
Viscoelastic Fitzhugh-Nagumo models

D. Bini
Istituto per le Applicazioni del Calcolo “M. Picone,” CNR, I-00161 Rome, Italy and International Center for Relativistic Astrophysics –

I.C.R.A., University of Rome “La Sapienza,” I-00185 Rome, Italy

C. Cherubini and S. Filippi
Facoltá di Ingegneria, Università Campus Biomedico, Via E. Longoni 83, I-00155 Roma, Italy and International Center for Relativistic

Astrophysics – I.C.R.A., University of Rome “La Sapienza,” I-00185 Rome, Italy
�Received 27 April 2005; published 27 October 2005�

An extended Fitzhugh-Nagumo model including linear viscoelasticity is derived in general and studied in
detail in the one-dimensional case. The equations of the theory are numerically integrated in two situations: �i�
a free insulated fiber activated by an initial Gaussian distribution of action potential, and �ii� a clamped fiber
stimulated by two counter phased currents, located at both ends of the space domain. The former case accounts
for a description of the physiological experiments on biological samples in which a fiber contracts because of
the spread of action potential, and then relaxes. The latter case, instead, is introduced to extend recent models
discussing a strongly electrically stimulated fiber so that nodal structures associated on quasistanding waves are
produced. Results are qualitatively in agreement with physiological behavior of cardiac fibers. Modifications
induced on the action potential of a standard Fitzhugh-Nagumo model appear to be very small even when
strong external electric stimulations are activated. On the other hand, elastic backreaction is evident in the
model.
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I. INTRODUCTION

Sudden cardiac death �1,2� as well as various cardiac ar-
rhythmias have been evidenced—either experimentally or
theoretically—to be related on reentrant waves of electrical
activity �3–5� and in particular on rotating spiral waves of
excitation �4,6,7�. Cardiac arrest in ventricular fibrillation is
due to a compromised mechanical pump activity of the heart
muscle. Cardiac contraction, in fact, is physiologically
started by an electrical depolarization. However, in patho-
logic cases, this can be desynchronized by turbulence, affect-
ing in turn the mechanical activity. The spatiotemporal evo-
lution of ventricular fibrillation is widely studied using
imaging of blood perfused isolated hearts �8–10�, but in or-
der to obtain a quantitative understanding of these phenom-
ena an accurate mathematical data analysis �11� and model-
ing �12,13� is necessary. Impressively, some discoveries
concerning fibrillating hearts have been triggered by pure
numerical computation based on simple models �14–18�. To-
day the study of spatiotemporal dynamics of arrhythmias in
two-dimensional �2D� or 3D simple geometries, as well as in
anatomically accurate models of the heart �see Ref. �19� and
references therein� is at the center of many mathematical
simulations. Most of the existing studies, however, do not
take into account the active mechanical deformations of the
heart, which have been shown in experiments to alter the
electrical properties of myocytes �20� and play an important
role in ventricular arrhythmias �21�. For this reason, a variety
of computational models have been used to investigate the
effects of electrical activity on the sequence of 3D ventricu-
lar contractions �22–25�, but such models have not accounted
for the effects of mechanoelectric feedback, notwithstanding
some seminal works of the middle and late 1990s �26,27�.
Only recently, have these models been improved in a more

systematic way, offering some first quantitative results of the
simulations �28�. Both Fitzhugh-Nagumo theory and finite
elasticity are described by nonlinear equations. Therefore a
2D or 3D mechanoelectric numerical simulation will con-
sume much in terms of computational resources. In particu-
lar, these coupled strongly nonlinear systems can be easily
affected by errors associated on a low number of nodes or
finite elements and nonsufficient numerical accuracy �29�.
For this reason one should define specific indicators which
will give a quantification of the numerical quality of the
simulation. The aim of the present study is to develop a
model sufficiently complete to include the main mechanisms
involved in the excitation-contraction coupling, but suffi-
ciently simple to be tractable from an analytical and numeri-
cal point of view. In this paper, a viscoelastic model of car-
diac tissue is introduced and analyzed in order to capture the
mechanical aspect of the heart contraction, which is ne-
glected in most models �the emphasis is generally put instead
only on the electric aspects of electric propagation�. The
model is intended to be simple, both for the mechanical and
for the electric aspect. The latter is treated with the Fitzhugh-
Nagumo description. The former is applied in the simplified
one-dimensional case, by introducing only one deformation
field. We extend a 3D Fitzhugh-Nagumo model including
linear viscoelasticity and then proceed to a computational
analysis in the context of cardiac muscle fibers. The devel-
oped model does not include, for simplicity, cardiac myocyte
membrane kinetics. In fact, in our case there is no necessity
to model the single cell ionic currents with the accuracy and
complexity inherent in the biophysically based models. With
a view to investigating phenomena on a larger spatial and
temporal scale, several ionic current models have been de-
veloped that do not seek to model subcellular processes but
only to provide an action potential at a minimal computa-
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tional cost. The original Fitzhugh-Nagumo simplified cardiac
myocyte model �30,31� belongs to this class, and it is based
on the cubic excitation; in addition, it includes a recovery
variable so both depolarization and repolarization can be
modeled. In 1994, Rogers and McCulloch modified the origi-
nal model to generate a more realistic action potential �32�.
The velocity of the upstroke was increased, and the large
hyperpolarization at the end of the recovery phase was re-
moved. In 1996, this form of the already modified Fitzhugh-
Nagumo model was further updated by Aliev and Panfilov
�33�. They altered the equation which modeled the change of
the recovery variable to provide a more realistic restitution
period and to allow for reentrant phenomena. In the paper of
Nash and Panfilov �28�, an extension of the Aliev and Pan-
filov �33� model to include an approximation of the actively
developed stress during contraction is proposed to investi-
gate the effects of mechanical deformation on cardiac exci-
tation and various types of reentrant activity. The computa-
tional framework employs electromechanical and
mechanoelectric feedback to couple a three-variable
Fitzhugh-Nagumo-type excitation-tension model to the non-
linear stress equilibrium equations, which govern large de-
formation hyperelasticity. Numerically, the coupled electro-
mechanical model combines a finite difference method
approach to integrate the excitation equations, with a Galer-
kin finite element method to solve the equations governing
tissue mechanics. Because cardiac cells change length by up
to 20% during a normal heart beat, the mechanical analysis
based on finite deformation elasticity theory is realistic and
necessary in a global study of the problem. On the other
hand the simple approach of our work is an interesting and
useful first step toward modeling muscle fiber contraction in
space with an analytical theory less realistic but useful to
explain the elementary physics processes involved. Our the-
oretical analysis of the interplay between viscoelasticity and
electric dynamics in heart fibers may help to give a more
detailed understanding of the complex effects of mechanical
activity on cardiac excitation which is not completely under-
stood. While we do not consider detailed models of cardiac
electromechanical wave propagation, our results may apply
to some more elementary and fundamental aspects that must
be observed in realistic models of the whole heart.

In this paper, the equations of the theory in one dimension
will be numerically integrated in two situations: �i� a free
insulated fiber activated by an initial Gaussian distribution of
action potential, and �ii� a clamped fiber stimulated by two
currents in counter phase located at both ends of the domain.
The former case gives a reasonable description of the physi-
ological experiments on biological samples in which a fiber
contracts due to the spread of action potential and then re-
laxes. The latter case, nevertheless, is introduced with the
aim to extend recent results of the literature. Results are
qualitatively in agreement with physiological behavior of
cardiac fibers, although the modifications induced on the ac-
tion potential of standard Fitzhugh-Nagumo equations are
very small and require strong external stimulations to be ac-
tivated. On the other hand, elastic backreaction is evident in
the model. As a last remark, we point out that the simulations
are performed in the linear elastic case and in the simpler 1D
regime due to the requirement of high accuracy and absence

of causality violations. To this end, we will discuss the diag-
nostic of the codes in order to test the numerical integration.
We aim, in this way, to be in accordance with the choice of
numerical communities, primarily with modern numerical
general relativity �34�.

II. VISCOELASTIC FITZHUGH-NAGUMO MODELS:
GENERAL THEORY

Cardiac cells are both excitable and contractile. They are
excitable, enabling action potentials to propagate, and the
action potential causes the cells to contract, thereby enabling
the pumping of blood. The spread of excitation in the heart
occurs due to excitability of individual cardiac cells as well
as to close electrical coupling of cardiac cells via specialized
contacts �gap junctions�, through which depolarized cardiac
cells can elicit excitation in neighboring cells, resulting in a
propagation wave of activity. Thus models that describe
propagation in the heart generally consist of two parts: a
model of the cardiac cell, and a model describing cellular
interconnections. In general, excitation of a cardiac cell is
brought about by the change in potential across the cell
membrane, due to transmembrane fluxes of various charged
ions �Na+, K+, Ca2

+ , Cl−, etc.�. A reasonable mathematical
description of these processes is based on the following
equation �35�:

I = Cm
dV

dt
+ Im, �1�

where I represents the total transmembrane current, Cm is the
membrane capacitance, V is the transmembrane potential,
and Im is the ionic transmembrane current. To describe the
time course of excitation of a single cardiac cell in the ab-
sence of external currents, one can solve Eq. �1� with I=0.
To describe wave propagation in cardiac tissue, instead, it is
necessary to specify the currents resulting from the intercel-
lular coupling, which can usually be approximated as a
cablelike equation:

I = � · �D � V� �
�

�xk
�Dik

�

�xi
V� , �2�

where D is a tensor of conductivities, and � is the gradient
operator. Equation �2�, taken together with appropriate de-
scriptions of the transmembrane ionic currents �Im�, consti-
tutes a model for the electrical properties of a cardiac tissue.
In the classical Fitzhugh-Nagumo, one has a simplified
model of the cell membrane, in which the cell consists of
three components, a capacitor representing the membrane ca-
pacitance, a nonlinear current-voltage device for the fast cur-
rent, and a resistor, inductor, and battery in series for the
recovery current �35�. Mathematically one has

Im = F�V� + i + I0, �3�

where I0 is an applied external current, i is a gating current,
and F�V� is a cubic function of the potential. This function is
chosen so that equation F�V�=0 admits three real roots lo-
cated at V=0, V=�V1, and V=V1, with �� �0,1� being a
real number. Therefore while the values of the potential
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V=0 and V=V1�0 correspond to stable solutions of the dif-
ferential equation

Cm
dV

dt
= − F�V� , �4�

the constant � causes the remaining �unstable� solution, i.e.,
V=�V1, to be located in between.

A typical choice for F�V� is then

F�V� = −
V

�R1
�1 −

V

V1
�� V

V1
− �� , �5�

with R1=1/F��0� so that Eq. �1� assumes the form

� · �D � V� = Cm
dV

dt
+ F�V� + i + I0. �6�

This equation is coupled to the current circulation equation

L
�i

�t
+ Ri = V − V0, �7�

where V is the membrane potential, V0 is a potential gain
across the battery, and R and L are the resistance and the
inductance of the membrane. The coupled equations �6� and
�7� are enough to describe propagation of electric signals
over a cardiac tissue.

The elastic deformation and viscosity of the cardiac tissue
are well known, we are therefore motivated to extend a
Fitzhugh-Nagumo model including elasticity �linear elastic-
ity in this paper� and viscosity. Concerning elastic deforma-
tions, the starting point is the relation of every point of a
body xi, which due to deformations reaches a new position xi�
related to the old one by xi�=xi+ui, with ui being the defor-
mation or relative displacement vector. The fundamental
equation is then Newton’s law for an isotropic solid medium
with viscoelasticity in interaction with an electric field
�36,37�:

�
�2ui

�t2 =
��ik

�xk
, �8�

with

�ik = �ik
�0� + �ik�

�0� +
2�0 − a1

8�
EiEk −

�0 + a2

8�
E j

2	ik, �9�

where the quantity Ei in Eq. �9� represents the electric field
which is related to external potential via Ei=−�V /�xi. More-
over, here �ik

�0� is the stress tensor in absence of electric in-
teractions, i.e.,

�ik
�0� =

E

1 + 

�uik +




1 − 2

ull	ik� , �10�

with uik= 1
2 ��ui /�xk+�uk /�xi� �linear elasticity deformation

tensor� and �ik
��0� is the viscous contribution

�ik�
�0� = 2�� �uik

�t
−

1

n
	ik

�ull

�t
� + �

�ull

�t
	ik, �11�

where n is the space dimension �n=3 in ordinary Euclidean
space�. Moreover, E is Young’s modulus, 
 is Poisson’s co-

efficient, �0 is the dielectric permittivity of the undeformed
body, and the constants a1 and a2 come, following Landau’s
treatment, from the most general linear expression of the
dielectric tensor in terms of uik, i.e.,

�ik = �0	ik + a1uik + a2ull	ik. �12�

Finally, � is the mass density of the body, while � and � are
two positive viscosity coefficients. In Fitzhugh-Nagumo
equations �6� and �7�, we use Dik �with dimensions of
�length�2
 �resistance�−1�, expanded analogously as the di-
electric tensor, i.e.,

Dik = D0	ik + b1uik + b2ull	ik, �13�

which couples such equations with Eq. �8�, defining in this
way a viscoelastic Fitzhugh-Nagumo model, so then contrac-
tion and extension of the medium backreacts with its electric
properties. In the following we specialize this model to the
1D case, with the aim to model a heart fiber whose length
results in being larger than its section.

III. ONE-DIMENSIONAL CASE

We are primarily interested in the propagation of longitu-
dinal �compressional� waves in the elastic medium, i.e.,
ui=ui�t ,x��W�t ,x�	i1 only. Hence, in one dimension,
Eqs. �6�, �7�, and �8�, collapse to

1

cl
2

�2W

�t2 −
�2W

�x2 =
�

�

�3W

�t � x2 + ��0 − �a1 + a2�
4��

� �V

�x

�2V

�x2 ,

Cm
�V

�t
+ F�V� + i + I0 = �D0 + �b1 + b2�

�W

�x
	 �2V

�x2

+ �b1 + b2�
�V

�x

�2W

�x2 ,

L
�i

�t
+ Ri = V − V0, �14�

with cl=
E�1−
� /��1+
��1−2
� is the �longitudinal�
sound speed. It is useful to adimensionalize the equations
above. This step is performed in the next subsection.

A. Adimensionalization

It is helpful to introduce the notation: �0− �a1+a2�=�d

and b1+b2=D1. Let us proceed to determine a nondimen-
sional form for the system �14�. To this end we consider
natural scale lengths for the electric potential �V1� and the
resistance �R1� so that the length scale for currents is auto-
matically defined �V1 /R1�. A time scale length can be defined
using the self-induction coefficient and a natural space length
is obtained by using the sound speed. Summarizing, using
the following set of rescalings:
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V�t,x� = V1v�t,x�, i�t,x� =
V1

R1
u�t,x�, t =

L

R1
T, x =

clL

R1
X ,

Cm =
�L

R1
2 , I0 =

u0V1

R1
, V0 = v0V1, R = �R1, � =

L�

R1
� ,

D0 =
cl

2L2

R1
3 	0, D1 =

cl
3L3

R1
3 	1, �d =

4�cl
2L2�

R1
2V1

2 Ed,

W�t,x� =
clL

R1
w�t,x� , �15�

we get the nondimensional version of Eq. �14�,

�2w

�T2 −
�2w

�X2 = �
�3w

�T � X2 + Ed
�v
�X

�2v
�X2 ,

�
�v
�T

=
1

�
v�1 − v��v − �� − u − u0

+ �	0 + 	1
�w

�X
	 �2v

�X2 + 	1
�v
�X

�2w

�X2 ,

�u

�T
= v − v0 − �u . �16�

In order to compare our results with recent literature on
the subject �38�, it is illustrative to rearrange terms as fol-
lows: we introduce the new time variable T=��� and rescale
the u variable as u�� ,X�=U�� ,X� /�; hence u0=U0 /� and for
convenience we set v=V and v0=V0. Then, we introduce the
following notation:

� = a�, � = e1/�2, � = s�/e1, Ed = e2�2/e1
2,

	0 = D/�, 	1 = D1/�, U0 = − Iext. �17�

In this way system �16� becomes

�2w

��2 −
e1

2

�2

�2w

�X2 = s
�3w

�� � X2 + e2

�V
�X

�2V
�X2 ,

�V
��

= V�1 − V��V − �� − U + Iext

+ �D + D1
�w

�X
	 �2V

�X2 + D1

�V
�X

�2w

�X2 ,

�U
��

= e1�V − aU − V0� , �18�

and this is the final form of equations which describe propa-
gation of coupled interacting “electroviscoelastic signals”
which will be numerically integrated in the following.

B. Advanced and retarded solutions

Equations �18� admit purely advanced or retarded solu-
tions. In fact, passing to coordinates �=X+ �e1 /��� and

�=X− �e1 /��� and looking for special solutions of the form
w=w��� , V=V��� , U=U��� , Iext=0, for example, we ob-
tain the first order autonomous ordinary differential equation
�ODE� system:

V̇ = Y ,

ẇ = M ,

Ṁ = −
�e2

2se1
�C − Y2� ,

U̇ = ��V0 + aU − V� ,

Ẏ =
1

D + D1M
�U + V�V − 1��V − ��

−
Y�D1�2e2�Y2 − K� + 2e1

2s�
2�se1

� , �19�

where the dot means ordinary differentiation with respect to
the � parameter. For solutions depending by � only, the pro-
cedure is analogous. The quantity K is an integration con-
stant, obtained reducing by quadrature one of the ODEs. It
can be easily shown that equilibrium points of the dynamical
system �19� exist if K=0 only. In this case Y =0, M =0, lead-
ing to

V0 + aU − V = 0, U + V�V − 1��V − �� = 0 �20�

which coincides with the equilibrium position of the standard
�nonelastic� Fitzhugh-Nagumo model.

IV. NUMERICAL ANALYSIS

In order to numerically integrate the system of second
order partial differential equations �PDEs� �18�, it is conve-
nient to transform it in a first order one as follows:

�w

��
= P ,

�P

��
=

�

�X
� e1

2

�2

�w

�X
+ s

�P

�X
+

e2

2
� �V

�X
�2	 ,

�V
��

=
�

�X
�D

�V
�X

+ D1

�V
�X

�w

�X
	 + V�1 − V��V − �� − U + Iext,

�U
��

= e1�V − aU − V0� . �21�

This step automatically generates a constraint C
= 
P−�w /��
, which in the exact theory is identically zero
but will not vanish in a general numerically approximated
solution. Deviations of this quantity from zero clearly pro-
vide a useful indicator of the quality of the numerical results,
i.e., “causality violations” due to numerical modifications of
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the characteristics of the PDE system. In fact, such violations
will instantaneously propagate through the domain of inte-
gration, leading to nonphysical results. In the numerical
simulations we have kept C below a typical threshold of
�10−4. The system of four coupled first order PDEs is nu-
merically solved in the spatial domain X� �0,L�, using the
nonlinear finite element engine of FEMLAB® with fifth or-
der Hermite elements. We acknowledge that existing models
in the literature typically use dimensionless units whereas
simulation results are often compared to dimensional obser-
vations from experimental studies. To this end, dimensional
mappings are obtained by comparing specific dimensionless
model properties with experimental data �28�. This inductive
procedure in general allows us to bypass working directly
with physical constants. We have performed the following
typical choice of numerical parameters:

L = 5, e1 = 0.01, � = 0.1, a = 2.5, D = 1, V0 = 0,

�22�

following Ref. �38�, which contains, moreover, a discussion
on the conversion relations with physical scales.

Concerning the remaining parameters, some approximate
estimations can be done as follows. Equation �18�, for the
elastic deformations, has an effective source term repre-
sented by the derivatives of the action potential. When such
term is absent �e2=0�, one can estimate the effect of the
viscous parameter s looking for solutions of the form w
=w0eikX−i��, where �=�0+ i�1 , k being the wave number of
the solution and �0= ± �k /2��
4e1

2−k2�2s2 , �1=−sk2 /2.
Such a dispersion relation implies that s�2e1 /k�. With the
parameters listed in Eq. �22�, assuming k=2� /L, we obtain
s�0.16 which identifies a typical scale of this parameter.

Regarding e2, we can have an estimate looking for static
solutions of Eq. �18�, in which the action potential is ap-
proximated by a quadratic polynomial function V= �h /2�X2,
leading to a linear electric field and representing conse-
quently the simplest possible test field. In X=L, we have
V�L�= �h /2�L2, so that, taking into account that for a
Fitzhugh-Nagumo model in our adimensionalized variables
the maximum voltage Vmax�0.8, we choose V�L��Vmax/2.
We require, moreover, that w and its first spatial derivative
vanish at X=0 and hence one finds w�X�=−��2h2e2 /6e1

2�X3.
We require that 
w�L� /L
�0.05 in order to have linear elas-
ticity conditions being satisfied. With the above choice of
parameters we get e2�0.2. Concerning D1 unfortunately
similar simple arguments do not apply. We are then forced to
suppose that the total effective diffusion coefficient
D+D1�Xw must not differ very much from the nonelastic one
D. Consequently we will perform a reasonable choice for D1
with values smaller or around the value of D.

We present now two different situations: �i� a free insu-
lated fiber activated by an initial Gaussian distribution of
action potential, and �ii� a clamped fiber stimulated by two
counter phased currents, located at both ends of the space
domain.

A. Free fiber

In this case we adopt for system �21� the following choice
of parameters:

D1 = 1.5, e2 = 0.3, s = 0.2, �23�

in addition to Eq. �22�. We require, moreover, Iext=0 and we
set as initial data w=U=0 and V=Je−r�X − L / 2�2

with J=2 and
r=5. Given a point X at �=0, its �adimensional� position
during the dynamics will be X�=X+w�� ,X�. Concerning
boundary conditions we use Neumann zero flux ones, i.e.

�U
�X

=
�V
�X

=
�w

�X
+

s�2

e1
2

�P

�X
= 0

both in X=0 and X=L. In Fig. 1 we show a density plot of V
in the plane X�=X+w �abscissa� and � �ordinate�. The
shaded scale defines the value of V. Lighter gray means high
value of the action potential, dark gray means lower action
potential. As expected the fiber contracts with respect to its
position at rest, due to the action potential spreading. Once
action potential disappears the fiber returns back to its origi-
nal length. This evolution is also shown at different times in
plane �X� ,V� in Fig. 2. Changing the sign for e2, one gets
that the fiber will expand instead of contracting.

In Fig. 3 we present instead, the quantity V �the action
potential� in function of � taken in X=1, both in the elastic
case �dotted� and the nonelastic standard Fitzhugh-Nagumo
one �continuous curve�. We easily realize that electric activ-
ity in this case is not affected by elasticity, although elasticity
is clearly activated by V.

In Fig. 4 we plot the adimensionalized displacement w of
the point initially located in X=1 in function of �. As ex-
pected the point X=1 is pushed towards the center of the
fiber and then comes back to its rest position when w→0 at
late times. This behavior agrees with standard physiological
experiments on elastic heart fibers.

FIG. 1. �Color online� Density plot of V in the plane X�=X+w
�abscissa� and � �ordinate�. The shaded scale defines the value of V.
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In Fig. 5 we show the value of the constraint C at various
“time scales” of the numerical simulation. As anticipated,
causality violations result very small making the integration
meaningful. Similar “error bars” are not usually presented in
the literature, although such a discussion is essential to have
a clear understanding of the soundness of a numerical simu-
lation. In relation with the accuracy problem, we point out
that our numerical integrations have been carefully checked
against numerical violations of imposed boundary conditions
too. In fact, in order to maintain zero flux Neumann condi-
tions �or null Dirichlet conditions, as discussed in the follow-
ing� below the reasonable threshold of �10−8 during the evo-
lution, we had to use many finite elements, a procedure
which, in one-dimensional systems, can be still performed.
In higher dimensions, however, boundary and constraint vio-
lations can surely represent a serious problem, and clearly
they must be reduced by implementation of an advanced
constrained evolution scheme, together with a very fine
meshing of the spatiotemporal integration domain. Presently,
these constrained techniques exist in a well-developed form,

at the moment, for strongly hyperbolic problems and have
been adopted, for instance, in numerical general relativity
�34� to prevent the generation of nonphysical signals by
boundary conditions violation. In future projects, passing to
1D nonlinear elasticity as well as to 2D and 3D linear cases,
we will try to adapt such useful tools to elastic reaction-
diffusion problems too, in order to have under control long
time evolutions of models �especially if large elastic defor-
mations will be considered� and be able to maintain C below
lower thresholds.

B. Clamped stimulated fiber

In this section we extend the results of Ref. �38�, based on
experiments on real animal hearts electrically stimulated by
external currents �39�. We consider now in system �21� a
couple of external currents with functional form

Iext��,X� = B sin�2�f��e−
X2
+ B sin�2�f� + ��e−
�X − L�2

,

�24�

which for large values of 
 will be practically located at both
ends of the fiber. Following Ref. �38� again, we set

FIG. 2. Plot of V against X�=X+w at different values of �=0,
0.3, 15, 35, 45, 60.

FIG. 3. Plot of the quantity V �the action potential� in function
of � taken in X=1, both in the elastic case �dotted� and the nonelas-
tic one �continuous curve�.

FIG. 4. Plot the adimensionalized displacement w of the point
initially located in X=1 in a function of �.

FIG. 5. Value of the constraint C at various “time scales” of the
numerical simulation.
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� = �, 
 = 1000, B = − 30, f = 0.0125. �25�

Concerning the model parameters, we keep the same values
of the free fiber case �22�; we have tested a wide variety of
choices for the remaining parameters in order to better un-
derstand their role in the dynamics. Here we study the case

D1 = 0.36, e2 = − 0.36, s = 0.9, �26�

which has manifested relevant changes with respect to the
nonelastic case. The initial data are U=V=w=0 for �=0. The
boundary conditions are zero flux Neumann ones for U and
V, i.e., �U /�X=�V /�X=0 both in X=0 and X=L. Concerning
the variable w and P, we use the null Dirichlet condition
w= P=0 on the extremal points instead �fixed rod�.

In Fig. 6 we present, superimposed, the quantity V �the
action potential� in function of �: the signal is taken in the
middle of the fiber in the elastic case �dotted� and the non-
elastic one �continuous curve�. Due to the strong external
electric stimulation, in this case we have that the action po-
tential is noticeably modified with respect to the nonelastic
case. In Fig. 7 we plot w with respect to X. The various parts

of the fiber do not move relevantly with respect to the initial
configuration, which is one of the conditions for which the
linear elasticity condition results to be valid.

In Fig. 8 we plot the value of V with respect to X� at
different values of �, with �� �100,150�. In Fig. 9 we plot
the same quantity in the case of absence of elasticity �stan-
dard Fitzhugh-Nagumo model�. Clearly, in both cases it ap-
pears at late times the central node of Ref. �38�, whose po-
sition and amplitude are practically unaffected by the elastic
addition. However, it must be noted that the elastic addition
has slightly modified the behavior of the signals far from the
center. These results clearly show that if one wants to
change, or even to remove mechanically, the nodal structure,
there should presumably used a nonlinear elastic theory with
possible anisotropies.

The authors may wish to clarify this in their conclusions
and perhaps consider the inclusion of stretch-activated chan-
nels and their associated mechanoelectric feedback as future
work.

FIG. 6. Plot of the quantity V �the action potential� in function
of time �. The signal is taken in the middle of the fiber in the elastic
case �dotted� and the nonelastic one �continuous curve�.

FIG. 7. Plot of w respect to X.

FIG. 8. Plot of the value of V with respect to X� at different
values of �, with �� �100,150�.

FIG. 9. Plot of the value of V with respect to X at different
values of �, with �� �100,150� in the absence of elasticity.
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V. CONCLUSIONS

An extended Fitzhugh-Nagumo model including linear
viscoelasticity has been derived and discussed. The equations
of the model have been numerically integrated in two differ-
ent one-dimensional situations: free fiber and an externally
stimulated clamped one. The results are qualitatively in
agreement with physiological behavior of cardiac fibers: we
have found that, although elasticity is strongly affected by
electric activity, the action potential does not backreact no-
ticeably, unless the fiber is strongly electrically stimulated. In
fact, modifications of action potential appear in experiments
when a cardiac tissue is strongly stretched by external ac-
tions only �27,28�.

In previous studies, which measured the effects of stretch
on membrane potential, White et al. �40� found, according to
experimental results regarding multicellular preparations
�41�, qualitatively and quantitatively variable membrane po-
tential and action potential configurations depending upon
sarcomere length changes. If the stretch increased sarcomere
length from 1.84 to 2.70 �m the only parameter which
changed was action potential duration which decreased. The
primary mechanism behind such an effect seems to be
stretch-activated channels, which open in response to stretch
and produce an additional potassium transmembrane current
that increases the speed of repolarization �see Ref. �42� for a

recent review�. The �nontrivial� inclusion of stretch-activated
channels and their associated mechanoelectric feedback, not
taken into account in this paper, will be addressed in future
studies.

Moreover, we remark that in the extreme situation of a
strong stretch one should clearly add to the elasticity equa-
tion the external mechanical forces which will activate these
modifications and generate very large deformations. This, in
principle, could be done, and it would require the use of the
nonlinear elasticity theory �finite elasticity �36,43� including
density variations� in which the strain tensor will contain an
additional nonlinear term, i.e., uik= 1

2 ��ui /�xk+�uk /�xi

+ ��ul /�xi���ul /�xk��. Such modification is nontrivial due to
the possible presence of bifurcations in the nonlinear field
equations �44�. Numerically, the problem will become much
more complicated, requiring necessarily a more refined con-
strained evolution scheme. In future works, we will look for
possible choices of parameters, which will best fit the experi-
ments in laboratories on real heart fibers. At this stage,
adopting the proper mathematical tools to have numerical
simulations under control, the model presented in this paper
will be generalized including nonlinear 1D elasticity and
possibly adding heat transfer. Then, we will be ready to at-
tack the problem in two or even three dimensions with the
anticipation of being able to generate physiologically more
realistic long term waveforms.
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