction. The electrostatic
potential ¢,(h) on the plate is then given by [2]

2
¢.(h) = 168a(k?T) taﬂh(%)tanh(%)eﬂh ©)

where ¢ and i, are the Stern potentials of the substrate
surface (1) and the particle surface (2), respectively, € is the
dielectric permittivity of water, e is the elemental electric
charge, and « is the Debye-Hiickel reciprocal length param-
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eter, which is calculated as 15 nm~!. The Stern potentials
between the sphere and the plate are then calculated based on
the analysis of Behrens and Grier [15], where they regarded
the charge of silica as localized entry on the surface and
arising from a concentration of dissociated head groups. This
basic Stern model illustrates that the counterions are sepa-
rated from the surface by a thin Stern layer across which the
electrostatic potential drops linearly from its surface value ¢
to a value defined as the diffuse layer potential ¢,. This drop
in the electrostatic potential is characterized by the capacity
of the Stern layer, C. The diffuse layer Stern potential, for
either 1 or 2, is written as a function of the charge density as
follows [15]:

g ) oH-pK T 10-Z (10
ol 10-C
el'+o P p e C

o) = Hlﬂ(
e

The pH of the solution was measured as 6.5 by using a pH-
meter (Corning Pinnacle Model 530). Using the surface
charge density values of the tested particles given by the
manufacturer (Molecular Probes, Inc.), the surface Stern po-
tentials are calculated to be 44.4 mV for the glass substrate
surface, 40.97 mV for a=500 nm, 24.89 mV for a=250 nm,
74.47 mV for a=100 nm, and 26.1 mV for a=50 nm.

However, there may be contributions to the total electro-
static potential other than the interactions based on equally
spread charge on the sphere surface. One such may come
from the trapped charges that are likely to form on the bot-
tom of the insulating polystyrene sphere when it “jumps to
contact” with the substrate [16]. When the sphere is in con-
tact with the substrate, charge is free to flow in order to
minimize the contact potential difference. In addition, the
sphere deforms due to surface forces and touches the sub-
strate over a finite area. The radius a of this contact area can
be estimated from the Johnson-Kendall-Roberts (JKR)
theory [16] as ay=6ma*W/K, where W is the work of adhe-
sion given by W=, +v,—2y,7,, and y;, ¥, are the surface
free energies of polystyrene and silica, respectively. The pa-
rameter K [=(4/3)(1-v}/E;+1-v5/E;)"'] includes the
elastic properties of the surface with v, v, being the Poisson
ratios of polystyrene and glass substrates, respectively, and
E, and E, being the Young’s moduli for polystyrene and
glass, respectively. The effective radius is now calculated to
be ap=93 nm for a=500 nm, 59 nm for =250 nm, 37 nm
for a=100 nm, and 20 nm for a=50 nm.

Since the electromotive force can be considered to be
concentrated on the bottom area within the effective radius,
calculations of the electrostatic potential incorporate the ef-
fective radius a, in Eq. (9) while retaining a in estimating the
gravitational and van der Waals potentials. The total potential
[Eq. (6)] for a particle located at & is given by

4 A1 1 5
$(h) = S ma’gDph + ﬁ[—+ — +ln<m>}

okT| 5" 5+2
kT \?
+16sa0<—> tanh(e—l/ll>tanh<e—%>e_"h. (11)
P 4KT AKT

Differentiating Eq. (11) with respect to & and then equating it
to zero provides local minima corresponding to the equilib-
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FIG. 3. Potential energy profiles for polystyrene spheres of vari-
ous radius levitated above a cover glass. The curve fits have been
constructed with Ap=55 kg/m>, A,,3;=-2.095kzT nm™!, «!
=15 nm, a=50-500 nm, 7=293 K.

rium height (A,,), which is also called a separation distance.
Experimentally measured particle-wall potentials have been
determined from the correlation of the potential energy with
the particle height location [2]. Figure 3 shows the potential
energy profiles on a separation scale relative to the most
probable height or the equilibrium height (%,,) used. Potential
energy is reported on a scale relative to the minimum for
each profile, ¢,,;,, which inherently occurs at the most prob-
able height as described by the Boltzmann equation. It is
seen that there is an excellent agreement of the experimental
data with Eq. (11).

Figure 4 shows the separation distances calculated using
Eq. (11) and also shows the root mean square of the MSD
predictions (|z|) (=\V2DyAt) represented by the extended
bars centered at the corresponding equilibrium heights. Since
the particles cannot penetrate the solid wall, the lower por-
tions of the extended bars are shown by dashed lines, clearly
manifesting that the near-wall Brownian motion should be
further reduced beyond the simple hydrodynamic hindrance
predictions, and the additional hindrance progressively in-
creases with decreasing particle sizes. For the larger particles
(250 and 500 nm radius), the “wall-interception hindrance”
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FIG. 4. Predictions of root mean square of MSDs, i.e., ({|z])
=2DyAt), based on the near-wall hindrance by hydrodynamic
slowdown [6,7], and estimated separation or equilibrium heights
(h,,) for four differently sized nanoparticles.

is small and this is consistent with the findings of the notice-
ably small discrepancies between the measured and predicted
MSD values as shown in Fig. 2.

In addition, the limited intensity of the evanescent wave
field can result in a measurement system bias by underesti-
mated measurements of MSD near the equilibrium heights.
The horizontal dashed line in Fig. 4 shows the penetration
depth (z,) of the evanescent wave field at the fraction of e~
of its intensity at the substrate surface. Because of the sub-
stantially reduced illumination intensity beyond the penetra-
tion depth, it is expected that the range of the Brownian
displacements extending beyond z, will not be effectively
detected and the measurements can be systematically biased.
The bias is expected to be great for smaller particles because
of their larger Brownian displacements. Therefore, larger de-
viations of the data from theory should be partly attributed to
the underestimated system bias. However, the solid-wall in-
teraction associated with the equilibrium heights is believed
to play a more decisive role for the discrepancies since it
physically restricts the particle motion by the impermeable
solid surface.
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