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Tumor growth instability and the onset of invasion
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Motivated by experimental observations, we develop a mathematical model of chemotactically directed
tumor growth. We present an analytical study of the model as well as a numerical one. The mathematical
analysis shows that: (i) tumor cell proliferation by itself cannot generate the invasive branching behavior
observed experimentally, (ii) heterotype chemotaxis provides an instability mechanism that leads to the onset
of tumor invasion, and (iii) homotype chemotaxis does not provide such an instability mechanism but enhances
the mean speed of the tumor surface. The numerical results not only support the assumptions needed to
perform the mathematical analysis but they also provide evidence of (i), (i), and (iii). Finally, both the
analytical study and the numerical work agree with the experimental phenomena.
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I. INTRODUCTION

Experiments have shown that a variety of tumor cells pro-
duce both protein growth factors and their corresponding re-
ceptors, enabling a mechanism termed autocrine or para-
crine, if the stimulus not only affects the source but also its
bystander cells [1]. Such polypeptide growth factors can, for
example, stimulate tumor cell growth and invasion, such as
in the case of hepatocyte growth factors [2] and epidermal
growth factor [3], or induce tumor angiogenesis through se-
cretion of vascular endothelial growth factor [4] (VEGF).
The biological evidence supporting these paracrine/autocrine
loops suggests that such signaling factors have significance
for cell-cell interaction [5]. Depending on the cancer type, its
characteristic features include a combination of rapid volu-
metric growth and genetic/epigenetic heterogeneity, as well
as extensive tissue invasion with both local and distant dis-
semination. Such tumor cell motility has been intensely in-
vestigated and found to be guided by diffusive chemical gra-
dients, a process called chemotaxis, e.g., Ref. [6]. Since cell
signaling and information processing on the microscopic
scale should also determine the emergence of both multicel-
lular patterns and macroscopic disease dynamics, it is in-
triguing to characterize the relationship between environ-
mental stimuli and the cell-signaling code they trigger.

In a recent paper, Sander and Deisboeck [7] showed that a
combined heterotype and homotype diffusive chemical sig-
nal can yield invasive cell branching patterns seen in micro-
scopic brain tumor experiments [8] by means of a discrete
model, for some specific form of the interactions. There is a
long history on the study of this type of assay [4,9]. There
are also quite a few mathematical models that address the
issue of tumor growth and cell migration [10-19] as well as
two review papers [20,21] that focus on the state of the art of
macroscopic modeling of solid tumours and on multicellular
systems and the derivation of macroscopic equations from a
microscopic description, respectively. Reference [22] is a
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phenomenological approach to model prevascular tumor
growth. In Ref. [7] the authors carry out a linear stability
analysis from the steady state and show that both homotype
and heterotype chemotaxis are required for the development
of invasive branching behavior. Employing an improved ver-
sion of our previously developed reaction-diffusion model
[23], we now specifically investigate the relationship be-
tween an extrinsic nutrient signal, heterotype chemoattrac-
tant O, and the homotype soluble signal C, produced by the
tumor cells themselves. The underlying oncology concept is
that in the process of spatiotemporal tumor expansion, C
functions as a guiding cue for mobile cancer cells, directing
the trailing ones towards sites of higher O concentration and
thus avoiding tissue areas with low or decreasing density of
Q. In a sense, the dynamically changing C profile, secreted
by the tumor cells, encodes the underlying Q map, which in
itself represents a particular tissue environment. However,
this picture is difficult to quantitatively assess with conven-
tional experimental assays, and it has not yet been theoreti-
cally demonstrated in a clear-cut way.

In this paper, we are therefore particularly interested in
how these mechanisms, homotype and heterotype chemot-
axis, compete and/or cooperate in the formation of tumor
branching structures and how the mathematical reaction
terms must be chosen in order to reproduce, with some de-
gree of universality, the experimentally observed patterns.
Thus, we will study the impact of a fixed extrinsic nutrient
source, and how the interplay among nutritive, mechanical
and chemical properties support the principle of least resis-
tance, most attraction for spatio-temporal tumor cell expan-
sion [8]. The analytical and numerical results provide insight
as to the cells’ ability to readily modulate C, as well as, more
generally, to the importance of paracrine growth factors for
information transfer in multicellular biosystems. We have
kept the mathematical model as general as possible in order
to understand the essential features of the time evolution of
the system.
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The report of our results is organized as follows. We de-
scribe our reaction-diffusion mathematical model in Sec. II,
where a detailed discussion of each of the involved mecha-
nisms is given separately. Section III reports general analyti-
cal results for the model of Sec. II. We numerically check the
validity of our analytical results in Sec. IV. Finally, we con-
clude in Sec. V with a discussion of our results and provide
a picture of chemotactic cell invasion as triggered by tumor
growth instability.

II. MATHEMATICAL MODEL

Tumor expansion is a multistep process that involves, in a
nontrivial fashion, several mechanisms of progression. Here,
we concentrate on tumor cell proliferation and chemotacti-
cally guided invasion, induced by both a diffusive heterotype
and a homotype attractant (produced by the very tumor
cells).

A. Extracellular matrix gel (matrigel)

The experimental setting, which we have modeled here,
consisted of a multicellular tumor spheroid (MTS) embedded
in a tissue culture medium-enriched extracellular matrix
(ECM) gel, Matrigel [8]. We consider M=M(x,?), the aver-
age density field of the gel matrix as a function of space x
and time t. The role of M is twofold. From a nutrient per-
spective, the tumor cells [whose concentration will be de-
scribed by the density field U(x,t) hereafter] metabolize M
and, hence, they are able to proliferate. Besides, from a me-
chanical perspective, the solid gel matrix has an impact on
tumor cell mobility, i.e., it confines the tumor cells and so
they are guided by least or lesser resistance areas throughout
the ECM here in vitro, or, in vivo, by the distinct mechanical
properties of the surrounding tissue. Therefore, at a particular
site, more M can sustain a higher concentration of tumor
cells, which in turn will metabolize more of the nourishing
gel medium and thus, over time, will lead to an on-site re-
duction of the ECM matrix’ mechanical resistance, which
had initially hindered cell motility.

Mathematically, we assume that the consumption rate of
M by U, which we denote by R,,(M,U), grows monotoni-
cally with both variables, and is a non-negative function.
Later, we will make some assumptions regarding the me-
chanical impact of M on the diffusivity of tumor cells and of
both heterotype and homotype chemoattractants.

For the sake of generality, we assume that the matrigel
medium can diffuse, with constant diffusivity u,,. The order
of magnitude of u,, depends on the specific type of medium
under consideration (see Sec. III A for further discussion on
this issue). In summary, we can write the following equation
for the matrigel M

M =y V>M — Ny Ry, (M, U), (1)

where A, is the inverse of the characteristic time of the M
consumption process. Equation (1) reflects the fact that the
matrigel nutrient is metabolized by the tumor cells and not
replenished.
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B. Heterotype chemoattractant

Chemotaxis can be generally defined as motility induced
and guided by a concentration gradient. As in our previous
model [23], the heterotype chemoattractant represents nutri-
ents diffusing from a source, e.g., in vivo, a blood vessel, and
as such is what should guide both on-site cell proliferation
and the onset of invasion. Chemotaxis has been extensively
studied in the literature [24,25]. It is generically assumed that
the chemotactic flux takes the form

Jchem = XQ(Q7M)UV Q

Note that this flux is proportional to the tumor cell concen-
tration U. The function x,(Q,M) is usually called the
chemotactic sensitivity, and is a positive decreasing (or at
least constant) function of both arguments Q and M. The
explicit dependence of x, on M reflects the effect of the
mechanical pressure of the underlying medium, that con-
strains both tumor cell and heterotype chemoattractant move-
ment. Besides, tumor cells digest chemoattractant molecules,
so as the former move towards a positive gradient of Q, the
concentration of Q diminishes. This reduction is governed by
the reaction term Ry(Q, U).

Combining these ideas, we obtain the following equation
for the heterotype chemoattractant field density Q:

0= V[MQ(M) vVol]- aQRQ(Qv v), ()

where a is the inverse of the characteristic time of the Q
consumption process.

In the experimental in vitro setting modeled here, the het-
erotype chemoattractant was supplied externally. Acknowl-
edging that the original experimental setting [8] used a non-
replenished nutrient source, here, for simplicity, we model a
replenished source of Q and Eq. (2) thus has to be supple-
mented accordingly. This can be modeled by means of the
following boundary condition:

Q(x=L,1)=Qy, 3)

for one-dimensional systems, where L is the size of the sys-
tem, and

Q()C = Lx?yvt) = QO? (4)

for two-dimensional ones, where L, is the horizontal size of
the system and L, the vertical one.

C. Homotype chemoattractant

Tumor cells have been shown to produce protein growth
factors such as the transforming growth factor alpha (TGF-
«). These growth factors can affect the tumor producing cell
itself, hence, generate an “autocrine” feedback loop, as well
as bystander cells, an effect called “paracrine” [26]. In the
following, we refer to this soluble chemical effector, as ho-
motype chemoattractant and we denote by C its density field.

Since an ever growing population of tumor cells digests
more Q, the homotype chemoattractant C may take over at
some point as guidance cue in the regions with low Q con-
centration. First, we assume that the homotype chemoattrac-
tant is both released and internalized, or (for the purposes
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here), taken up or consumed by the tumor cells. The latter is
based on a ligand-receptor interaction and thus on internal-
ization of the class of protein growth factors, which C rep-
resents. Note, that if all cells produce C, a cell close to the
main tumor would be less inclined to move away from it,
since it is close to a large basin of C. One could tune the
production rate of C in such a way as to ensure that only the
density profile of C near the tumor surface has an impact on
the “decision” of a tumor cell to stay (proliferate) or to start
moving (invasion). This effect should have an impact on the
tumor cell density U.

The above discussion implies that C is also chemotactic
for U. The main difference with the heterotype chemoattrac-
tant Q is that the homotype chemoattractant C is produced
(and consumed) by the tumor cells. We denote by
R(g)(M ,U) and Rgl)(C ,U) the production and digestion rates
of C, respectively. Earlier studies have shown [27-29] that
eventually a central dead area develops due to the lack of
nutrients inside the tumor spheroid, which in turn leads to the
release of growth inhibitory factors from the dying cells [30].
A full consideration of the development of such a necrotic
core is out of the scope of this paper [31]. We consider the
existence of this “dead area” in the dependence of RY. on the
matrigel density M. This dependence means that the produc-
tion of C is enhanced where M is high (outside the main
tumor, as inside the tumor the matrigel has been degraded)
and therefore, the production of C is maximized for reactive
tumor cells, i.e., surface tumor cells outside the necrotic core
of the tumor [8]. We also assume that x,(Q,M) is typically
larger than the chemotactic sensitivity of C, x(C,M), for
the concentrations involved in the problem and that
Xc(C,M) depends both on C and M. The explicit depen-
dence of x. on M reflects the fact that the matrigel constrains
homotype chemoattractant movement as well. Finally, C also
diffuses with diffusion coefficient u-(M).

In summary, the homotype chemoattractant obeys the fol-
lowing equation:

0,C=V[ucM)V Cl+ acRP(M,U) - acRY(C,U), (5)

where ¢ and ac are the inverse of the characteristic time of
the C production and consumption process, respectively.

D. Tumor cells

The global nutrient density available to tumor cells is
proportional to the medium density M. We then assume that
tumor cells proliferate with a rate that is proportional to the
rate of consumption of M. Moreover, we consider that tumor
cells diffuse with a diffusion coefficient wy, and that wuy
depends on M to reflect the mechanical pressure of the matri-
gel M. As tumor cells are much larger than the chemoattrac-
tant molecules we have wy>uc>puy. As we discussed
above, tumor cells move towards positive gradients of both
hetero and homotype chemoattractants, so we can write

9,U=V[puy(M)V U]-V[Uxo(Q.M) V Q]
—V[UXC(C,M)VC]+)\U}€M(M,U), (6)

where A is the inverse of the characteristic time of tumor
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proliferation. Equations (1)—(6) constitute our reaction-
diffusion tumor growth mathematical model.

III. ANALYTICAL STUDY

As we have stated above, the precise relevance of each of
the factors summarized in Sec. II is not clearly understood.
Partly, this is due to the complex interaction amongst these
factors but, mainly, due to the lack of a systematic analytical
and numerical analysis of each individual mechanism oper-
ating in the full system.

In this section, we analyze in detail every mechanism in-
volved in tumor growth to determine which conditions trig-
ger the formation of invasive branches, and how the inter-
play among those mechanisms allows these branches to be
sustained in time.

A. Growth due to cell proliferation

Consider the subsystem of equations formed by Egs. (1)
and (6) with x,=xc=0, defined in a d-dimensional volume
V. The tumor and nutrient particles are confined into the
system and so the flux of material through the boundaries
vanishes. This physical constraint introduces a conservation
law in the problem, namely,

d
_f dX()\MU+ )\UM) =0, (7)
dtly

independently of the precise functional form of the reaction
term Ry, (M, U).

In the absence of diffusion (u,;=uy=0) this conservation
law provides the following closed relation

M=K-N\y/\yU, ®)

where K depends on the initial conditions of M and U. If the
diffusion coefficients do not vanish, we cannot obtain such
closed relation between U and M, except in some simpler
cases (related to the geometry of the volume and the initial
conditions). With no loss of generality, we restrict ourselves
to one and two-dimensional systems, V=L and V=L, XL,,
respectively, and initial conditions such that M(x,r=0)=0
where U(x,t=0)# 0 and U(x,1=0)=0 where M(x,1=0) #0.
Then, we can obtain a relation similar to Eq. (8). Physically,
this means that initially the nutrient surrounds the implanted
tumor. In this case, Eq. (8) is valid after a small transient
time (see Sec. IV), although the shape of the front (i.e., sur-
face of the tumor) changes slightly. However, as we are in-
terested in the case where tumor cells diffuse slowly, this
front will be assumed to be sharp, and hence its exact shape
is not relevant for our discussion below [13]. Thereby, we
simply get

AU =V (K = Ny/NyU) V UL+ ARy (K = Ny Ay U, U).
)

Tumor cells digest the matrigel nutrient when they are in
direct contact. Thus, the reaction term R,,(M, U) must vanish
when any of its arguments does. The simplest choice of such
a reaction term is R, (M,U)=MU. Although other choices
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are possible (leading qualitatively to the same results), we
consider this choice to illustrate the main properties of the
reduced system given by Eq. (9).

At this stage of the formal presentation, we need to con-
sider separately the cases <<y and uy, > uy. Note that
My is M dependent so these inequalities need to be under-
stood in an average sense.

1 py<py

We can define a small parameter s?= u,,/ 1. As the dif-
fusion coefficient of M is so small, the evolution of the den-
sity field M is slow in time, and therefore, random fluctua-
tions in its initial condition remain at late times. Hence, the
underlying medium is quenched from the perspective of the
tumor cells. Moreover, these fluctuations take place on fast
length scales, namely, we can write u,(M)= u,(x/&) [32].
There are many studies devoted to the propagation of fronts
in heterogeneous media (as is the case here for late times
from the point of view of the tumor cells) [33]. Thus, it can
be shown that, to leading order in &, Eq. (9) can be assumed
homogeneous. Namely, we can make the substitution

-1
ny(x/e) — _L> = uy=const+ O(g), (10)
My

where (...) denotes the average over a region of length [
much greater than the characteristic length scale of the
quenched fluctuations of M. This means that to lowest order
we can assume a constant diffusion coefficient for U and that
Eq. (9) becomes the well-known Fisher equation [34]. Fish-
er’s equation admits planar traveling front solutions, with
minimal wave speed v, given by [35]

vo=2(uyhyK)'">. (11)

Moreover, any deviation from the planar front (or circular for
two-dimensional tumors) damps out, so cell proliferation by
itself cannot generate the branches observed in our experi-
ments (see Fig. 1). Equation (11) provides the mean velocity
of the tumor whenever proliferation is the only mechanism
of tumor growth. However, chemotaxis drives tumor cells
faster than proliferation itself, so v, is a small quantity. Thus,
we can infer that cell proliferation is a long time process and
consequently \j,~0 and A;;=0. We, therefore, assume that
tumor cell proliferation is much slower than the chemotacti-
cally induced tumor cell growth (see Sec. III B).

Equation (10) is only valid to lowest order in &. Correc-
tions to the leading behaviour of w; provide also corrections
to the velocity v. It can be shown that [33]

Vo= 2(MU7\UK)1/2(1 +&7), (12)

where ¢ is obtained from the expansion of uy (M) to first
order in €, and can be understood as a quenched noise term,
i.e., a time independent random function [33]. Curvature cor-
rections to Eq. (12) give the so-called quenched Kardar-
Parisi-Zhang equation [36]. Thus, the heterogeneity of the
matrigel medium will produce rough tumor interfaces. As we
will see below, some tumor fluctuations (large length scales)
are amplified by chemotaxis, so they act as initial seeds for
invasive branches.
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FIG. 1. (Color online) Depicted is an overlaid image of human
U87 brain tumor cells which were stably transfected with a green
fluorescent protein (EGFP) Histone 2B marker for nuclei. The im-
age is taken from a central cross section of the MTS cultured in a
three-dimensional extracellular matrix (Matrigel, Becton Dickinson,
USA) environment in vitro. Note the chainlike invasive patterns.
The image was taken one day post transferring the MTS from liquid
medium to Matrigel (scale bar =100 wm).

2. py> py

Despite the fact that the branching morphology in Fig. 1
has been obtained in the case ), << uy, for completeness, we
include in this section the opposite limit as well.

In this limit the diffusion coefficient of M is so large that
any fluctuation of M is rapidly damped out. In this case, we
cannot clearly separate the regions where M takes its limiting
values (0 and M), as was possible to do in the limit wu,,
< uy (see Fig. 2). In this case we have to deal with the full
nonlinear equation that includes the dependence of wu;; on M.
Hence, the specific form of the diffusion coefficient (M)
is required in order to fully understand the evolution of the
system. Miiller and van Saarloos [37] have studied the spe-
cific case in which (in our notation) wy(K—N\y/\yU)~ U,
with £>0. In such case, the gradient of the tumor field den-
sity U at the boundary of the tumor is discontinuous. This
could be checked experimentally in order to determine the
qualitative form of the diffusion coefficient wy(M).

B. Growth due to heterotype chemoattraction

In this paper we are interested in the case where the nu-
trient medium M diffuses slowly, and so the homogenization

-

{ OUTSIDE
THE TUMOR

INSIDE
THE TUMOR

FIG. 2. M density field for the two limiting cases: up<uy
(dotted line) and wy,> py (dashed line). The solid line represents
the density field of tumor cells U.
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given by Eq. (10) can be assumed for all diffusion coeffi-
cients and chemotactic sensitivities. We, therefore, drop any
dependence of these quantities on M. In what follows we
restrict ourselves to a two-dimensional study, with no loss of
generality (the three-dimensional analysis can be carried out
as well).

As we have shown, cell proliferation cannot by itself pro-
vide invasive behavior. The next mechanism that we must
include in order to understand cell invasion is heterotype
chemoattraction, where the attractant molecules are provided
externally to the tumor. They diffuse rapidly until they reach
the tumor boundary and then two independent events take
place: the heterotype chemoattractant is degraded by the tu-
mor cells and the tumor cells are (chemotactically) drifted to
higher heterotype chemoattractant concentration gradients.

The consumption rate of the heterotype chemoattractant,
Ry(Q,U), cannot be arbitrarily large as it saturates for large
values of Q. This assumption is based on the concept that
each tumor cell carries a finite number of Q-uptaking cell
receptors, which in turn determine the cell’s maximum up-
take rate. Besides, it is also a growing function of the tumor
cell density, U. We do not need to specify the precise math-
ematical form of R, at this point, but taking into account the
above assumptions, we can write, without loss of generality,

Ry(Q.0) =Uf(Q), (13)

with y a positive constant.
In summary, the evolution equations in this case are

U= puyV*U-V[Uxe(Q) V 0], (14)

and

9,0 = npV?Q - apUf(Q), (15)

where we have assumed that tumor cell proliferation is neg-
ligible compared to chemotaxis, so we can set Ay =Ay=v
=0. In this limit the dynamics of M is uncoupled from that of
Q and U.

Despite the fact that Eqs. (14) and (15) are highly nonlin-
ear, due to the functions y,(Q) and f(Q), we can obtain
useful information by properly rescaling space, time and
both field densities Q and U. Thus, considering an initial
tumor concentration Uy located in a bounded region of the
system and a replenished source of heterotype chemoattrac-
tant modeled by Egs. (4), we define

X =x<a—Q)1/2, (16)
)

t' =tay, (17)

u=UlU,, (18)

q=0/Qy. (19)

Equations (14) and (15) can be written (we drop primes for
clarity) as follows

= pyl oVou— vy pe Vug(q) Vql,  (20)
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ag=V*q - uUf(Q0q)!Qy. (21)

where Y(g) is a dimensionless version of xo(Q) and v is
defined through the relation

_ XoQ) (22)
x(q)

Note that u is the fastest diffusivity in the problem, so we

can define an small parameter €=/ ugy. Moreover, we also

assume that the cross diffusion coefficient vQ, is smaller
than u,, [38]. With these considerations Eq. (20) becomes

du=eViu—peV [ux(q) V ql, (23)

14

with p=vQ,/ uy. Typically, the tumor field will be constant
almost everywhere except in a narrow region (boundary
layer [39]). This region defines an interface between the in-
side and the outside of the tumor.

In fact, if we take the limit e— 0 (the so-called outer limit
[39]) in Eq. (23), we have d,u=0, and

1 inside the tumor,
= . (24)
0 outside the tumor.

One can see that in the outer limit the mathematical analysis
of the problem is much simpler as Eq. (21) reduces to the
equations

{qu - UJf(Qoq)/Q, inside the tumor, 29)

4= Vg outside the tumor.

In the case €# 0 (the so-called inner limit [39]) we need
to proceed with care: in order to solve Eq. (20) for u and Egq.
(21) for g, we need the behavior of ¢ exactly at the tumor
boundary layer (interface). With this in mind, we define a
new local set of curvilinear coordinates: a coordinate n nor-
mal to the tumor interface and a coordinate s tangential to it.
Elementary computations (see Ref. [40]) give us the formu-
las for converting derivatives with respect to x to derivatives
with respect to the new coordinates (7,s):

V2=0,,+ ki, +A,, (26)

where K is the local dimensionless curvature of the tumor
interface and A, is the surface Laplacian [40]. Similarly, we
can write

0,=0,— 00, + 5,0y, (27)

where 0 is the normal (dimensionless) velocity of the inter-
face. We also need the following derivative:

Viux(q) V q]=d,[ux(q)d.q] + Klux(q)d,q] + V [ux(q)Vq].

(28)
Our aim now is to find solutions for g and u in the tumor
interface. We start by rescaling the normal coordinate n, in
terms of the fast variable n=n/e€, and time in terms of 7

=t/e. We denote by i and g the inner fields, and expand
them, Y(g) and o in a power series of € [41]:

i(m,s,t) =iy + €il; + ..., (29)

q(n,s,0)=qp+€q, + ..., (30)
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5(7],5,[)260"'61714'..., (31)

X(@) = x(qo) + X' (Go)€q, + ... (32)

where the prime in Eq. (32) denotes a derivative with respect
to g. Using Egs. (23) and (26)—(28), the original system of
equations can be written as

(97170 + 5(97.1/71 = 617119,71/70 + 1977,]170 + 5(97777171 - éstasﬁo + €E&nﬁo
- pd, Lo x(G0) 3, 0] — €pd, ity X(G0) 3]
— €pd, LitoX(q0) 9,11 — €pd [ itoX' (G0)G19,d0]

- epKityX(J0) 9,30 + O(€), (33)
€0, = 0o + €0, + €K, G0+ O(€0). (34)
1. Order €°

We start by solving Eqgs. (33) and (34) to order €. As we
stated above, tumor cell proliferation is negligible when
compared to chemotaxis, which means that 0,=0. Otherwise
we have to include the reaction term Rj, in the dynamical
equation for U and then, to order €’, Eq. (33) becomes

-l + €011y = Vg0, iy + €00ty + €0l + Jypily + €001,
— €s,0,llo + €KA,ity — pd, [ X (o) I, 0]
— €pd, it X(q0) 9,30) — €pd,LitoX(q0)3,41]
— €pd,[itoX'(G0)q19,0] — €pKitoX(G0) 9,0
AUK(I Ml

+ ez © u0>iio +0(&). (35)

Ay

Notice that in the absence of chemotaxis Eq. (35) becomes
Fisher’s equation in the set of coordinates (7,s) and with
time given by 7.

From Eq. (34) we find

Gyoflo =0 (36)

We know that g, must be bounded at 7=+, corresponding
to the inside and outside of the tumor in the scaled variable
7. This implies d,G,=0 and, therefore, gy=constant. Substi-
tuting this into Eq. (33), we obtain

&7170 = (97]”170, (37)

which states the fact that, to first order, the tumor cells sim-
ply diffuse. Note that to this order iz, does not depend on s,
so that d,i1,=0, due to the boundary conditions on u.

2. Order €'

To next order in € and from Eq. (34) we find,
91 =0 = 9,4, = const, (38)

due to the boundary conditions on g.
The next order equation for i, is given by
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ity = 010yflo + ity + K3l = p(3,i10) X(G0) 9,1 -
(39)

The Fredholm alternative (or solvability condition) for i,
provides [41]

51=—E+p38,ﬁ1, (40)
where
f dﬂ(f%ﬁ())z)?(qo)
B=""— . (41)
f dn(anﬁ())z

Matching the inner and outer expansions yields the normal
velocity of the tumor in the original dimensions [41]

v,=—uyk+vBV Q- -n, (42)

where « is the mean curvature of the level surfaces of con-
stant normal coordinate, v has been defined in Eq. (22) and n
is a unit vector normal to the tumor interface and directed
away from the tumor.

Chemotactically induced tumor growth requires VQ-n to
be a positive quantity, so that v, is positive. This can be
achieved whenever the heterotype chemoattractant concen-
tration grows as we move away from the tumor surface. Be-
fore performing the analysis of Egs. (25) and (42) to check
this requirement, we consider two interesting features related
to Eq. (42). First of all, in the absence of chemotaxis and
proliferation, for an initially circular tumor of radius R, Eq.
(42) reduces to

dR Mu

=—-—, 43
dt R (43)

where we have made use of the following facts: for circular
tumors the normal coordinate n is the radius R, so that v,
=dR/dt; the mean curvature of a surface of constant R is «
=1/R; and in the absence of chemotaxis ¥=0. Equation (43)
gives the diffusive behavior R()=\Ri—2u,t. This means
that the mean velocity of the tumor due to diffusion decays
as 2. At this stage, and for an initially circular tumor, one
could now perform the following analysis: (i) suppose the
tumor continues to grow as a two-dimensional disk and (ii)
perturb the boundary and study the development of instabili-
ties. This is out of the scope of this paper and will be ad-
dressed in future work. Second, for a general tumor front
geometry, Eq. (42) provides a critical curvature, (reminiscent
of the classical Greenspan model [13])

KC=EVQ~II, (44)
My

such that for k< k.. the tumor interface has locally a positive
velocity, for k> k. the tumor interface has locally a negative
velocity and for k= «, the tumor interface has locally vanish-
ing velocity. Note that this is precisely the reason of the
dynamical instability that guarantees the development of in-
vasive branches. Tumor invasion will take place on the tu-
mor surface wherever the local curvature is below the critical
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value k., given by Eq. (44). Our result agrees with the spe-
cific case considered in Ref. [17].

As a final remark concerning Eq. (42), note that it re-
sembles the equation for the velocity of a solidification front
[42,43]. In that case, the local normal velocity of the front
depends on the local curvature, « as above, but on the value
of the field (temperature) at the boundary, instead of the
value of the gradient, VQ, at the tumor interface. This is to
be expected as in the tumor picture it is the heterotype
chemoattractant that is driving the dynamics, and in the case
of a solidification front, the dynamics of the front is linked to
the temperature field [42,43]. The branching behavior of the
tumor also resembles the fingering instability of the Hele-
Shaw problem [44].

We now turn to the requirement on the value of VQ-n. In
order to check that, indeed, VQ-n (or equivalently Vg-n) is
a positive quantity at the tumor boundary, we need to solve
Eq. (25) supplemented by Eq. (42), with the initial condition

q(x7y7t=0) = 5(-x_Lx)’ (45)

and boundary conditions
q(x=0,y,1)=0, (46)
gx=L,y,1)=1. (47)

These equations cannot be solved in general without the pre-
cise form of the function f(Q). Nevertheless, we may assume
that, as tumor cells degrade the heterotype chemoattractant,
the concentration of ¢ inside the tumor is small enough, and
we can approximate f(Q) by a linear function f(Qyq)=&q.
We now proceed by solving Eq. (25) inside and outside the
tumor (we denote the solutions, respectively, by ¢~ and g*)
and matching both solutions at the boundary, for an initially
flat tumor, i.e., a tumor for which the radius of curvature is
much smaller than the system lateral size L, [45]. We first
notice that ¢* is invariant under the transformation group
(L,—x)— €e(L,~x),t— €t and g*— €°¢*. Similarly, e%q" is
invariant under the group, x— ex,f— €t and q— 6061_.
Thus, it can be straightforwardly seen that [46]

x/

Vr
q (x,y,1)=Ce™ J dg e, (48)

0

(L)1 5
g (xy,0)=1 —Af dg e, (49)

0

where A and C are positive constants that can be determined
by continuity of the solutions at the tumor boundary x
=xy(s,7). As we are interested in the gradient of the Q den-
sity field, we find

C
g (x,y,0) = T;e_éte—x2/4t’ (50)
v
A
aqt(x,y,1) = —Ge-(LX x4 51)
\!

Note that Eq. (51) states that the gradient of Q is a positive
function, and so the tumor velocity is increased by chemot-

PHYSICAL REVIEW E 72, 041907 (2005)

FIG. 3. Sketch of the heterotype chemoattractant effect on tumor
cell invasive drift. Dashed lines represent level sets of Q and arrows
represent the local normal velocity of the tumor cells due to chemo-
taxis (the length of the arrows is proportional to the normal
velocity).

axis as we had anticipated. Moreover, the larger the distance
from x to the tumor is, the larger the value of d.g* becomes
and the larger the value of the velocity front is (see Fig. 3).
This is indeed, the reason why small fluctuations on the tu-
mor surface become emerging invasive branches. We will
see in Sec. IV that this chemotactically enhanced velocity is
also obtained numerically.

C. Growth due to homotype chemoattraction

Finally, we consider the role of homotype chemoattracta-
nts. Representing protein growth factors, these chemoattrac-
tants are produced and internalized [47], or (for the purposes
here), consumed by the tumor cells that move towards their
positive gradients, in a similar fashion as in the heterotype
case. Yet, there is no wide time scale separation between
tumor and homotype chemoattractant dynamics. Thus, we
cannot, in general, neglect tumor cell proliferation when ana-
lyzing homotype chemoattractant dynamics. This means that
the equations in this case are Egs. (1), (5), and (6) with x,
=0. Performing a similar analysis to that of Sec. III B above
we find:

v, =2(ughyK)"? = uyk + v'B'V C - n. (52)

Despite the fact that Eq. (52) is equivalent to Eq. (42), the
main differences between the evolution of Q and C are due
to the behavior of both density fields away from the tumor
interface, namely, due to the production term R(g) (that is
absent in the dynamical equation for Q) and the different
boundary conditions (no external source for C).

Following the same steps as those carried out in Sec.
III B, we find that the outer limit yields the following equa-
tion:
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a) | b)

FIG. 4. (a) Qualitative behavior of the trajectory of the density
field C in the phase plane. The arrows indicate the direction of time
evolution. Curves N1-N3 are the three types of nullclines that can
be expected for our system. (b) Same trajectory of the density field
C with respect to the spatial coordinate x. Again, arrows indicate
time evolution.

Ve +rP(0,1) - ¥9(c,1) inside the tumor,
“©= Vic outside the tumor,
(53)

with 77 and 9 scaled (dimensionless) versions of R(g) and
R(Cd), respectively. Note that we have considered m=0 where
u=1. The conservation relation given by Eq. (8) still holds in
this case so, without loss of generality, we reduce the system
of Egs. (1), (5), and (6) to Egs. (5) and (6), with y,=0 and M
given by Eq. (8).

Just as we did in Sec. III B, we must now compute the
sign of VC-n in order to determine whether or not homotype
chemotaxis increases the velocity of the tumor boundary, and
if it can generate a dynamical instability leading to a tumor
branching morphology. We cannot in general find a transfor-
mation group under which Eq. (53) is invariant. This means
that we cannot study homotype chemotaxis with the tools of
the previous section. However, we can analyze homotype
chemoattraction by means of its homogeneous and steady
state solutions, based on generic assumptions regarding the
reaction terms R(C”)(M, U) and R(Cd)(C, V).

The homogeneous, steady state solutions (nullclines [48])
of Egs. (5) and (9) are given by the solutions of

Ry (K= \y,/\yU,U) =0, (54)

RP(K = \y/\yU,U) =RO(C,U). (55)

These nullclines yield the fixed points U;=0 and U,
=NyK/\y, and C; and C, given implicitly by Eq. (55). We
must distinguish between the inside and the outside of the
tumor when analyzing tumor growth due to homotype
chemotaxis. Outside the tumor U;=0 and there is no produc-
tion of C (as there are no tumor cells). This implies that the
corresponding fixed point value of C is then C;=0. On the
other hand, inside the tumor, Eq. (55) reflects the fact that
there is a balance between production and consumption of C.
This means that the value of the density field C reaches the
fixed point C,, which is a constant (equilibrium) value. This
simple picture holds even far enough from the tumor bound-
ary (diffusion tends to spread these uniform concentration
phases). Therefore, let us consider a point in the C—U plane
where U=Up and C=0 [point P in Fig. 4(a)], namely, a point
outside the tumor boundary, with U so small that there has
been no previous secretion of homotype chemoattractant C.
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The concentration C eventually grows (as U increases due to
proliferation wherever M # () because the slope given by

dC _ RP(K=\y/\yU.U) - RE(C.U)
du Ry (K = \yy/\yU,U)

; (56)

is positive [49]. Then, the slope decreases [50] until it
reaches the nullcline where the slope is 0 [point Q in Fig.
4(a)]. Finally, the curve approaches the stable point (U,,C5)
with infinite slope [point R in Fig. 4(a)]. Thus, C grows from
the outside of the tumor, reaches a maximum value and then
decreases to a constant value C, inside the tumor. This can
be schematically seen in Fig. 4(b). In other words, the den-
sity field C tends to grow as U decreases namely, as we
move outside of the tumor from inside. But, as we have
shown, outside the tumor and far enough from it C tends to
0. This means that C also tends to grow as we move inside of
the tumor from the outside. Consequently, C behaves as a
pulse from the constant value C, inside the tumor to C;=0
outside the tumor. This qualitative picture is sketched in Fig.
4, where we have shown that the nullcline given by Eq. (55)
can have three different qualitative behaviours N;,N, and
N3, that are plotted as well. This pulselike structure for the
density profile of C agrees well with the intuitive picture
provided in Sec. II C. It also explains why tumor cells are
chemotactically guided by the gradient of C. These facts will
be numerically confirmed in Sec. IV below. We conclude as
follows: the density profile of C grows at the tumor bound-
ary, which implies that the local normal velocity of the tumor
surface increases due to the presence of a positive homotype
chemoattractant gradient.

IV. NUMERICAL STUDY

In Sec. III we have presented a general analytical frame-
work to study tumor growth (proliferation and chemotactic
invasion). The previous analysis has been carried out by
means of several assumptions and limits (e.g., vQ,
<pg.\y=0,\y;=0) that have not been fully justified. In
this section we provide numerical simulations that check the
validity of those assumptions and limits. We, thus, numeri-
cally solve the main differential equations of Sec. II follow-
ing a similar organization to that of Sec. III. It is clear that in
order to carry out a numerical study we must specify the
detailed mathematical form of the reaction terms in our Eqs.
(1)—(6). These reaction terms are chosen following the spirit
of the oncology concept previously reported in Refs. [8,23].

There exists a vast literature on computational methods
applied to moving boundary problems for tumor growth, see
for example Ref. [51]. We have used a fourth order Runge-
Kutta method of integration. We have also made use of dif-
ferent time steps and the results do not change significantly
from the ones shown in the figures.

A. Growth due to cell proliferation

In this section, we check the validity of Eq. (8) as an
approximation to Eq. (7). Thus, we have integrated Egs. (1)
and (6) with ,=xc=0 and Ry(U,M)=MU and, indepen-
dently, Eq. (6) with M=K—N\,,/\,U.
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FIG. 5. One-dimensional tumor proliferation. Solid lines repre-
sent the U density field for the model given by Egs. (1) and (6).
Dashed lines represent U for the solution of Fisher’s equation, i.e.,
Eq. (6) with M=K—\y,/\yU.

1. One-dimensional results

Initially, we place a one-dimensional tumor such that
U(x,t=0)=1 for 0<x<L/2 and U(x,t=0)=0 elsewhere.
This implies that at the initial time M(x,r=0)=1-U(x,¢
=0). We have numerically solved Egs. (1) and (6) with x,
=Xc=0 and Ry, (U,M)=MU and, independently, Eq. (6) with
M=K—-N\y/\yU. The lattice separation has been taken dx
=0.5, the lattice size L,=128, the diffusion coefficients uy
=0.01 and u),=0.0, the reaction rates Ay;=A;=0.1, the time
step €=0.005, the initial time 7y=¢, and the final time #;
=50 000€,.

As can be seen in Fig. 5, after a small transient time, the
approximation is accurate enough. As we mentioned in Sec.
III, the shape of the tumor front changes slightly.

2. Two-dimensional results

We now consider tumor growth due to proliferation in a
two-dimensional setting with y,=x=0. Initially, the matri-
gel density M is a random distribution to reflect the fact that
it is an heterogeneous medium. As we are interested in a
slowly varying nutrient, we choose €= u,,/ y=0.01, where
My is the maximum attainable value of u,(M). We assume
that this value of wu; corresponds to the value M=0. The
confinement due to the matrigel is unlimited, namely, for
large concentrations of M, tumor cells can no longer diffuse.
Hence, we take the following diffusion coefficient :

7
MU(M) = 1 v

+ MIMy,

where My, is a reference threshold concentration.

We have solved Egs. (1) and (6) with the following initial
conditions: at time r=0 we place a circular tumor centered at
(L,/2,Ly/2) of radius L,/4 and surrounded by a heteroge-
neous nutrient substrate M. Thus, M(x,y,r=0)=0 inside the
initial circular tumor and M(x,y,r=0)=1+&(x,y) elsewhere,
with &(x,y) a random Gaussian distribution with zero mean
and variance 0.2, that encodes the initial heterogeneities of
the matrigel. The lattice separation has been taken dx=dy
=0.5, the lattice size L,=L,=128, the diffusion coefficients
Zy=0.01 and u,,=0.0, the reaction rates \,;=\y=1.5, the
time step €=0.005, the initial time 7,=¢;, the final time #;
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FIG. 6. (a) Numerical simulation of an initially circular tumor
embedded in a matrigel medium M with slow dynamics (uy,
<puy). Different curves represent different times with the
initial time f, corresponding to the inner perfect circle. (b) Time
evolution of the tumor spheroid average radius, Rpg, for uy
=0.01, up=10, t4;=0.000 01,X,=0.05,a(=0.75,b»=0.5 and x,
=0(squares) and x,=2 (solid circles).

=5000¢,, and the intermediate times (1000, 2000, 3000,
4000) e,

Figure 6(a) displays the time evolution of the tumor sur-
face. Notice how the tumor conserves during its evolution its
initial circular shape but develops a rough interface with the
matrigel. In Fig. 6(b) we show the time evolution of the
tumor spheroid average radius (defined accordingly to Ref.
[8]) when the heterotype chemoattractor (see next section) is
both absent and present. Note that chemotaxis is a crucial
ingredient in the fast invasion of tumor cells.

B. Growth due to heterotype chemoattraction

The experimental branches of Fig. 1 have two character-
istic lengths, namely, their width and their height with re-
spect to the main tumor substrate. Section III B was devoted
to determine the conditions that trigger the formation of the
invasive branches. We know that the height of the branches
depends in a crucial way on the mathematical form of the
reaction term Ry(Q,U) of Eq. (2), namely, the height de-
pends on the concentration thresholds associated with the
biochemical reaction of Q consumption by tumor cells [8].
Thus, we choose

Q
a R ,U =da U s
oRo(Q.U)=ay bo+ 0
where ag, is the inverse of the time scale of consumption and
by a characteristic heterotype chemoattractant concentration
(threshold value). Note that, in the notation of Eq. (15) we
have set y=1.

(58)

Two-dimensional results

We have integrated Eqgs. (1), (2), and (6) with R, given by
Eq. (58) and x=0. At the initial time we place a circular
tumor at (L,/2,L,/2) with radius L,/4+¢&, where & is a
Gaussian random number with zero mean and variance
L,/20. This initial condition mimics the effect of the slowly
varying underlying substrate (matrigel) as shown in the pre-
vious Sec. IV A. The lattice separation has been taken dx
=dy=0.5, the lattice size L,=L,=128, the diffusion coeffi-
cients py=0.001,1,=10.0 and u,=0.000 01, the reaction
rates )\M=)\U=0.0050aQ=0.75,bQ=0.5, the chemotactic sen-
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FIG. 7. (a) Numerical simulation of tumor branching induced by
a heterotype chemotactic source located at x=L,. The plot repre-
sents the tumor density field U(x,y,7=20 000¢,). (b) Cross section
of the tumor in panel (a) for different times between 2000€, and
20 000¢,.

sitivity x,=2.0, the time step €=0.005, the initial time £,
=€, and the final time 7,=20000¢;.

Figure 7(a) displays the numerically obtained tumor when
the replenished source of Q is placed at x=L, (i.e., the right
hand side of the lattice). Moreover, in Fig. 7(b) we show the
cross section of an invasive, chemotactically induced branch
obtained in the same simulation. Clearly, we can distinguish
between the main tumor spheroid and a given branch. Notice
the good agreement with the experimental results and with
the qualitative analysis provided in Sec. III.

C. Growth due to homotype chemoattraction

The segregation and eventual degradation of the homo-
type chemoattractant is limited, i.e., the rates associated with
both processes cannot be arbitrarily large. Thus, following
Ref. [23] we choose

acR(CIv))(U) =Qc 5 (59)

Bc+U

acRY(C,U) = acU (60)

be+C’
The constants a and a. are the inverse of the characteristic
time scales of production and degradation, respectively, and
Bc and b, are characteristic saturation concentrations (for
production and degradation, respectively). Note the Egs. (60)
and (58) have the same mathematical form.

Two-dimensional results

We have numerically integrated Egs. (1), (5), and (6) with
Xo=0, and R(Cp) and R(Cd) given by Egs. (59) and (60), respec-
tively. The initial conditions for U(x,y,7=0) are the same as
those chosen in the previous Sec. IV B. For the matrigel and
the homotype chemoattractant, we have chosen M(x,y,t
=0)=1-U(x,y,t=0) and C(x,y,r=0)=0, respectively. The
lattice separation has been taken dx=dy=0.5, the lattice size
L.=L,=128, the diffusion coefficients uy=0.01,u-=1.0,
and u,,=0.0, the reaction rates \y=Ny=0.1,a0=1.75,b¢
=0.1, ac=B=1.0, the chemotactic sensitivity x-=1.0, the
time step €=0.005, the initial time #y=¢,, and the final time
t,=50000¢,.

Figure 8 displays the time evolution of the tumor profile
in the x direction for times 10000¢,15 000,
20 000€;,25 000¢;, and 30 000€¢,. The dotted line in Fig. 8
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FIG. 8. Cross section of a tumor for the case of coupled dynam-
ics between matrigel M, tumor cells U and homotype chemoattrac-
tant C for different times between fy=¢, and 7,=30 000¢;,. Solid
lines: U subject to homotype chemotaxis; dashed lines: U subject to
no homotype chemotaxis. Dotted line: C (times a factor of four) for
t=10000¢;,.

displays the C profile at time r=10 000¢, magnified by a
factor of 4. In agreement with the analysis presented in Sec.
III C, the numerical results show that (i) there is no emer-
gence of chemotactically induced branches, as was the case
for the heterotype chemoattractant and (ii) the mean speed of
the tumor boundary increases due to C. That is, the tumor
profile follows qualitatively the behavior anticipated in Sec.
I C.

V. DISCUSSION AND CONCLUSIONS

In summary we conclude that:

(1) The matrigel M induces tumor cell proliferation. This
growth is an overall expansion of the initial tumor that fol-
lows the principle of least resistance [23]. Moreover, in the
case of interest here, that of a slowly diffusing matrigel, the
tumor boundary (or surface) becomes inhomogeneous due to
the random nature of the slowly varying nutrient M. It is
noteworthy that the roughness of the tumor surface depends
also on the proliferation rate of the cells.

(2) The homotype chemoattractant enhances the velocity
of the tumor cells due to the increase of C at the boundary of
the tumor. This effect combined with cell proliferation (due
to M) would induce the onset of invasion of tumor cells
towards regions of lower matrigel density. We have been
able to show that the secretion and subsequent diffusion of C
catalyzes the motion of the tumor cells.

(3) Finally, as the heterotype chemoattractant is intro-
duced into the system at a given distance from the tumor (in
our case at the boundary), and because it diffuses, an initially
circular tumor develops unstable invasive branches that
move towards the source of the heterotype chemoattractant.
These branches develop from initial seeds (i.e., fluctuations
on the tumor boundary), which are due to the mechanical
confinement from M, and the velocity enhancement due to C
and Q.

Our results are an improvement over Ref. [7,23]. We have
not limited ourselves to (i) performing a linear stability
analysis from the steady state solutions as was done in Ref.
[7] or to (ii) numerically solving a simplified version of the
reaction-diffusion equations as carried out in Ref. [23]. On
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the other hand, we have analytically and numerically studied
the full nonlinear problem. The simplicity of the model al-
lows the analytic treatment introduced in Sec. III; indeed,
this is a very useful result as it visualizes a variety of inter-
esting phenomena. Yet, the same analysis may not be applied
to a relatively more sophisticated model. The results of the
work presented here allow us to say that proliferation is a
requirement for invasion. In fact, there can be no (chemot-
actic) invasion without proliferation, as proliferation due to
M provides the initial seeds that trigger the onset of invasion.
That is, the slow diffusion of M is crucial to the development
of those initial seeds (rough tumor interface) that become
invasive branches due to heterotype chemotactically induced
instability.

Admittedly, our model still does have several shortcom-
ings as it inevitably has to simplify the complex biological
scenario considered here. For instance, tumor cell apoptosis
and thus, the development of a central necrotic core is cur-
rently not included [31]. Incorporating this characteristic tu-
mor feature would also have implications for the simulation
itself. Specifically, detrimental byproducts released from the
dying virtual cells would render this area “toxic,” resulting in
a central space within the growing tumor, which is not being
repopulated by the proliferative tumor surface. In future
work, this tumor characteristic can be implemented, e.g., by
some dynamic, internal boundary condition within the tumor.
We have not yet considered the finite receptor occupancy of
the tumor cell surface. This issue is important in order to find
biological support for implementing a maximum threshold of
(e.g., homotype) chemoattractant uptake rate (by each tumor
cell). On the other hand, the minimum threshold is given by
the maximum sensitivity of the cell surface-based receptor
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system. Nonetheless, even in its present form the model al-
ready proves very useful for interdisciplinary cancer research
as it provides the following, at least in part experimentally
testable hypotheses: (i) tumor cell proliferation by itself can-
not generate the invasive branching behavior observed ex-
perimentally, yet, proliferation is a requirement for invasion,
(ii) heterotype chemotaxis provides an instability mechanism
that leads to the onset of tumor cell invasion, and (iii) homo-
type chemotaxis does not provide such a mechanism but en-
hances the mean speed of the tumor surface.

Combined with more specific experimental data, both on
the molecular and on the microscopic scale, this ongoing
work may therefore reveal exciting insights into the role of
tumor cell signaling and its impact on the emergence of mul-
ticellular patterns.
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