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Apparent persistence length renormalization of bent DNA
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We derive the single molecule equation of state (force-extension relation) for DNA molecules bearing sliding
loops and deflection defects. Analytical results are obtained in the large force limit by employing an analogy
with instantons in quantum mechanical tunneling problems. The results reveal a remarkable feature of sliding
loops—an apparent strong reduction of the persistence length. We generalize these results to several other
experimentally interesting situations ranging from rigid DNA-protein loops to the problem of anchoring de-
flections in atomic force microscopy stretching of semiflexible polymers. Expressions relating the force-
extension measurements to the underlying loop or boundary deflection geometry are provided and applied to
the case of the gal repressor dimer protein. The theoretical predictions are complemented and quantitatively

confirmed by molecular dynamics simulations.
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In nature, DNA is rarely found in its straight “naked” state
as usually depicted in the introductory pages of elementary
textbooks. In most in vivo situations, an overwhelming frac-
tion of DNA is rather strongly configurationally constrained
by binding proteins causing loops, bends, and deflections.
The advent of single molecule stretching techniques [1] has
opened the possibility of measuring the “equation of state” of
single tethered DNA molecules in a variety of different con-
ditions [2]. While the statistical mechanics of unconstrained
DNA under tension is theoretically well understood in the
framework of the wormlike chain (WLC) model [3] the pres-
ence of topological constraints such as supercoiling [4,5] or
geometrical constraints such as protein-induced kinks and
bends [6-9] renders analytical results more difficult. In this
paper we expand the repertoire of analytically solvable equa-
tions of state by deriving the force-extension relation for a
DNA molecule featuring loops and large deflections in the
limit of strong stretching forces (for the small forces case see
[7]). The computation is performed by evaluating quadratic
fluctuations around the looped solution—a nonconstant
saddle point of the DNA elastic energy. The method is essen-
tially analogous to the semiclassical treatment of tunneling
amplitudes in quantum mechanics and instantons in quantum
field theory [10]. After deriving the general result [that we
accompany with molecular dynamics (MD) simulations] we
focus on two interesting experimental applications: the
stretching of the gal repressor (GalR) loop complex [11], and
of tangentially anchored semiflexible polymers from a sur-
face in atomic force microscopy (AFM) experiments.

Stretching a sliding loop. In the following we neglect the
DNA twist degree of freedom for it is not constrained from
outside and no external torsional torques are acting on it. In
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this case, DNA of length L is described in the continuum
limit by specifying only the unit vector tangent t(s) to the
chain. Here s is the contour length along the DNA with
—L/2<s<<L/2. The chain is submitted to an external con-
stant force so that the kinetic plus potential energy of such a

chain reads
L2 [ 4 dt 2
Ey= —|\— | -F-tl|ds
L 2\ds

with the bending stiffness A=1IpkzT where [p is the orienta-
tional persistence length and kT the thermal energy; for
DNA at room temperature /=50 nm [12].

In the following we parametrize the tangent as t
=(cos ¢ cos U,sin ¢ cos U,sin 9) and put the force along the
x axis so that the potential energy part writes —F cos ¢ cos U.
Note that the angle ¥ is measured with respect to the equa-
torial plane (as on a globe). This parametrization is necessary
to take properly into account the inextensibility of the chain
imposed by the condition t>=1. In the following it is conve-
nient to introduce the dimensionless contour length t=s/\
with the deflection length \=\A/F [6,13]. The latter be-
comes the relevant length scale characterizing the loss of
orientational correlation in the case of DNA under large ten-
sion (replacing the usual tension-free persistence length [p
=A/kgT). In these coordinates the chain energy writes

LI2X
— 1 . )
Ey= \’AFJ {E(QSZ cos® 9+ 9%) — cos ¢ cos O |dt.

L2\
(1)

The relevant saddle point—the loop in the x-y plane
shown in Fig. 1(a)—satisfies SE,=0 with the boundary con-
ditions ,,,(£L/2N)=0, ¢,,,(xL/2N\)=0, and 2. In the
limit of large lengths L/\ — < the loop solution is the well-
known “kink” solution from theory of quantum tunneling
[10] cos ¢,y,=1-2 cosh™ 2(t) and ,,,=0 with the loop en-
ergy given by E,w,p—S\FA —LF. For large values of VAF we
can expand E; in terms of quadratic fluctuations (89, 5¢)
around the looped saddle point (9, $i00p)
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FIG. 1. (Color online) Examples for large deflections in a
stretched DNA molecules. (a) A freely sliding linker protein stabi-
lizes a DNA loop. (b) A rigid ligand with opening angle « causes a
kink in the DNA. (c) Tangentially anchored DNA stretched from a
surface by an AFM tip. The tilting angle 7 as well as anchoring
angles « and o can strongly affect the elastic response.

—

/

VAF A \r’ﬁ A
EO = E[(l()p + T (5¢TH5¢dt + T 5’(’}Tl 519dt,

)

with the in- and out-of-plane fluctuation operators

T ==*/3+(1-2 cosh™2 1) and T, =—d/a2+(1
-6 cosh™ 1), respectively. A closer inspection of the discrete

spectrum of the two operators reveals the physics behind. ’i‘H
has a zero eigenvalue resulting from the translational shift
invariance of the loop along the chain that costs no energy
for L/N—. The absence of negative eigenvalues is in
agreement with intuition, as in two dimensions, the loop is a
(topologically) stable saddle point. The out-of-plane fluctua-

tion operator T | shows a richer behavior. Again it possesses
a zero mode, this time resulting from rotational invariance of

the problem. More remarkably, in contrast to ’i‘H the out-of-

plane fluctuation operator T | has a negative eigenvalue —3.
The latter underlines the intrinsic instability of the loop in
three dimensions as described by the elastic energy expres-
sions (1) and (2). This brings us to the question how to
describe the obviously stable physical situation shown in Fig.
1(a). In order to model the action of a sliding linker [7] we
introduce a term accounting for the DNA self-interaction. In
lowest order it can be written as a function of the perpen-
dicular distance Az.=\[", sin §9(r)dr= N[, §9(t)dt of the
two overcrossing DNA arms at the contact iaoint t,~1915
(resulting from the crossing condition 7,=2 tanh ¢,). The total
energy of the chain can now be written as

E, =Ey+ V(x f ‘ 519(;)01;) , 3)

Ie

with a short-ranged, but otherwise arbitrary, attractive inter-
action potential V acting at the crossing point. Note that if
V(Az,) has a minimum at Az,=0 the loop saddle point stays
unaffected by the self-interaction. DNA is known to effec-
tively attract itself in many solvents despite its strong nega-
tive bare charge. Typical situations inducing DNA self-
attraction are poor solvents (such as alcohol, and small
neutral polymers such as polyethylene glycol) [14], the pres-
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ence of multivalent counterions (like hexaammine cobalt
(111) and Spermidine) or small cationic proteins acting as
linkers between two DNA surfaces. Single molecule stretch-
ing experiments on DNA condensed with multivalent coun-
terions performed by several groups [15] might bear loops or
related structures such as DNA toroids [16].

The partition function of the system in Fig. 1(a) can gen-
erally be written as Q0= /10,0t 1) D[ t]le PEwlt] where
J100p Tepresents the path integral over the functional neigh-
borhood of the loop solution and the 6 function enforces the
chain inextensibility. This partition function is nothing but
the Euclidean path integral of a quantum particle moving on
an unit sphere under the influence of an external constant
force. Using the ¢, parametrization, the partition function
can be rewritten as Qy,,,= [ D[ $D[ ¥]e PLl #4170 Cu with a
metric term C,,=exp{J/ &0)ds In[cos(3)]} resulting from the
inextensibility constraint. It can be shown that this term does
not contribute at the quadratic level of the approximation
because we expand around 9,,,,=0. By virtue of the decom-
position of the in- and out-of-plane fluctuations at the qua-
dratic level [Egs. (2) and (3)] the partition function can be
conveniently factorized,

Qloop = e_BElaanHQ‘i > (4)

with

oY= f @e‘ﬁ“%)glmzc), (5)

and with the in- and out-of-plane plane partition functions

0= f D[ 5¢]e—(ﬁ€ﬁ/2)f5¢’i‘”5¢dt’ (6)

t. . R
Az, f S 1_‘}dt> o~ BVAFI2[ 89T | 80dr_

QEJ*D[&&](S( N )

()

The notation [~ reminds us that the (translational and rota-

tional) zero modes of 'i‘” and T |, respectively, have to be
handled with care. A naive Gaussian integration would lead
to a formal divergence in both cases. After dealing with this
problem by introducing collective coordinates, a method
well known from tunneling theory [10], and applying the
Gelfand-Yaglom method for the computation of the fluctua-
tion determinant we obtain the in-plane partition function
Q,=(4/ 1) BLFeL2NFA,

The computation of O, which follows similar lines of
reasoning, requires rewriting the & function in Eq. (7) in its
Fourier representation. After introducing I, the characteris-
tic function of the interval [-7.,r.] (e, Il.(r)=1 for
te[-t.,t] and =0 otherwise), we rewrite [ 59dt
=J7 I1.(t)59(¢)dt as a scalar product. The path integ}al in
Eq. (7) becomes a Gaussian with a source term ikII, and can

be solved by constructing the Green’s function for T 1. This
leads to the result
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with ['=2/(97~30¢,) = 0.35 a numeric constant. Combining
those results we obtain

v 8 [T'[lp 302 LUA3)2
QJ_ — X ; X e—L/Z)\ e (Ip/IN7)z _BV(Z)dZ. (8)

The resulting force extension relation (Ax)
=kgT(d/ IF)In Q,,,, writes in leading order
A 1 Ip\ 1 9
Lo (1+8—P>—r+—
L 278l L/\F 4BLF
r f ZZeﬁFA_l/2F3/222—ﬁV(Z)dZ
ar1 Jw
)

+— s .
2 L\ j eﬁFA_1/2F3/2Z2_ﬂV(Z)dZ

In the limiting case of a very deep potential V(z) strongly
localized around z=0, the last term is negligible and the
force-extension relation becomes independent of the detailed
nature of the contact interaction. If we in addition consider
large forces, the O(1/BLF) term can be neglected and the
relation (9) can be cast in a more illuminating form

@y _, 1

- (10)
L 2\ BIP\F

that resembles the Lvell-known loop-free WLC response
(Ax)/L=1-(2\BIp\VF)~' [3], but with a strongly renormal-
ized apparent persistence length 1%,

1 \2
I;PP=IP<1+8-LE> ) (11)

Equations (10) and (11) show that one has to be very cau-
tious when interpreting experimental stretching data in terms
of persistence length and stiffness. The presence of a loop
modifies the elastic response of the chain in such a manner
that the persistence length can appear effectively reduced as
stated in Eq. (11). For a single loop this is obviously a finite-
size effect involving the scaled total length L/[,. But the
effect remains significant over a large range of parameters:
for Ip/L=0.1 one finds /¥’ =0.311p whereas for {p/L=0.02
there is still a remarkable effect, namely /}/7~0.741p. We
mention that an apparent reduction of stiffness has also been
found in Ref. [17] for a WLC with folding elements but there
only in the low force regime.

To check the prediction of Egs. (10) and (11) we per-
formed MD simulations [18]. As seen from Fig. 2(a) the
theoretical predictions quantitatively agree with the simula-
tion results.

Stretching kinked DNA. The same approach can be used to
calculate the elastic response of DNA with deflections as
depicted in Figs. 1(b) and 1(c) [19]. However, having solved
the sliding loop problem we can obtain the results much
more directly. To see this we rewrite Eq. (10) in terms of the
three relevant lengths L, [p, and A,

0.25 N

1 l L ] L
%.8 0.85 0.9 0.95 1

0.04

Ax/L

FIG. 2. (Color online) (a) Stretching DNA looped with a sliding
linker: Comparison of MD simulation results (data points) with the-
oretical prediction (solid lines) for the force-extension relation as
given by Eq. (10). The force is measured in units of Fp=kgT/Ip.
The different slopes correspond to different values of /p/L. The
dashed line shows free chain (no loop) behavior. (b) The stretching
of a GalR loop complex: MD simulation (dots) vs theory, Eq. (13)
(solid lines) for various values of Ip/L.

N 4N
1—(2—lp+f). (12)

(a0 _
L

The first term in the brackets is the length loss by thermal
fluctuations of a straight DNA chain-with the fluctuation
contribution of the loop being negligible in the large F limit
(N<<L). The second term in the bracket, 4\/L, describes the
loss of length due to the (loop-induced) elastic deflection.
This asymptotic decomposition of the two contributions in
12 leads to immediate generalizations. After short inspection
it is easy to see that any strongly localized [20] DNA deflec-
tion [as in Figs. 1(b) and 1(c)] can be appropriately contin-
ued and mapped piecewise onto fractions of the full loop
solution [Fig. 1(a)]. By this reasoning, any length loss in-
duced by a given deflection angle « (between 0 and 27) is
given by f:)(a)[l —COS Py,p(5)]ds.

As a first example consider the stretching of rigid DNA-
protein complexes that come as large kinks or fixed angle
loops [cf. Fig. 1(b)]. A prominent example is the GalR re-
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pressor complex that was studied in single molecule experi-
ments [11]. Following the upper reasoning one obtains the
same force-extension relation as in Eq. (10) but with an ap-
parent persistence length given as a function of the opening
angle « of the complex,

Ly
IPr = (13)
lp T—a
1+8—] 1—-cos
L 4

We note that a previous numerical study of a discretised
version of the WLC with local kinks showed a rescaling of
the force-extension curve that can be described by our for-
mula (cf. Fig. 5 in Ref. [8] for a=90°). For the GalR com-
plex the opening angle is not known but there are some
indications for the antiparallel configuration, i.e., a=0
[11,21]. With Egs. (10) and (13) at hand, one can predict the
loss of length due to the presence of a GalR complex with
the conjectured angle @=0. For the force F'=0.88 pN applied
in the experiment [11] with a loop size of 38 nm [11], Egs.
(10) and (13) predict a loss of length of 56 nm (with the
DNA hidden inside the loop included). Remarkably, the ex-
perimental Lia e al. [11] is 55 nm=5 nm. The latter result
together with (10) and (13) gives convincing evidence for the
antiparallel loop model. An independent check of (10) and
(13) is provided by MD simulations [shown in Fig. 2(b)],
which were performed for various ratios of /,/L. In conclu-
sion, Eq. (10) enables one to directly measure the angle
a—an important feature of the DNA-protein complex geom-
etry.

A second application concerns AFM stretching experi-
ments of semiflexible polymers [22]. A stable anchoring can
be achieved when the polymer is tangentially attached at its
two ends as in Fig. 1(c). Force extension data in such a setup
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have to be interpreted with care. The boundary anchoring
angles at the AFM tip as well as at the surface—a and o,
respectively—can significantly alter the measured apparent
persistence length, a fact that has been overlooked before. A
more trivial effect of a tilting angle 7 in Fig. 1(c) (between
the line of contact points and the force direction) can alter
the result in addition [23]. A simple calculation for large
forces F again gives the same functional relation as in (10)
with an “apparent persistence length” given by

1, cos(7)
I#P = . (14)
lp 1 a o 2
1+8—] 1—-—| cos —+cos —
L 2 2 2

While the angle 7 can be completely canceled by shifting the
tip in the lateral direction, the influence of « and o cannot be
fully eliminated by this procedure. This means that for short-
to intermediate-sized semiflexible polymers (/p/L~1
—1/30) the influence of boundary conditions has to be taken
into account through Eq. (14).

In conclusion, the force-extension relation of looped DNA
that we derived in the limit of a strong stretching force can
be generalized to DNA featuring large deflections. In particu-
lar our approach provides an analytical expression for the
force-extension response of DNA-bending proteins that can
give important information with regard to the DNA-protein
complex geometry. Large deflections due to the anchoring at
the AFM tip and at the substrate also affect the measured
persistence length for not too long molecules. Finally these
effects might be related to the strong reduction of the persis-
tence length found in condensed DNA stretching experi-
ments by Baumann et al. [15].

The authors thank Nikhil Gunari, Andreas Janshoff and
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