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We extend our recent phase-field �T. Biben and C. Misbah, Phys. Rev. E 67, 031908 �2003�� approach to 3D
vesicle dynamics. Unlike the boundary-integral formulations, based on the use of the Oseen tensor in the small
Reynolds number limit, this method offers several important flexibilities. First, there is no need to track the
membrane position; rather this is automatically encoded in dynamics of the phase field to which we assign a
finite width representing the membrane extent. Secondly, this method allows naturally for any topology change,
like vesicle budding, for example. Thirdly, any non-Newtonian constitutive law, that is generically nonlinear,
can be naturally accounted for, a fact which is precluded by the boundary integral formulation. The phase-field
approach raises, however, a complication due to the local membrane incompressibility, which, unlike usual
interfacial problems, imposes a nontrivial constraint on the membrane. This problem is solved by introducing
dynamics of a tension field. The first purpose of this paper is to show how to write adequately the advected-
field model for 3D vesicles. We shall then perform a singular expansion of the phase field equation to show that
they reduce, in the limit of a vanishing membrane extent, to the sharp boundary equations. Then, we present
some results obtained by the phase-field model. We consider two examples; �i� kinetics towards equilibrium
shapes and �ii� tanktreading and tumbling. We find a very good agreement between the two methods. We also
discuss briefly how effects, such as the membrane shear elasticity and stretching elasticity, and the relative
sliding of monolayers, can be accounted for in the phase-field approach.
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I. INTRODUCTION

Problems in which moving interfaces are involved, like
fluid-fluid, solid-fluid interfaces, and membranes, have been
traditionally treated by considering the boundary as a geo-
metrical location �a mathematical surface having no width�,
and on which one has to impose boundary conditions in con-
nection with the underlying fields describing dynamics �for
example heat flow in crystal growth, hydrodynamic flow for
fluid interfaces, and so on�. This is completely justified inas-
much as the real interfacial region is usually of atomic thick-
ness, while the size and the patterns of interest are much
larger. Many problems have been successfully solved by this
method, in crystal growth �1,2�, for fluid interfaces in the
small Reynolds number limit �3�, for capsules mimicking red
blood cells �4�, for biological vesicles �5,6�, and so on. These
methods used either boundary integral formulations based on
the Green’s �1,2� function �3� �this is possible when the bulk
equations are linear�, or by discretizing the bulk equations in
both phases and match them at the interface via the imposed
boundary equations �7�. The latter method is not limited to
linear equations in the bulk phase. One of the drawbacks of
the latter method, however, is that one has to follow explic-
itly the interface position, and refine the grid in the vicinity
of the interface in situations where the dynamics, for ex-
ample, involve singularities, or boundary layers. A typical
situation is the Grinfeld instability which is known to lead to
a finite time cusp singularity �7,8�. The finite elements

method used for the Grinfeld instability �7�, albeit quite ef-
ficient, is not always easy to implement, and may not be
capable of resolving some singularities �7�. In addition this
kind of �boundary-tracking� method does not allow automati-
cally to treat a topology change, such as breakup of a vesicle
into smaller ones, unless some specific prescription is fixed
�and often this is done in an ad hoc manner�. Boundary in-
tegral formulations also have their shortcomings. First, they
do not allow for a topology change, and secondly, and this is
a more serious limitation, they are limited to situations where
the bulk equations are linear. In addition, this method is not
always flexible �for example adding a viscosity contrast re-
quires some deal, whereas with a phase field approach this is
rather straightforward, as we shall comment later�.

More recently, several communities have adopted another
type of method, known in the physicist community as the
phase field model. The crux of this model is the introduction
of an auxiliary field, �, which is a function of space and
time. The dynamics of this field is written in such a way that
it takes a value, say, �=−1 in one of the two bulk phases,
and �=1 in the other phase. This field varies abruptly in a
tanh�r /�� manner, where � is a small parameter measuring
the width of the boundary �e.g., interface, membrane�, and r
is a coordinate along the interface normal. Thus there is no
explicit prescription of the boundary. Rather, this is encoded
in the rapid variation of �. This field is, in some sense,
passive and is coupled to the relevant dynamical variables
�like the velocity field� of the problem under consideration.
This type of modeling has become popular in solving inter-
facial problems, and has been developed in various contexts
like solidification �9�, elastic instabilities �10,11�, fracture*Email address: chaouqi.misbah@ujf-grenoble.fr
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�12�, droplet-breakup �13�, fluid-fluid interfaces in a Hele-
Shaw problem �15�, etc. The success of the method is at least
fourfold. �i� It is relatively easy to implement �in comparison
to finite elements or boundary integral formulations�, �ii� it
does not require a front tracking, �iii� it allows naturally for a
topology change, and �iv� it can be adopted to diverse situa-
tions, including the one where the underlying equations are
nonlinear. Other methods, which are similar in spirit, have
been developed, more often in the computer scientist and
applied mathematics communities. These are, among other
methods, the level set and volume of fluid methods �16,17�.

In a recent work we have presented a brief account on the
use of the phase-field method to vesicle dynamics �13�, and
more recently an attempt has been made along this direction
without hydrodynamic flow �14�. In our previous work �13�,
most of our focus was directed towards the use of the method
in the context of tumbling. This paper is devoted to an ex-
tensive discussion to the method itself. We generalize here
the method to 3D, and perform the sharp boundary limit in
order to show that asymptotically the model recovers the
usual equations. We shall also discuss how other effects, like
monolayers sliding and permeability across the membrane,
can be incorporated in the model. We show numerical results
of relaxation towards equilibrium shapes, and the behavior of
vesicles in an external shear flow.

The scheme of this paper is as follows. In Sec. II we
introduce the model. The sharp boundary limit is performed
in Sec. III. Section IV is devoted to the study of some dy-
namical examples, and a summary and discussion constitute
the topic of Sec. V. Many technical details are relegated into
three Appendixes.

II. THE PHASE-FIELD MODEL

In this section we write down the phase field �PF� model
for vesicles in 3D by following a similar spirit as that in 2D
�13�. Let � designate the PF which takes the value �=−1 in
the interior and �=1 in the exterior, respectively. The field is
advected by the flow, and is forced to take these two values
inside and outside the vesicle thanks to a double well poten-
tial. Thus its dynamics is given by

��

�t
= − v · �� + ���2� −

1

4�2g���� + ĉ����� , �1�

where we have � as a parameter �its magnitude with respect
to � will be specified later�. The first term on the right-hand
side �RHS� of the equation is the advection one �v is the fluid
velocity�, the second is a wall-like energy, the third one is the
double well where g���= �1−�2�2 and the last term is intro-
duced �15� in order to cancel the leading order contribution
coming from the wall term; the wall term introduces a
surface-like energy which is not desirable especially for
vesicles which are devoid of a surface energy. The formal
cancellation will be shown in the next section. We have in-
troduced the curvature

ĉ = − � · n̂ , �2�

where n̂=�� / ���� is the normal vector to the contour sur-
faces of the PF. That is, ĉ is the mean curvature, defined as

the sum of the two principal curvatures of the contour sur-
face at the position of the normal. In the next section it will
become clear how the orders of magnitude in terms of the
small parameter are chosen.

Since vesicle motion is accompanied with a hydrody-
namic flow, we need to describe the velocity field. While the
method can be developed for arbitrary Reynolds number, we
shall specialize it to the small Reynolds number limit since
we have in mind only application to vesicles in this paper.
The velocity field equations are written as

�v
�v

�t
= � · � − �p + Fc + F�, �3�

� · v = 0. �4�

The first one is the momentum transport equation, while the
second one is the incompressibility condition. The LHS of
Eq. �3� represents an inertial-like term. Since we shall choose
�v to be small enough, this amounts practically to taking the
pure Stokes limit �the pure viscous limit�. The stress tensor is
�=������v+ ��v�T	, where ���� accounts for a possible
viscosity contrast between the interior and the exterior of the
vesicle; a convenient prescription is ����= �1+���out /2
+ �1−���in /2, where �out and �in are the bulk viscosities
outside and inside the vesicle, respectively. While our nu-
merical results have been performed for arbitrary viscosity
contrasts, in the derivation of the sharp boundary limit we
shall restrict ourselves to the free contrast case where � is
simply a constant. The extension of our derivation to the
general case presents no specific complication.

The forces appearing on the RHS are the curvature force,
Fc, associated with the bending rigidity, and the tension-like
force, F�, associated with the fact that the local area of the
membrane is preserved under dynamics �there is neither
stretching nor compression under dynamics�. This force is
associated with a Lagrange multiplier � which is a function
of time and of the position on the membrane. More precisely,
the energy associated with membrane bending and incom-
pressibility is written as

H =
�

2

 dr�ĉ − c0�2 ����

2
+ T
 dr ��r,t�

����
2

. �5�

� is the membrane rigidity, c0 is a spontaneous curvature,
and T is a tensionlike parameter �making � dimensionless�
and the factor ���� /2 is there in order that the action of the
rigidity and the tension be localized on the membrane; it
plays the role of a surface Dirac function and this will be-
come more visible below. The idea of the PF is precisely not
to make it a pure Dirac function but to leave it in principle
extended �or diffuse�, albeit localized enough in order to
have, as close as possible, the required degree of precision.
The forces are obtained from the functional derivative of the
energy upon a virtual displacement of the membrane posi-
tion. We have thus �the details of the derivation are given in
Appendix A�
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Fc � −
	Hc

	R

= −
�

2
� · � �1 − n̂n̂�

����
· ���ĉ − c0������ +

�ĉ − c0�2

2
n̂



����n̂ . �6�

The tensionlike force takes the form �see Appendix A�

F� = T��ĉ
��

2
+ �1 − n̂n̂� · ��

����
2

� . �7�

It will be shown below from the sharp boundary limit that to
leading order, the curvature force can be written as

Fc = − ��1

2
�ĉ − c0��ĉ�ĉ + c0� − 4Ĝ� + �2Dĉ���

2
, �8�

where

Ĝ = det��t̂1 · ��n̂,�t̂2 · ��n̂,n̂� �9�

is the Gaussian curvature of the contour surface, and by n̂n̂
we denote the projection operator projecting on the normal
vector n̂. Hence, 1− n̂n̂ projects onto the tangential plane.
The dot in �7� signifies a multiplication between a matrix and
a vector. Subscripts 2D characterize differential operators on
contour surfaces. Specifically, �2D is the Laplace-Beltrami
operator, given by

�2D = ��1 − n̂n̂� · �� · ��1 − n̂n̂� · �� , �10�

and �2D ·v is the surface divergence of v:

�2D · v = ��1 − n̂n̂� · �� · v . �11�

Expression �8� is nothing but the well known Helfrich force
�20� in 3D.

One of the new questions that arises when treating
vesicles, in comparison to front problems for which a myriad
of phase field models have been developed, is the incom-
pressibility condition of the membrane. This sets a serious
constraint on the dynamics. As time elapses the hydrodynam-
ics flow field changes and so does the set of forces acting on
the membrane. In other words, the initial value of the
Lagrange multiplier � is not necessarily the one that is re-
quired to preserve area later on. Thus we have in principle to
determine � at each time. One possible way would be to
evaluate at each time the change of the local area, then re-
quire that the area be the same as the original one, and evalu-
ate the tension fields that satisfies this constraint. Instead of
making these various steps, we introduce an evolution equa-
tion of the tension field that is valid everywhere in the bulk
�by doing so we do not need to track the boundary�. The
suggested type of equation is an equation that forces the
local area on a short enough time scale and to relax back to
the originally prescribed one. Since a change of the local
area is dictated by the surface divergence of the velocity
field, the evolution equation has the form

��

�t
= D��

2� − v · �� + �2D · v . �12�

The term −v ·�� is simply the advection term telling that the
tension field must follow the membrane according to the
actual fluid velocity adjacent to the membrane. The diffusion
term is introduced for regularization purpose in the numeri-
cal scheme. From the formal point of view it will be shown
that its introduction renders the statement about the sharp
boundary limit nonambiguous, as we shall see below. If the
diffusion term were absent we would have a direct propor-
tionality between the material derivative of � and the surface
divergence. We shall require � to be of order � �and T to be
of order 1 /� so that the product remains of order unity� and
thus to leading order we expect the evolution equation of � to
be dominated by �2D ·v�0, thus the required condition. This
is what will be shown formally below.

Before exploiting the model extensively it will first be
essential to show that the above set of equations reduce to
the sharp boundary equations in the limit when �→0. This
step was not yet described in our previous work in 2D �13�.
Here we shall show it directly in 3D, and obviously the 2D
limit is straightforward from the 3D results.

III. THE SHARP BOUNDARY LIMIT

The sharp boundary �SB� limit is a singular one in the
sense that we cannot just take the limit �=0 in the set of
equations �1�, �3�, �4�, and �12�. As is seen on Eq. �1�, for
example, upon multiplication of both sides by �2, � multi-
plies the highest derivative �the �2� and thus it is a singular
perturbation, leading to a boundary layer; that is a region of
extent � inside which the field � varies abruptly. In this type
of problems one has to distinguish between two regions: the
inner region, which is confined to a distance of order � about
the boundary where � has a rapid variation, and an outer
region, which is the complementary region, away from the
boundary, where � varies smoothly. Standard matching con-
ditions are obtained from the requirement that the asymptotic
expansions of the inner domain and the outer domain agree
in a region of overlap.

In order to deal with the inner region, which is a bit more
tricky, we first introduce local coordinates in the vicinity of
the membrane. Besides the normal vector, we need two lin-
early independent tangent vectors to contour surfaces, which
we denote by t̂1 and t̂2. We choose these three vectors to
form an orthonormal trihedron, i.e., we take them as unit
vectors and set t̂2= n̂
 t̂1. They are not identical to the nor-
mal and tangents at the SB which shall be simply denoted by
n, t1, and t2. However, t̂1, t̂2, and n̂ will approach t1, t2 and
n, respectively, in the limit �→0 on contours approaching
the interface. Outside the interface, the limit is indefinite. We
then set r=R�s ,u�+rn�s ,u�, where R is the membrane posi-
tion and s, u are orthogonal coordinates on the membrane,
parametrized such that they indicate arclengths along the co-
ordinate curves �r ,u�=const and �r ,s�=const, respectively.
This means that ��R /�s�= ��R /�u�=1 and t1=�R /�s, t2
=�R /�u. t1, t2, and n form a right-handed trihedron. In order
to simplify the following derivations, we choose the coordi-
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nate lines to be geodesics. A general relationship between the
geodesic curvature � of a curve on a surface �i.e., its in-
surface curvature�, its normal curvature 
, and its curvature
�s as a space curve is

�s
2 = �2 + 
2. �13�

Geodesics are the analogs of straight lines on the surface, so
their geodesic curvature is zero by definition, which means
that the normal curvature of our coordinate lines coincides
with their spatial curvature. This results in simplified equa-
tions of motion for the Bonnet-Kowalewski trihedron �19�
moving along such a curve. They become identical to the
Frenet formulas:

�n

�s
= − c1t1 − �1t2,

�t1

�s
= c1n,

�t2

�s
= �1n ,

�n

�u
= − c2t2 + �2t1,

�t1

�u
= − �2n,

�t2

�u
= c2n , �14�

where c1 and c2 are the curvatures of the space curves de-
scribed by the coordinate lines corresponding to s and u,
respectively, whereas �1 and �2 are their torsions. Note that
the usual right-handed Frenet trihedron is given by t1, n, −t2
for coordinate s and by t2, n, t1 for u.

To obtain the metric tensor associated with these coordi-
nates, we first calculate the induced base vectors:

Er �
�r

�r
= n�s,u� ,

Es �
�r

�s
=

�R

�s
+ r

�n

�s
= �1 − rc1�t1 − r�1t2,

Eu �
�r

�u
=

�R

�s
+ r

�n

�u
= �1 − rc2�t2 + r�2t1. �15�

Note that this canonical basis is orthogonal on the membrane
�i.e., for r=0� but becomes nonorthogonal off it, due to the
presence of the torsion terms. This complication does not
arise in a two-dimensional system with a one-dimensional
interface, because there the derivative of n is always parallel
to that of R, whereas here it can have a component in the
direction of t2 for s and one in the direction of t1 for u.

The components of the metric tensor are given by gij
=EiE j, where i , j� �r ,s ,u	. Before writing them out, we ex-
ploit a symmetry to exhibit some interdependencies between
the normal curvatures and the torsions. Due to the inter-
changeability of partial derivatives, we have

� jEi = � j�ir = �iE j , �16�

which is automatically satisfied for the mixed derivatives
containing r as a variable. But equating �uEs=�sEu, we obtain

�1 = − �2 � � ,

c1u = − �2s = �s, c2s = �1u = �u, �17�

where subscripts s and u denote partial derivatives with re-
spect to these variables. The metric gij can then be obtained
directly along with the contravariant gij version of the metric
tensor and its determinant g, as listed in Eqs. �B1�–�B3� in
Appendix B. The vectors of the reciprocal basis are given by
Ei=gijE j �see expression �B4� in Appendix B�; we use the
Einstein summation convention throughout. We are now in a
position to express differential operators in terms of the inner
coordinates, as shown in Appendix B. As an example let us
write the gradient:

� = Ei�i

= n�r +
1

�1 − rc1��1 − rc2� − r2�2 �t1��1 − rc2��s + r��u�

+ t2�r��s + �1 − rc1��u�	 . �18�

The divergence and Laplacian are listed in Appendix B.
The next step is to perform a stretching transformation via

introduction of a fast coordinate �=r /�. The resulting ex-
pressions for differential operators are trivially obtained from
Eqs. �18�–�58�, �A1�–�A15�, and �B1�–�B7�: each derivative
with respect to r acquires a factor 1 /� when replaced by a
derivative with respect to �. Finally, each field in the outer
and inner regions is expanded in powers of �. In order to
distinguish the inner fields from the outer ones, we denote
them by capital letters. For example, the field � in the outer
and inner regions is written as

��x,y,z,t� = �0�x,y,z,t� + ��1�x,y,z,t� + ¯ ,

���,s,u,t� = �0��,s,u,t� + ��1��,s,u,t� �19�

and similar conventions are used for the other fields �velocity
and tension in the inner and outer regions are written as v, V
and � and X�. We then require the inner solution to match the
outer one in a domain of overlap.

Finally note that since the interface will move in general
and the coordinates �, s, u are defined with respect to the
interface, there is also a transformation rule for the time de-
rivative:

�t f�x,y,z,t� = �tF��,s,u,t� − W · �F��,s,u,t� , �20�

where W�s ,u , t�=w�x�s ,u� ,y�s ,u� ,z�s ,u� , t� is the interface
velocity. Equation �20� exhibits that the time derivative in the
comoving frame is a material derivative. In order to formu-
late the matching conditions concisely, we will occasionally
also write the outer fields as functions of the variables r, s,
and u �without changing their naming letter, thus in this case
adhering to the physicists’ convention of using a letter for a
physical quantity instead of a mathematical function�. More-
over, when describing the limit of an outer field, say the
pressure p, as the interface is approached from the side of
positive or negative r, respectively, we will just use a super-
script � or �, i.e., p±= p±�s ,u , t�=limr→±0p�r ,s ,u , t�. In or-
der to complete our preliminaries, we need for the inner
equations an expression for the modulus of the gradient of �
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�up to some useful order in ��. Using the approximation
�B10� for the gradient we find

���� =
1

�
�����E��, �21�

where

E�� � �1 + � �

1 − ��c1

�s�

���
+ �2��

�u�

���
�2

+ � �

1 − ��c2

�u�

���
+ �2��

�s�

���
�2�1/2

+ O��3� ,

=1 + O��2� �22�

and we have chosen r to increase from the side of the inter-
face where � is negative �the inside� to the one where � is
positive �the outside�. As a consequence, ��� is positive.

The strategy now is to use the set of complete equations
�1�, �3�, �4�, and �12�, expand them according to �19�, to-
gether with the differentiation operators in the inner region
given in Appendix B, and deduce successively higher orders
in powers of �.

Leading order expansion

1. Outer solution

In the outer region we use the original spatial variables
�not the stretched one�. Collect the dominant terms in �
�which are ��−2� from Eq. �1� we obtain

1

4
g���0� = − �0�1 − �0

2� = 0, �23�

with the solutions

�0 = 0, ± 1. �24�

The solution �0=0 sits on a maximum of the free-energy
functional leading to Eq. �1� and is unstable, whereas the two
other solutions, which are stable, correspond to the desired
limits of the PF at the inside and outside of the vesicle,
respectively. It should be noted that �0= ±1 remains a solu-
tion of Eq. �1� at arbitrary order in �. Thus �8� and �7� vanish
implying that �3� and �4� reduce to the Stokes equations.
Equation �12� becomes, since �=O���, �2Dv=0, i.e., it en-
forces the area constraint of the membrane. Apart from that,
the outer equations provide, via the matching conditions,
boundary conditions for the solutions of the inner ones, as
will be seen below.

2. Inner solution

The inner equation for � becomes at leading order

��
2�0 −

1

4
g���0� = ��

2�0 + �0�1 − �0
2� = 0, �25�

which together with the matching conditions

lim
�→±�

�0��� = �0
± = ± 1, �26�

leads to the unique solution

�0 = �0��� = tanh��/�2� . �27�

The important fact to note is that �0 does not depend on s
nor u, which enables tremendous simplifications. For ex-
ample, it should be immediately clear that instead of the last
equation in �22�, we even have

E�� = 1 + O��3� , �28�

because the derivatives of � with respect to s and u are O���
already.

In what follows we will also need expressions for the
normal and tangential vectors to the contour surfaces. From
n̂=�� / ����, we have

n̂ =
1

E��
�n +

�

1 − ��c1

�s�

���
t1 +

�

1 − ��c2

�u�

���
t2� + O��3�

= n + O��2� . �29�

The tangential vectors are to be defined such that their limits
for �→0 become t1 and t2, respectively. This is achieved by
setting

t̂1 = E���t1 −
�

1 − ��c1

�s�

���
n� + O��3� = t1 + O��2� ,

�30�

t̂2 = n̂ 
 t̂1 = t2 −
�

1 − ��c2

�u�

���
n + O��3� = t2 + O��2� .

�31�

The higher-order terms in �30� can be arranged such that t̂1 is
a unit vector, which implies that t̂2 is one, too. It is then
straightforward to calculate the Gaussian curvature of a con-
tour surface according to Eq. �9�, with the result

Ĝ =
c1c2 − �2

�1 − ��c1��1 − ��c2�
+ O��2� =

G

1 − ��c
+ O��2� .

�32�

In addition, to get the explicit form of the inner equations,
we need

�2D = t1�s + t2�u + O��� , �33�

�2D = �s
2 + �u

2 + O��� , �34�

ĉ = c + ��c2 − 2��G + O��2� . �35�

After writing the dynamical equations in the inner vari-
able, and using the results listed in Appendix B, we find that
to leading order, Eqs. �B14�–�B16� yield

��
2V0 = 0, �36�

from which we conclude that

V0 = V0�s� + �B�s� . �37�

The matching condition that the velocity must remain finite
in the outer region near the interface then tells us that B�s�
�0. Hence,
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V0n = V0n�s,u,t� , �38�

V0t1 = V0t1�s,u,t� , �39�

V0t2 = V0t2�s,u,t� . �40�

In view of this result, the leading order of the divergence
equation �B17� does not give anything new, we just obtain
��V0n=0.

Finally, from Eq. �B18�, we have, at order �−1

��
2X1 = 0, �41�

from which we conclude

X1 = X1�s,u,t� . �42�

We now have exploited all the inner equations to leading
order.

Proceeding to the first subdominant order of the inner
equations, we get from Eq. �B13� at order �−1

�V0n − Wn����0 = ����
2�1 −

1

4
g���0��1� , �43�

which may be rewritten as

L�1 =
1

�
�V0n − Wn����0, �44�

where the linear operator L=��
2−g���0� /4 is Hermitian. The

Fredholm alternative tells us that for this �possibly� inhomo-
geneous equation to be solvable the right-hand side must be
orthogonal to all left null eigenvectors of L. Since L is Her-
mitian, left and right eigenvectors are the same. But we
know already a right null eigenvector of L, as a consequence
of translational invariance:

L���0 = ��
2���0 −

1

4
g���0����0 = �����

2�0 −
1

4
g���0�� = 0,

�45�

where the last equality follows from Eq. �25�, i.e., the fact
that �0 is a solution of the leading-order inner problem.
Therefore, we must have

0 = 

−�

�

d�
1

�
�V0n�s,u� − Wn�s,u������0�2

=
1

�
�V0n�s,u� − Wn�s,u��


−�

�

d�����0�2, �46�

which implies, due to the positivity of the integrand

V0n�s,u,t� = Wn�s,u,t� , �47�

the equality of the normal velocity of the liquid with that of
the interface. It also shows that Eq. �44� is in fact a homo-
geneous equation.

Using Eqs. �27� and �38�–�40�, we obtain at order �−1

from Eq. �B14�

0 = ���
2V1 − n��P0

+ ��− ��1

2
c�c2 − 4G� + ��s

2 + �u
2�c� + cT̃X1
n

+ T̃�t1�sX1 + t2�uX1��1

2
���0. �48�

Multiplying this by n, we get

���
2V1n

= ��P0 +
1

2
���0���1

2
c�c2 − 4G� + css + cuu� − cT̃X1
 ,

�49�

where we have used the fact that the base vector n is inde-
pendent of �. Moreover, from the divergence equation we
obtain at order �0

��V1n = cV0n − �sV0t1 − �uV0t2. �50�

Since all the components of V0 are independent of � �see
Eqs. �38�–�40��, differentiation of �50� with respect to �
yields ��

2V1n=0, and Eq. �49� then provides a relationship for
��P0 that can be easily integrated. Taking the limits of inte-
gration to be −� and � we find with the help of the matching
conditions lim�→±�P0���= p0

± and lim�→±�X1�� ,s ,u , t�
=X1�s ,u , t�=�1�s ,u , t�

p0
+�s,u,t� − p0

−�s,u,t�

= − ��1

2
�c − c0���c + c0�c − 4G� + css + cuu� + cT̃�1,

�51�

which is the condition for local mechanical equilibrium at
the interface. The velocity terms in Eq. �3� do not generate
an interface force, because the velocity stress tensor �whose
divergence is ��2v� is continuous across the interface. So all
of the pressure difference has to come from Fc. We recognize
the Helfrich force as given in Eq. �8� and the normal part �the
first term� of the tensionlike force �Eq. �7�� written in local
coordinates.

Now projecting Eq. �48� on one of the two tangent vectors
�say t1�, we obtain

���
2V1t1

= T̃�sX1
1

2
���0. �52�

Integrating over � from −� to +� and due to the matching
condition ���V1t1

��=±�=��v0t1
�r=0±, we finally obtain

���v0t1
= T̃�sX1 �53�

which is the balance of the tangential viscous force. A similar
expression is obtained for the tangential component along t2.

Finally consider the first subdominant order of Eq. �12�. It
reads �exploiting Eq. �42��

0 = D���
2X2 − cV0n + �sV0t1 + �uV0t2. �54�

Now the matching conditions for X2 are
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X2 � �2�±0,s,u,t� + ��n�1��r,s,ut��r=±0 �� → ± ��
�55�

since �0=0. On the other hand, integrating Eq. �54�, we ob-
tain, taking advantage of the fact that V0 does not depend on
�:

X2��� = a�s,u� + b�s,u�� −
�2

2D�

�− cV0n + �sV0t1 + �uV0t2� .

�56�

The only way for Eqs. �55� and �56� to be compatible with
each other is that the expression in parentheses vanishes,
which via matching translates into

− cv0n + �sv0t1 + �uv0t2 = 0 �57�

in the outer domain near the interface. Since the left-hand
side is just the surface divergence on the interface, this is the
desired incompressibility condition for the membrane. For-
mulas for a two-dimensional system can be easily obtained
as a special case from the equations given here by setting �
=0 and dropping all terms referring to the tangential direc-
tion t2.

IV. NUMERICAL STUDY OF THE PHASE-FIELD MODEL

The main numerical scheme is presented in Appendix C.
Here we shall mainly present some of the numerical results.
We first begin with the equilibrium shapes. It is now well
established �18� that vesicles exhibit a variety of shapes. Of
course we shall not intend to reproduce the whole list but
simply give some typical results obtained by the PF model.
We consider only the situation where the spontaneous curva-
ture is set to zero. We are then left with the reduced volume
only which is defined as

� =
V

�4�/3��A/4��3/2 . �58�

By definition �=1 for a sphere and ��1 otherwise. The
strategy is the following. We start with an arbitrary shape
characterized by a given �. Then the vesicle shape evolves in
time. The motion is limited by the hydrodynamic flow inside
and outside the vesicle. After a certain time the vesicle at-
tains its final equilibrium shape. Figure 1 shows series of
equilibrium shapes for various �. At large � the shape is
spherical with a transition towards a prolate shape at about
�=0.8. The prolate shape enjoys an axial symmetry about the
vertical axis in the figure. Another typical shape is the oblate
one reproduced in Fig. 2. The oblate shape coexists �18� with
the prolate one in a certain range of swelling factor; that is to
say the prolate or oblate transition is of first order. Several
other shapes could be obtained but we shall limit ourselves
to these typical examples.

The next questions treated here is tanktreading and tum-
bling. In 2D we have recently extensively discussed the tum-
bling transition �13,21�. In 3D we expect additional richness
not present in 2D due to the higher degree of deformability
in 3D. The full discussion of this topic will constitute the
subject of a future publication. Here we focus on testability

of the PF model rather than on a systematic study of the
dynamical transition themselves. Figure 3 shows a vesicle
with no viscosity contrast and oriented in a linear shear flow
which is similar to the problem studied in �5�.

V. DISCUSSION

The first objective of the present paper was to extend the
PF model for vesicles introduced in Ref. �13� to 3D. The
second objective was to show formally that the PF equations
reduce, to leading order, to the sharp boundary ones in the
limit where �→0. The third objective was to show some
sample results of evolution towards equilibrium shapes, and
also some out of equilibrium results �tanktreading under
shear flow�. The virtue of the PF model lies in its flexibility
to implement various effects without additional complica-
tion, and its natural ability of handling topology changes. In
addition no explicit boundary tracking is required. Let us cite
one example of flexibility used here. In the usual boundary
integral formulation �6� even the introduction of a viscosity
contrast requires some great deal, like adding �21� new inte-
gral terms related to the so-called double layer contribution,
handling new singularities, etc. With the PF model this task
requires just a change of the numbers �in and �out in the
definition of the viscosity �= �1−���in /2+ �1+���out /2.
Another important virtue of the PF model in comparison to
boundary integral formulation is the fact that the PF model

FIG. 1. The final stage of the evolution showing thus the equi-
librium shapes for various values of the swelling factor in the pro-
late regime.

FIG. 2. �Color online� The final stage of the evolution showing
thus the equilibrium shapes for various values of the swelling factor
in the oblate regime.

PHASE-FIELD APPROACH TO THREE-DIMENSIONAL… PHYSICAL REVIEW E 72, 041921 �2005�

041921-7



can handle nonlinear constitutive laws, like for example non-
Newtonian fluids.

Of course in order to obtain fully quantitative results with
the PF model �, the transition width must be small enough
and usually one needs to extrapolate the results to �=0, as
demonstrated for the tumbling transition in Ref. �22�. This
task is of course time consuming and there is presently a
need for a numerical speeding up. One possible way would
be to make use of the so-called thin boundary limit. This task
was performed in the solidification problem �23�, a situation
which has proven to lend itself to a remodeling of the prob-
lem in a way that allows an efficient suppression of spuriou-
slike terms introduced by the PF model, and therefore al-
lowed to obtain quantitative results even with � not too
small. Whether this is possible or not within the PF model of
vesicles is a question under investigation. Secondly, it will be
also worthwhile to implement other schemes such as a mul-
tigrid or an adaptative scheme which have proven to be ef-
ficient in some PF models �24�. These two lines of research
are now essential if one wants to take full advantage of the
PF model.

Finally let us quote some questions which have not been
incorporated in the model. We have not considered yet the
case where the two monolayers may slide with respect to
each other, instead of forming the same entity. This sliding
results in an additional dissipation which may become essen-
tial for small enough vesicles �25�. In order to incorporate
this effect one way would be to add to the Stokes equation a

term like �n̂ ·�v where � is a dissipation coefficient. We
have not considered the case where a fluid exchange between
the interior and exterior may occur. This effect can be re-
tained by supposing that the phase field is not advected by
the true fluid velocity, but by the fluid velocity from which
we subtract ��p, where �p is a pressure difference between
inside and outside, and � is a permeability coefficient. We
hope to deal with these two effects in the near future. Finally,
in order to deal with more complex entities, like cells, we
need to incorporate the elasticity �or even viscoelasticity� of
the cytoskeleton. These questions constitute wide and inter-
esting lines of future inquiries which embraces various com-
munities going from physics to biology.
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APPENDIX A: DERIVATION OF THE MEMBRANE
FORCES

1. The curvature force

If c1 and c2 denote the two principal curvatures at a point
of the surface, the curvature Hamiltonian can be written, af-
ter �20�

Hc =
�

2

 �c1 + c2 − c0�2dA , �A1�

where cs accounts for a possible spontaneous curvature of the
membrane. With the notations

ĉ = c1 + c2, �A2�

the Hamiltonian �A1� can be rewritten:

Hc =
�

2

 �ĉ − c0�2dA . �A3�

The PF expression for the Hamiltonian can be obtained by
inserting the shape function of the interface and extending
the integral to the whole space:

HC =
�

2

 �ĉ − c0�2	shape�r�dr , �A4�

where ĉ is now a curvature field defined at any point r of the
3D space �the “hat” on the variable is to remind us of this
fact�. The curvature field can be easily defined from the AF
through the normal vector field n̂:

n̂ =
��

����
,

ĉ = − � · n̂ . �A5�

Note that this prescription corresponds to a negative curva-
ture for a sphere, and thanks to its definition �A2� a unit

FIG. 3. �Color online� A vesicle under shear flow executing a
tanktreading and oriented with an angle �less that � /4� in the flow.
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sphere corresponds to ĉ=−2. The shape function 	shape�r�
can be chosen as

	shape�r� =
����r��

2
�A6�

which satisfies the normalization condition since the PF var-
ies between −1 and +1.

The curvature force can be derived from the Hamiltonian
by considering an elementary local displacement 	R of the
interface. In such a case the AF becomes ��r�→��r−	R� so
that

	� = − �� · 	R �A7�

and the corresponding variations of n̂, c and 	shape write

	n̂ = �1 − n̂n̂� ·
�	�

����
,

	ĉ = − � · 	n̂ ,

	„	shape�r�… =
n̂ · �	�

2
. �A8�

The variation of the Hamiltonian can be obtained from its
expression �A4�:

	Hc =
�

2

 �2�ĉ − c0�	ĉ	shape + �ĉ − c0�2	�	shape�r��	dr .

�A9�

Inserting �A8� into �A9� leads to

	Hc =
�

2

 �− 2�ĉ − c0�

����
2

� · ��1 − n̂n̂� ·
�	�

���� �
+ �ĉ − c0�2 n̂ · �	�

2

dr �A10�

a first integration by parts, assuming the cancellation of the
fields at infinity, or periodic boundary conditions, yields

	Hc =
�

2

 �2 � ��ĉ − c0�

����
2

� · ��1 − n̂n̂� ·
�	�

���� �
− � · � �ĉ − c0�2n̂

2
�	�
dr , �A11�

a second integration by parts allows us to put 	� as a com-
mon prefactor

	Hc =
�

2

 � · �− 2

�1 − n̂n̂�
����

· ���ĉ − c0�
����

2
�

−
�ĉ − c0�2n̂

2

	�dr , �A12�

and we can deduce from this expression, using Eq. �A7�,

Fc � −
	Hc

	R
= −

�

2
�� · � �1 − n̂n̂�

����
· ���ĉ − c0�������

+ � · � �ĉ − c0�2

2
n̂�
 � � . �A13�

2. The tension force

This force results from the constraint of fixed local area.
This constraint is usually accounted for by introducing in the
Hamiltonian a local Lagrange parameter field ��r� as

H� = T
 ��r�dA .

The generalization of this expression to the AF framework is
simply

H� = T
 ��r�	shape�r�dr . �A14�

An elementary displacement of the interface by 	R leads, as
previously, to

	� = − �� · 	R ,

	�	shape� =
n̂ · �	�

2
.

The variation of H� writes

	H� = T
 ��
n̂ · �	�

2
− 	R · ��	shape�dr .

Integration by part of the first term yields

	H� = T
 − � · ��
n̂

2
�	� − 	R · ��	shapedr .

Using 	�=−�� ·	R, we easily identify the functional de-
rivative of H�:

	H�

	R
= T�� · ��n̂�	shapen̂ − ��	shape� .

The tension force thus writes

F� � −
	H�

	R
= T�− � · ��n̂�n̂ + ���	shape

expanding � · ��n̂�= n̂ ·��+�� · n̂= n̂ ·��−�ĉ, the tension
force can be expressed as

F� = T��1 − n̂n̂� · �� + ĉ�n̂�	shape. �A15�

APPENDIX B: EXPRESSION OF VARIOUS QUANTITIES
USED IN THE SHARP BOUNDARY LIMIT

As seen in the main part of the paper, the metric reads
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�gij� = g = �1 0 0

0 �1 − rc1�2 + r2�2 − 2r� + r2�c1 + c2��
0 − 2r� + r2�c1 + c2�� �1 − rc2�2 + r2�2 � ,

�B1�

its determinant is

g � det g = ��1 − rc1��1 − rc2� − r2�2�2, �B2�

and the contravariant version of the metric tensor takes the
form

�gij� = g−1 =
1

g�g 0 0

0 �1 − rc2�2 + r2�2 2r� − r2�c1 + c2��
0 2r� − r2�c1 + c2�� �1 − rc1�2 + r2�2 � .

�B3�

The vectors of the reciprocal basis are given by Ei=gijE j �we
use the Einstein summation convention throughout�:

Er = �r = n�s,u� ,

Es = �s =
1
�g

��1 − rc2�t1 + r�t2� ,

Eu = �u =
1
�g

��1 − rc1�t2 + r�t1� . �B4�

We are now in a position to express differential operators
in terms of the inner coordinates. The gradient is given by

� = Ei�i

= n�r +
1

�1 − rc1��1 − rc2� − r2�2 �t1��1 − rc2��s + r��u�

+ t2�r��s + �1 − rc1��u�	 , �B5�

and the divergence by

� · A =
1
�g

�i��ggijAj�

= �rAn −
c1 + c2 − 2r�c1c2 − �2�

�1 − rc1��1 − rc2� − r2�2An

+
1

�1 − rc1��1 − rc2� − r2�2 ��1 − rc2��sAt1

+ �1 − rc1��uAt2 + r���sAt2 + �uAt1�	 , �B6�

where A is some arbitrary vector, and terms containing de-
rivatives of the curvatures and torsions cancel each other due
to Eqs. �17�. The general formula for the Laplacian is

�2 =
1
�g

�i
�ggij� j , �B7�

but we will not write out this expression explicitly, as it is
very lengthy and all we need are the first few terms of its
expansion in powers of �.

Applying the formula for the divergence to the vector A
=n at r=0, we find immediately that the mean curvature of
the interface is given by

c � − � · n = c1 + c2, �B8�

i.e., it is the sum of any two normal curvatures corresponding
to orthogonal directions, not just the sum of the two principal
curvatures. Moreover, we can evaluate �9� on the interface
r=0, which provides us with the Gaussian curvature there

G = det��t1 · ��n,�t2 · ��n,n� = n��sn 
 �un� = c1c2 − �2,

�B9�

from which we may conclude that if our geodesics happen to
have the directions corresponding to the principal curvatures,
the torsion will vanish.

The next step is to perform a stretching transformation via
introduction of a fast coordinate �=r /�. The resulting ex-
pressions for differential operators are trivially obtained from
Eqs. �B5�–�B7�: each derivative with respect to r acquires a
factor 1 /� when replaced by a derivative with respect to �.
Expanding the operators in powers of � to the three leading
orders, we obtain

� =
1

�
n��

+ t1� 1

1 − ��c1
�s + ����u
 + t2� 1

1 − ��c2
�u + ����s


+ O��2� , �B10�

� · A =
1

�
��An − � c1

1 − ��c1
+

c2

1 − ��c2
+ 2���2�An

+
1

1 − ��c1
�sAt1 +

1

1 − ��c2
�uAt2

+ �����sAt2 + �uAt1� + O��2� , �B11�

�2 =
1

�2��
2 − � c1

1 − ��c1
+

c2

1 − ��c2
+ 2���2�1

�
�� + �s

2 + �u
2

+ O��� . �B12�

With the three leading orders written out explicitly, the
sought-for equations then read

�t� −
1

�
Wn��� − Wt1�s� − Wt2�s�

= −
1

�
Vn��� − Vt1�s� − Vt2�u�

+ �� 1

�2��
2� − �c + ��c2 − 2�G�

1

�
��� + �s

2� + �u
2�

−
1

4�2g���� + �c + ��c2 − 2�G�
1

�
���� + O��� ,

�B13�
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�v��tV −
1

�
Wn��V − Wt1�sV − Wt2�uV�

= �� 1

�2��
2V − �c + ��c2 − 2�G�

1

�
��V + �s

2V + �u
2V�

− n
1

�
��P − t1�sP − t1�sP + Fc + F� + O��� , �B14�

Fc = − ��1

2
c�c2 − 4G� + ��s

2 + �u
2�c + O���
 1

2�
��� ,

�B15�

F� =
T̃

�
�Xcn + �t1�s + t2�u�X + O���	

1

2�
��� , �B16�

1

�
��Vn − �c + ��c2 − 2�G�Vn + �sVt1 + �uVt2 = O��2� ,

�B17�

�tX −
1

�
Wn��X − Wt1�sX − Wt2�uX

= + D�� 1

�2��
2X − �c + ��c2 − 2�G�

1

�
��X + �s

2X + �u
2X�

−
1

�
Vn��X − Vt1�sX − Vt1�uX − cVn + �sVt1 + �uVt2

+ O��� . �B18�

Note that in �B13�, the second and last terms in the paren-
theses multiplied by � cancel each other, by construction.
The forces described by Eqs. �B15� and �B16� are only given
to O�1�, since this is the second subdominant order of Eq.
�B14�. These equations are used in the main part of the paper
in order to derive the inner equations.

APPENDIX C: NUMERICAL SCHEMES

The fluid is considered as being incompressible, so that

� · v = 0. �C1�

The Stokes equation is solved in practice using a relaxation
scheme:

�v
�v

�t
= � · �������v + ��v�T	� − �P + F , �C2�

where �v controls the relaxation time scale. �v is a density
that can be used to build a Reynolds number �of the order of
10−2 in practice�. Equation �C2� can be rewritten:

�v
�v

�t
= �����v + ����� � � · ��v + ��v�T	 − �P + F ,

�C3�

where we have explicitly used the incompressibility condi-
tion �C1�, and ������d� /d�. F is the full force acting on

the membrane �bending and tensionlike force�.
Due to the �v term, a direct Euler integration scheme is

subjected to numerical instabilities when the time step is too
large. Two possibilities exist to cope with this problem: re-
ducing the time step or using an implicit scheme. The second
solution is very powerful since it suppresses the instability
due to the Laplacian contribution. We can however not use
this scheme in a strict way due to the nonlinearity introduced
by the spatial variation of the viscosity field ����, rather, we
can implement a mixed scheme by subtracting �max�v from
both sides of Eq. �C3�, where �max is the largest value of the
viscosity in the system. Equation �C3� is therefore rewritten
as

��v
�

�t
− �max��v = ����� − �max��v − �P + F

+ ����� � � · ��v + ��v�T	 . �C4�

Although we use in practice a fourth order Runge-Kutta
method for the temporal integration, it is interesting to con-
sider a single implicit Euler integration step to emphasize the
interest of Eq. �C4�. The temporal derivation can be dis-
cretized as �v /�t��vt+dt−vt� /dt, where dt is the time step,
and thus Eq. �C4� takes the discrete form:

�v
vt+dt − vt

dt
− �max�vt+dt = ����t� − �max��vt − �P + Ft

+ ����t� � �t · ��vt + ��vt�T� .

�C5�

The implicit method consists in evaluating the Laplacian
term on the left side at time t+dt. The velocity field at time
t+dt is then obtained by inverting:

�1 − �max
dt

�v
��vt+dt = vt +

dt

�v
������ − �max��v − �P + F

+ ����� � � · ��v + ��v�T�	t. �C6�

This inversion can easily be done in the �spatial� Fourier
space if periodic boundary conditions �PBC� apply at the
edge of the resolution box. This is not indeed the case in
general when the vesicle is placed in an external flow, like a
simple shear for example, where a velocity difference is ap-
plied at two opposite sides of the resolution box. Interest-
ingly, if the external applied flow is linear it does not con-
tribute to the Laplacian term, it only contributes to the
gradient tensor, and its contribution can be calculated ana-
lytically. Setting v=vapplied+u, where the externally applied
field vapplied is time independent and linear in space, and u is
the velocity field induced by the vesicle, Eq. �C6� rewrites

�1 − �max
dt

�v
��ut+dt = ut +

dt

�v
������ − �max��u − �P + F

+ ����� � � · ��v + ��v�T�	t. �C7�

Assuming PBC for the induced field u only, and noticing
that the gradient tensor only plays a role in the vicinity of the
interface thanks to the �� prefactor, this contribution can-
cels at the boundary of the resolution box and can then sat-
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isfy PBC, this last equation can be inverted in Fourier space
to give

uk
t+dt =

1

1 + �max
dt

�v
k2
�uk

t +
dt

�v
������ − �max��u − �P + F

+ ����� � � · ��v + ��v�T�	k
t� , �C8�

where index “k” denotes a spatial Fourier transformation of
the quantity at wave vector k. The power of the implicit
scheme comes from the property that �1/ (1
+�max�dt /�v�k2)��1 for all wave vectors k whatever the
value of dt, which ensures the stability of the iterative
scheme in the absence of the term between braces �pure dif-
fusion�. Due to the presence of this extra term, the iterative
scheme does not always converge, but instabilities occur at
much larger values of dt. Interestingly, in the Fourier space
the incompressibility condition �C1� simply states that the
velocity field belongs to the transverse space. Pressure can
then be eliminated by applying the projector on the trans-
verse space:

uk
t+dt =

1

1 + �max
dt

�v
k2
�1 −

kk

k2 :��uk
t +

dt

�v
������ − �max��u

+ F + ����� � � · ��v + ��v�T�	k
t� . �C9�

This equation allows for the computation of uk
t+dt which after

a backward Fourier transformation and addition of the ap-
plied velocity field leads to the velocity field vt+dt.

1. The AF equation

The AF equation is

��

�t
= − v · �� + ���−

	Eintrinsic

	�
+ ĉ�2����� �C10�

with Eintrinsic=���1−�2�2 /4+�2��2 /2	dr the AF equation
becomes

��

�t
= − v · �� + �����1 − �2� + �2��� + ĉ�����	

again, numerical difficulties due to the Laplacian term can be
expected in principle at large time steps, but thanks to the
prefactor ���2 this contribution remains small enough so that
a standard explicit Euler scheme is sufficient:

�t+dt = �t + dt�− v · �� + �����1 − �2� + �2��� + ĉ�����	�t.

�C11�

As for the velocity field, this elementary step is included in a
fourth order Runge-Kutta method.

a. The Lagrange’s parameter field

This field evolves following the dynamical equation:

��

�t
= − v · �� + T�� · v , �C12�

where

�� · v = �1 − n̂n̂�:�v .

Using a basic Euler scheme is not sufficient here due to the
instable nature of the advective contribution. In the previous
case of the AF, this advection instability was cured by the
diffusive contribution ���� absent in the present case. A
simple solution is to add a small diffusive contribution to Eq.
�C12�, in the spirit of the Lax scheme, but the diffusion co-
efficient we use in practice is much smaller than in the Lax
method so that the solution remains accurate �see below�.

From Eq. �C12� � is the temporal integral of �� ·v which
represents the local elongation rate along an isocontour of
the AF. �� ·v is defined everywhere in space, and thus �. In
the vicinity of the membrane �� ·v remains small since the
role of � is precisely to cancel elongation of the membrane.
Far away from the membrane on the contrary, this constraint
does not apply and �� ·v reaches arbitrary values in the
steady regime. As a consequence, � reaches a steady state in
the vicinity of the membrane only, its growth far away from
the interface simply illustrates that two initially neighboring
points can be transported arbitrarily far away after a given
time. It is then interesting to truncate the variations of � at
some distance from the interface to prevent the numerical
noise induced by the irrelevant growth of � in these region to
propagate in the interfacial region. To this end, we introduce
a “gate” function f�r�, where r is the distance to the �=0
isocontour, which truncates �� ·v at a certain distance �its
precise shape will be given below�. The dynamical equation
thus becomes

��

�t
= − v · �� + T�� · vf�r� + ����

and can now be solved on the basis of the Euler scheme:

�t+dt = �t + dt�− v · �� + T�� · vf�r� + ����	t. �C13�

Again, this elementary step is combined to a fourth order
Runge-Kutta method.

b. Geometrical and auxiliary quantities

We specify now how geometrical quantities like the tan-
gential, the normal vector fields or the curvature field are
computed. From the knowledge of the AF at time t, the nor-
mal vector field can be calculated as

n̂�r� =
��

max�����,�n�
, �C14�

where �n is a cutoff that prevents the cancellation of the
denominator far away from the interface. n̂ is then normal-
ized in the neighborhood of the interface only. �n is homo-
geneous to the inverse of a length. The tangent vectors t̂ and
m̂ are easily obtained from n̂ by orthogonalization:

t̂ = n̂ 
 ŵ ,
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m̂ = n̂ 
 t̂ , �C15�

where ŵ is an arbitrary normalized vector, the relevant
physical quantities being independent of the precise choice
of ŵ. The Gaussian curvature “g” is computed through

g = �t̂ · �n̂ 
 m̂ · �n̂� · n̂ .

More difficult is the computation of the curvature field “ĉ.”
Expression ĉ=−� · n̂ allows in principle for the computation
of the curvature field everywhere n̂�r� is regular, and is a unit
vector. We then have to face two problems: singularities of
n̂�r�, and the cutoff �n introduced in the normalization of n̂
to reduce the numerical noise. Cancellation of the norm of n̂
far away from the interface is not too problematic since all
quantities related to the interface are weighted by ���� /2,
the shape function of the interface that cancels exponentially
away from the interface. In the steady regime �
� tanh�r /��2�, where r is the coordinate in the normal direc-
tion, r=0 at the interface. We set r*=r /��2 in the following,
r*=1 corresponds to the typical range of the interface. The
shape function is then ���� /2= �1−tanh2�r*�	 / �2�2��. This
function is maximum at r*=0 and its value is 1 / �2�2��. In
practice, �n is chosen as 10−4 / �2�2��, implying that it plays a
role in a region where the shape function is only 10−4 its
maximum value. The results are then not affected much by
this cutoff. The distance at which �n plays a role can be
estimated as r�n

* =5.65 which is relatively large compared to
1. The singularities of the normal vector field �as shown in
Fig. 4� are more problematic since they can occur in the
vicinity of the interface at finite values of �. These singulari-
ties are of two types: point singularities, occurring at curva-
ture centers, and line singularities which usually occur along
symmetry axis. In principle these defects should not play any
role in the dynamics of the interface in the sharp interface
limit since they remain located at finite distances from the
interface. However, at finite values of � they can alter the
results. These singularities can be removed in several ways.
A first possibility is to regularize the normal vector field n̂�r�
before computing the divergence. A second possibility is to
filter the resulting curvature field. We use both prescriptions
in practice. The normal vector field can be regularized by

forcing locally two adjacent normal vectors to have a posi-
tive scalar product during the computation of the divergence:
if � · n̂ is to be estimated at site “i,” values of n̂ at adjacent
sites will be chosen to be the actual value of n̂ if n̂i · n̂�0
and −n̂ otherwise. This procedure is very efficient for line
singularities, and smooth quite efficiently point singularities.
To prevent the large values of the curvature field induced by
point singularities to alter the interfacial region it is interest-
ing to set the shape function to zero at some distance from
the interface. This shape function is in practice rapidly de-
creasing but does not strictly cancel at finite distance. It is
then interesting to use a “gate” function f�r� �already men-
tioned above�:

f�r� =
1 − tanh�10��r*� − rcurv

* ��
2

, �C16�

where r*=r / ��2�� and rcurv
* =4. f�r� goes from 1, at distances

lower than rcurv
* , to zero in a continuous, although quite

rapid, way. Further, this function is truncated to exactly zero
for r*�5. This function acts on the shape function through

	shape�r� =
��

2
f�r� .

The truncation replaces values of 	shape as small as 6.7

10−4 its maximum value by zero. From the values of ��r�,
v�r� and ��r� at time t, n̂�r�, t̂�r�, m̂�r�, g�r� and c�r� can be
computed as explained above, and thus all the contributions
appearing in the elementary equations �C9�, �A4�, and �C13�
can be estimated to obtain the new values of ��r�, v�r� and
��r� at time t+dt, provided we have a prescription for the
differential operators.

c. Differential operators and boundary conditions

The precise prescription for the differential operators
strongly depends on the mesh geometry. Since the velocity
equation is simply solved in the Fourier space, it is interest-
ing to use a cubic �or square in 2D� lattice with PBC. We
have already discussed the particular case of the velocity
field, for which PBC are applied to the induced component
only �i.e., v−vapplied�. PBC apply quite naturally to the AF
��r� and ��r�, since these quantities vanish far away from
the interface, and are thus close to zero at the edge of the
resolution box. We have checked that for boxes as large as
ten times the diameter of the vesicle, PBS do not alter the
results in a significant way. Care must be taken for the dis-
crete formulation of the differential operators since isotropy
plays a key role here. We use in practice isotropic order h2

operators, where h is the grid spacing. If 	gy,z�g�x
+h ,y ,z�−g�x−h ,y ,z�, a partial derivative along the x axis is
computed as

�g

�x
=

1

12h
�2	gy,z + 	gy+h,z + 	gy−h,z + 	gy,z+h + 	gy,z−h� ,

where g is a generic function, This prescription ensures that
the computed gradient is not sensitive to the orientation of
the grid up to order h4 �h4 excluded�. the first corrective term
is of order h2 and is isotropic. The same care must be taken

FIG. 4. Schematic drawing of the normal vector field inside the
vesicle; the two points correspond to curvature centers and the line
between then is a line singularity.
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for second order derivatives, the isotropic Laplacian of order
h2 writes

� =
1

6h2 ��1 + 2�2 − 24g�x,y,z�� ,

where

�1 = � �g�x,y ± h,z ± h� + g�x ± h,y,z ± h�

+ g�x ± h,y ± h,z�� ,

�2 = � �g�x ± h,y,z� + g�x,y ± h,z� + g�x,y,z ± h�� .

d. Relevant and auxiliary parameters

The physical parameters are as follows.
� is the curvature modulus.
c0 is the spontaneous curvature.
T is the tension modulus of the membrane �which strictly

speaking should be infinite for a vesicle�.
�in ,�out are the two viscosities.
R is the vesicle size �radius of the sphere of equal volume

in 3D, area in 2D�.
� is the swelling ratio of the initial configuration.

 is the shear rate. 1 /
 is the time scale associated to the

external flow.
�v is indeed a technical parameter here, but it defines a

mass scale and therefore introduces some inertia in the prob-
lem.

These eight parameters can be combined to define the
three time, mass and length scales, and five dimensionless
control parameters.

To construct the dimensionless parameters, it is interest-
ing to consider the various time scales entering in the prob-
lem.

1/
 is the time scale forced by the imposed flow.
��=�outR

3 /� is the typical relaxation scale of the curva-
ture �26�.

�T=�outR /T is the typical relaxation time of the surface
�3D�/ perimeter �2D� to its steady value.

We will choose �� to define the unit time scale. This time
corresponds to the natural relaxation time of the vesicle ��T
should be ideally vanishingly small�. Two dimensionless
numbers can be constructed as

C� =
�out
R3

�
,

CT =
�out
R

T
.

These two parameters characterize the deformability of the
vesicle in the imposed flow. C� controls the deformation of
the global shape �competition between the curvature energy
and the flow� whereas CT controls the elongation of the
membrane surface �perimeter�. The larger these numbers, the
larger the associated deformation.

Other time scales can be defined, inertial or viscous time
scales, but we will introduce directly the dimensionless num-
bers associated with them.

Re=�v
R2 /�out is the Reynolds number, or more gener-
ally the Suratman number Su=Re/C�=�v� /�out

2 R which is
the Reynolds number based on �� rather than 1/
. It has the
advantage to be well defined even in the absence of external
flow.

�in /�out is the viscosity ratio which defines the competi-
tion between the internal and external relaxation of the fluid.

The last dimensionless parameter is the swelling ratio �,
and the length and mass scales will be defined by R and �v.

2. Summary

Time length and mass scales are defined by

�� =
�outR

3

�
= 1,

R = 1,

�v = 1.

The physical control parameters are

C� =
�out
R3

�
= 
��, typical value: 0.5,

CT =
�out
R

T
, typical value: 10−3,

weak extensibility of the membrane,

Su = Re/C =
�v�

�out
2 R

, typical value: 10−2, Stokes regime,

p = �in/�out, typically between 1 and 10,

�, the swelling ratio, between 0.7 and 1,

c0R, the spontaneous curvature �zero in the present study� .

We now discuss the technical parameters such as

�, the width of the interface � 0.035R ,

h, the grid spacing � 0.03R ,

dt, the time step � 10−3��,

�� � 1/��, �fast� relaxation time of the AF � 0.2��,

�� � TR2/��, slow diffusion introduced

for numerical stability purposes � 400��,

�n = 10−4/�2�2�� ,

rcurv = 4�2� .

We finally need to specify the initial conditions. An initial
guess for the velocity field v�r� �or equivalently u�r�, the
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flow induced by the vesicle�, the AF ��r� and the Lagrange’s
parameter field ��r� �tension field� have to be chosen. The
initial shape for the vesicle is chosen to be ellipsoidal since
the swelling ratio can be at least numerically easily deter-
mined. The initial AF is then generated as ��r�
=tanh�r /�2�� where r=0 corresponds to the ellipsoid, and r

is the coordinate in the direction of the outgoing normal
vector. With the prescription ��0 inside the vesicle and �
�0 outside, so that the gradient points outside the vesicle,
and the normal vector field defined by �C14� also. The ve-
locity field u�r� and the Lagrange’s parameter field ��r� are
initially set to zero.
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