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Dynamic self-consistent field theory for unentangled homopolymer fluids
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We present a lattice formulation of a dynamic self-consistent field (DSCF) theory that is capable of resolving
interfacial structure, dynamics, and rheology in inhomogeneous, compressible melts and blends of unentangled
homopolymer chains. The joint probability distribution of all the Kuhn segments in the fluid, interacting with
adjacent segments and walls, is approximated by a product of one-body probabilities for free segments inter-
acting solely with an external potential field that is determined self-consistently. The effect of flow on ideal
chain conformations is modeled with finitely extensible, nonlinearly elastic dumbbells in the Peterlin approxi-
mation, and related to stepping probabilities in a random walk. Free segment and stepping probabilities
generate statistical weights for chain conformations in a self-consistent field, and determine local volume
fractions of chain segments. Flux balance across unit lattice cells yields mean field transport equations for the
evolution of free segment probabilities and of momentum densities on the Kuhn length scale. Diffusive and
viscous contributions to the fluxes arise from segmental hops modeled as a Markov process, with transition
rates reflecting changes in segmental interaction, kinetic energy, and entropic contributions to the free energy
under flow. We apply the DSCF equations to study both transient and steady-state interfacial structure, flow,
and rheology in a sheared planar channel containing either a one-component melt or a phase-separated,

two-component blend.
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I. INTRODUCTION

In contrast to equilibrium theories, nonequilibrium, dy-
namic modeling of inhomogeneous polymer fluids is still in
its infancy. In such systems, the time evolution of interfacial
structure, flow, and rheology is coupled to chain stretching
and orientation caused by deformation under flow that is
balanced by entropic restoring forces, as well as by segmen-
tal interactions. Understanding and predicting the interplay
between these processes, and their dependence on composi-
tion, and on chain conformation statistics under nonuniform
flow, is a challenging fundamental problem. Development of
efficient computational models addressing this problem is
needed for understanding and design of polymer processing,
and for many other industrial and biological applications. We
present here a dynamic self-consistent field (DSCF) theory
that constitutes such a model, and apply it for modeling both
transient and steady-state behavior of inhomogeneous fluids
composed of unentangled homopolymers between sheared
walls.

Our DSCF theory assumes that, on short time and length
scales, liquids can be approximated by closely packed ar-
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rangements of microscopic constituents with a fluctuating
distribution of free volume. In simple liquids, the micro-
scopic constituents are atoms or compact molecules [1-4].
Similarly, unentangled polymer liquids can be viewed as
freely jointed chains of Kuhn segments [5-9] that are packed
into closely packed arrangements with a fluctuating distribu-
tion of free volume. We assume that at any given time, each
Kuhn segment is within a cage consisting of closely packed
adjacent segments, and the free volume is distributed as va-
cancy defects in the close-packed structure. On short time
and length scales, we model such cages as Wigner-Seitz unit
cells on a close-packed face-centered cubic (fcc) lattice,
which are either occupied by a Kuhn segment, or are vacant.
The DSCF theory attributes diffusive and viscous fluxes to
segmental hops from occupied cages to adjacent vacant
cages, and convective fluxes account for cage advection by
the mass-averaged flow velocity. Since it is a formidable task
to formulate a continuous model of such hopping events be-
tween discrete cages, we chose to use an approximate lattice
description. Segmental hopping between adjacent unit cells
on a lattice is modeled in our DSCF theory as a Markov
process in time, with thermally activated transition rates
[1-4] reflecting the changes in segmental interaction, Kinetic
energy, and entropic chain deformation [6,10] contributions
to the self-consistent potential under flow, resulting from a
single hop. By combining a kinetic mean field [11] descrip-
tion of the diffusive and viscous contributions to species and
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momentum fluxes [3,4] with convective and elastic contribu-
tions, we obtain microscopic mean field transport equations
for the time evolution of free segment probabilities and mo-
mentum densities.

A different Markov process, not to be confused with the
one just mentioned above, is used as a tool for characterizing
the statistics of chain conformations of jointed chains of
Kuhn segments on a lattice, at any fixed moment in time
[12]. In this second Markov process, all possible chain con-
formations are generated by a random walker stepping be-
tween adjacent lattice sites, where the steps are labeled not
by time, but rather by segmental order along the generated
chain (the so-called contour length variable). We reserve the
term “hopping” to describe real movement of segments from
one cage to another between successive moments in time, as
described by the first Markov process. We use the term “step-
ping” to describe the placement of the next segment at an
adjacent lattice site by the fictitious random walker defining
the second Markov process.

Consider first a random walker that (a) has no memory of
previously visited sites, (b) is isolated from any other ran-
dom walkers, walls, and external potentials, and (c) does not
feel any stretching or orientation constraints imposed by
flow. Such a random walker has an isotropic (conditional)
stepping probability to step from a site to any adjacent site
on the lattice, and generates a distribution of random walks
reflecting the statistics of ideal (noninteracting) jointed
chains of Kuhn segments in equilibrated polymer melts [5,7].
In the equilibrium SCF lattice theory formulated by
Scheutjens and Fleer [12], the interactions between the ran-
dom walker at a given site, and segments and walls occupy-
ing the adjacent sites, are modeled by an effective external
potential at the site occupied by the walker. In the presence
of this external potential field, which is determined self-
consistently, the transition rate to make the step toward an
adjacent site is modified and becomes the product of the
isotropic stepping probability in the absence of a potential
field, and of the one-body mean field probability to find a
free segment (monomer) at the adjacent site, interacting with
the self-consistent potential field at that site.

The mean field approximation factorizes the joint prob-
ability for a distribution of all the Kuhn segments on the
entire lattice into a product of one-body site probabilities
interacting with a self-consistent potential field. It neglects
pair correlations between any two segments, including the
intrachain correlations between segments jointed into chains
which are known to play an important role in polymer fluids.
To account for intrachain correlations, the external potential
field is calculated self-consistently by averaging over the in-
teractions with walls and with other segments at neighboring
sites, using not the one-body free segment probabilities at
those sites, but rather the local segmental volume fractions of
connected segments. The latter are calculated using the mas-
ter equation governing the random walk in a self-consistent
field. Near walls, and in interfacial regions between phase-
separated domains of immiscible polymer blends, the seg-
mental volume fractions of connected segments differ sig-
nificantly from the one-body free segment probabilities.

If a polymer melt or blend is equilibrated in a channel
between two planar walls, which are then subjected to a
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steady shear, momentum is transferred between the moving
walls and the polymer liquid, establishing a nonuniform ve-
locity distribution across the channel which may vary in
time. Shear flow stretches and orients the chains along pre-
ferred directions, and thus modifies the statistical distribution
of their end-to-end distance at any fixed moment in time.
This imposes a constraint on the distribution of chain con-
formations generated by the random walker. The second mo-
ment of the end-to-end distance of a chain of freely jointed
Kuhn segments is a symmetric second-rank tensor called the
chain conformation tensor [6,8,9]. In bulk rheology of unen-
tangled polymer melts, the simplest models for the time evo-
lution of the chain conformation tensor in a nonuniform flow
relate it to the time evolution of the second moment of the
end-to-end distance of a fictitious dumbbell consisting of just
two beads in a nonuniform flow, that are connected by either
a harmonic, or a finitely extensible, nonlinearly elastic
(FENE) spring [6,8,9], with an entropic (temperature-
dependent) spring constant. The latter is tuned to reproduce
the equilibrium components of the conformation tensor for
ideal chains. By matching the components of the chain con-
formation tensor that is generated by the lattice random walk
for ideal (noninteracting) test chains under flow, with the
components of the chain conformation tensor obtained from
the Peterlin approximation [13-18] to the FENE model (also
called the FENE-P model), we are able to determine the val-
ues of the anisotropic stepping probabilities that are consis-
tent with the stretching and orientation constraints imposed
by the flow. The products of the stepping probability from
the site of origin with the one-body free segment probabili-
ties at the destination site are used as the transition rates for
the Markov process generating the conformations of interact-
ing chains as random walks in a self-consistent potential field
accounting for segmental interactions.

In continuous versions of equilibrium polymer SCF
theory [19-22], the Chapman-Kolmogorov integro-
differential equation, rather than the discrete master equa-
tion, is the equation governing the random walk Markov pro-
cess, and chain conformations are generated as continuous
trajectories, rather than a sequence of discrete lattice steps.
This leads to a diffusion equation for the propagation of the
random walker in a self-consistent field, where the contour
length variable plays the role of time. We chose to use a
lattice (rather than continuum) formulation for our polymer
DSCEF theory because of the inherently discrete nature of the
hopping dynamics between close-packed cages with fluctu-
ating free volume, which is difficult to implement in a con-
tinuous model. Since a lattice formulation avoids functional
differentiations and integrations necessary in a field-
theoretical continuous formulation, it is also easier to grasp
and to simulate.

The evolution equations of our DSCF lattice theory as-
sume the form of a coupled system of nonlinear ordinary
differential equations (ODEs), rather than a coupled system
of nonlinear partial differential equations (PDEs), which
would be the outcome of a continuous theory. This simplifies
considerably the analysis, programming, and computational
costs involved in numerical solutions of DSCF equations. It
also facilitates comparison with molecular dynamics (MD)
simulations, which are typically analyzed using averages of
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densities and fluxes within discrete space-time bins. A con-
tinuous, field-theoretical formulation of our DSCF approach
is conceivable, but is left for future work.

We conclude this section with an outline for the remainder
of the paper. In Sec. II we briefly discuss alternate ap-
proaches for modeling the dynamics of inhomogeneous poly-
mer fluids and their limitations. In Sec. III we present a gen-
eral formulation of our DSCF theory for unentangled
homopolymer fluids, resulting in a closed system of coupled
time evolution equations for a set of variables defined at
lattice sites. In Sec. IV we use numerical solutions of the
DSCEF evolution equations to study a one-component melt of
unentangled homopolymer chains in a channel between two
sheared planar walls. In Sec. V we use the DSCF evolution
equations to study a phase-separated, two-component blend
of unentangled homopolymer chains in a sheared planar
channel. Section VI discusses the limitations of the current
version of our DSCF approach and possible ways for gener-
alizing and improving it.

II. ALTERNATE APPROACHES

To put our DSCF model in perspective, we discuss in this
section a number of alternate approaches for modeling the
dynamics of inhomogeneous polymer fluids. A weak form of
dynamic SCF theories for polymer fluids was obtained by
assuming that the ideal chain conformation tensor is not sig-
nificantly perturbed from its equilibrium value. This neglects
chain stretching and orientation by nonuniform flows and
limits these methods to modeling dynamics under small per-
turbations from equilibrium. A local equilibrium approxima-
tion of this sort was proposed by Kawasaki and Sekimoto
[23]. Fraaije [24] developed a dynamic mean field density
functional method, coupled to a noisy time-dependent
Landau-Ginzburg model for diffusive transport. This model
was used to study microphase separation kinetics in incom-
pressible block copolymer melts in two [24] and three [25]
dimensions. Subsequent work included extension of this ap-
proach to compressible systems [26], inclusion of nonlocal
kinetic coefficients [27], and addition of convective transport
to the dynamics [28]. Hasegawa and Doi used a similar
model to study adsorption dynamics in a polymer solution at
interfaces [29] and the kinetics of a grafting reaction of end-
functionalized polymers onto a solid surface [30]. Furuichi er
al. [31] studied the conformational relaxation of a single
tethered polymer chain using the dynamic mean field ap-
proach proposed by Fraaije [24], where the chemical poten-
tial is obtained using a path integral method [5]. Kawakatsu
[32] derived a simplified equation of motion for the order
parameter by a perturbation expansion of the distribution of
chain conformations about the ideal Gaussian distribution,
and applied it to investigate microphase separation in block
copolymers and the effect of shear flow on ordering dynam-
ics. Morita et al. used this method to study phase separation
of thin polymer blend films placed between the solid sub-
strate and free surface [33], and the competition between the
micro- and macrophase separations in a binary mixture of
long and short block copolymers [34]. Maurits et al. [35]
derived an expression for the stress within the framework of
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the dynamic mean field density functional theory, using the
principle of virtual work [5]. Viscoelastic effects were in-
cluded [36] by accounting for polymer stretching and orien-
tation in an imposed simple steady shear flow, by means of
adapting the polymer configurational distribution function
under flow using a dumbbell model [6].

Most recently, Shima et al. [37] proposed combining the
continuous SCF approach with a reptation model to account
for deformations of chain conformations in inhomogeneous
entangled polymer fluids under strong shearing flows. They
validated the model by comparison with the predictions of
the reptation theory for homogeneous shearing flows, and
then applied it to study polymer brushes grafted to walls that
are sheared apart at a constant shear rate. Their theory mod-
els the time evolution of the orientation of reptation tube
segments, whose characteristic length is the tube diameter,
which is significantly larger than the Kuhn length. They de-
rive a drift-diffusion equation for the statistical weight of the
conformations of a connected chain of reptation tube seg-
ments in a self-consistent field, where the tube contour
length plays the role of time. They relate the “drift velocity”
and the “diffusion” coefficient in this equation to the first and
second moments of the probability distribution of the local
tangent vectors to the tube, which evolves according to a
transport equation based on reptation theory. The second mo-
ment is also related to the stress. Thus the evolution equa-
tions for the first and second moments of the local tangent
vectors play a role similar to that of the FENE-P dumbbell
model in our DSCF theory for unentangled polymer fluids,
which “guides” the evolution of our stepping probabilities,
which become anisotropic under nonuniform flows. We note
that since the reptation tube diameter is significantly larger
than the Kuhn length, the current version of their model may
not be able to resolve interfacial structure and dynamics at
interfaces between macro- and microphase-separated do-
mains which are typically on the Kuhn length scale, and are
strongly affected by segmental interactions, rather than just
by deformation of the reptation tube. To resolve interfacial
dynamics in such systems, it is essential to formulate the
transport equations for composition and momentum on the
Kuhn length scale.

Inspired by Hamiltonian and quantum mechanics, a
bracket formalism was developed to describe the time evo-
lution of a set of relevant coarse-grained variables, where a
symmetric bracket, representing the dissipative contribution
to time evolution, is added to an antisymmetric Poisson
bracket, describing conservative time evolution, using the
free energy functional (the “Hamiltonian™) as a sole genera-
tor [38]. The recently proposed general equation for the non-
equilibrium reversible-irreversible coupling formalism keeps
the Poisson bracket description of conservative dynamics,
utilizing the total energy functional as the generator, but uses
the total entropy functional as the generator for a Landau-
Ginzburg description of dissipative dynamics [39,40].

Mavrantzas and Beris [41,42] used a two-fluid, Hamil-
tonian model, derived using a bracket formalism, to develop
transport and constitutive equations for local macroscopic
variables in incompressible polymer solutions near a wall,
such as the polymer chain concentration, the fluid velocity,
and the conformation tensor. The Hamiltonian (extended free
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energy) used in the macroscopic equations is specified using
a microscopic SCF model for chain conformations, account-
ing for the simultaneous effect of the solid surface and of the
imposed flow field. Their approach accounts for chain
stretching and orientation in nonuniform flows by an aniso-
tropic chain propagator, similar to the anisotropic )\Z‘k,r in our
DSCEF theory. However, the “guiding” equation for their an-
isotropic chain propagators is not the evolution equation for
FENE-P dumbbells representing the second moment of ideal
(noninteracting) chains, but rather the evolution equation for
an apparent strain tensor for the affine deformation of poly-
mer chains by the flow field. Unlike our equations for the
time evolution of composition and momentum, which are
formulated on the microscopic, Kuhn length scale, their
transport equations for composition and momentum are for-
mulated on a larger, macroscopic scale, and thus are not suit-
able for resolving interfacial structure and dynamics at typi-
cal interfaces between macro- or microphase-separated
domains.

Computational advances in recent decades made possible
MD simulations of polymer systems [43], based on a nu-
merical integration of Newton’s equations of motion for mi-
croscopic degrees of freedom. MD simulations provide im-
portant insight about the dynamics of unentangled,
inhomogeneous polymer fluids at equilibrium [44,45], and
under shear [46,47]. However, MD methods suffer from an
inherent limitation on the maximum size of the time step
used in the numerical integration, which is set by the fastest
vibration in the system. This makes MD studies of large,
dense, and slowly evolving polymer systems computation-
ally either very costly or out of reach. In addition, fluctua-
tions are enhanced in small systems, thus masking slowly
evolving collective trends in MD simulation. The DSCF
theory presented here provides a complementary approach
that overcomes some of these limitations.

Various mesoscopic methods, based on coarse graining of
time and length scales, were developed in an attempt to over-
come the limitations of macroscopic and microscopic ap-
proaches. Brownian dynamics (BD) methods replace New-
tonian microscopic equations of motion, which are used in
MD, with Langevin equations of motion for coarse-grained
models for chain segments in a fluid, such as the Rouse or
elastic dumbbell models [5,6]. BD provides segmental equa-
tions of motion at a coarser time scale, accounting for chain
stretching, mobility, and stress in response to friction forces
exerted by the surrounding fluid (modeled as a continuum)
and for random forces (which generate Brownian motion). In
the CONNFFESSIT [48] approach for calculation of non-
Newtonian flows, viscoelastic stresses determined from such
stochastic simulation techniques are coupled to a finite-
element formulation of macroscopic continuum transport
equations, replacing phenomenological constitutive relations
between the stress and the velocity gradients. In such sto-
chastic models, interactions with segments belonging to
other chains can be modeled with a self-consistent field [49].
The advantage of BD equations of motion is that they can be
simulated even if there is no closure in the corresponding
Fokker-Planck equations for the second moments of the nor-
mal modes, or of the end-to-end distance. However, this
comes at a considerable computational cost.
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Dissipative particle dynamics [50,51] (DPD) is a hybrid
mesoscopic method that combines elements of BD and
lattice-Boltzmann (LB) methods. It is based on an equation
of motion for soft spheres, representing either fluid elements
or segments in a polymer chain connected by entropic
springs [52,53]. As in BD, DPD particles interact pairwise
according to a set of short-range forces that include a con-
servative force, a dissipative force, and a random force. In
contrast with BD, and similarly to LB, the surrounding fluid
is modeled by discrete mesoscopic particles and not as a
continuum. Provided that the dissipative force and the ran-
dom force satisfy a certain relation, the system has statistical
mechanics corresponding to a canonical ensemble with a
temperature related to the relative amplitudes of the dissipa-
tive and random forces [54]. A repulsive interaction between
different types of DPD particles plays a role similar to that of
the Flory-Huggins y parameter in their lattice model of poly-
mer fluids [55]. DPD simulations produce efficient simula-
tions of inhomogeneous polymer fluids at equilibrium. The
main problem with DPD dynamics is that the rate of diffu-
sive transport in DPD polymer fluids is of the same order of
magnitude as the momentum transport, while in real polymer
fluids they differ by many orders of magnitude. The artifi-
cially soft repulsive potentials in DPD speed up the diffusive
dynamics, but lead to artificially high fluid phase compress-
ibilities, loss of topological constraints between chains,
strong fluctuation effects, and often a loss of connection to
the chemical details of underlying complex fluids.

While formal projection operator methods extracting dy-
namic equations for macroscopic variables from a micro-
scopic description of polymer dynamics exist [56,57], the
resulting equations that relate microscopic variables to the
coarse-grained variables are complicated, limiting the value
of this formalism for numerical simulations. A two-fluid
model [58,59] allows an efficient generation of Onsager cou-
plings [60] between stress and concentration variables for the
Rouse model in the low-frequency limit. More recently, Fre-
drickson [61] proposed using field theory to obtain the exact
thermodynamic forces as functional derivatives of a Hamil-
tonian corresponding to the “Gaussian thread model” [5] of
polymer conformations. He then augmented the time evolu-
tion equations of a corresponding two-fluid model containing
dissipative coefficients with real noise sources, obtaining a
system of coupled complex Langevin equations that can be
simulated numerically. Though inherently more accurate
than mean field theories, this approach is computationally
more demanding. A mean field approximation is recovered
by substituting saddle-point values for the fields and neglect-
ing the noise terms in the Langevin equations. Results of
actual numerical simulations based on this formalism, or its
mean field approximation, are yet to be published.

III. MODEL AND FORMULATION
A. Self-consistent mean field approximation

Consider a fluid composed of two molecular species A
and B, each species being a linear homopolymer chain of N4
or N8 freely jointed Kuhn segments, respectively. Let the
polymer fluid be confined between two parallel solid walls,

041801-4



DYNAMIC SELF-CONSISTENT FIELD THEORY FOR...

=
<
o
5\

PHYSICAL REVIEW E 72, 041801 (2005)

—
b
\ ‘

b1

w|n]

\

\—»‘4—

T
|n
"]

!
-
f

FIG. 1. Inhomogeneous polymer fluids in a channel between two solid walls sheared along the x axis at opposite velocities u,,
==u,(1,0,0). Some systems are translationally invariant within layers parallel to the walls (dashed lines). Chain conformations shown as
biased random walks (solid white lines) in a self-consistent field. (a) A melt of a single species. (b) A phase-separated blend of two species
A and B, with the interface between the majority-A and majority-B species parallel to the wall and centered at mid channel. (c) Enlarged view
of a site (labeled 0) in a triangular lattice layer i on the fcc lattice, surrounded by all its nearest neighbors, labeled 1-6 in the same layer, 7-9
in the triangular lattice layer i+1, and 10-12 in the triangular lattice layer i—1.

which are normal to the z axis in an (x,y,z) Cartesian system
of coordinates, and are sheared at constant but opposite ve-
locities (-u,,,0,0) and (u,,,0,0), as shown in Fig. 1. Such
systems have been studied by MD simulations, using both
realistic atomic potentials [45], and coarse-grained bead-
spring potentials [44,46,47]. In order to resolve interfacial
phenomena, the results of MD simulations are typically ana-
lyzed by performing local space and time averages over the
MD trajectories (“binning”). The outcome is an evolving set
of mean local occupancies and velocities, averaged over a
grid of spatial bins. To resolve steep gradients at interfaces,
the spatial dimensions of these bins must be comparable to
molecular dimensions in the case of simple fluids, and to
Kuhn segment dimensions in the case of polymer fluids. The
time intervals used for averaging have to be much larger than
a single MD time step, but much smaller than the total simu-
lation time. The bin-averaged microscopic evolution arising
from MD simulations bears a remarkable resemblance to Ey-
ring’s transition-state [ 1] and Frenkel’s kinetic [2] theories of
transport in liquids. The bins used in analysis of MD simu-
lations can be associated with molecular or segmental cages
moving at a local mean velocity. Small molecules or polymer
segments occupying such cages are advected at their local
mean velocity, as well as hopping from an occupied cage to
an adjacent vacant cage with thermally activated transition
rates. Cages may be approximated by lattice unit cells, and
the latter identified with the spatial bins used in the binning
analysis of MD simulations.

A recent dynamic self-consistent mean field theory for
simple fluids [3,4] models the time evolution of the local
mean occupancies and velocities on such a lattice of binning
grids. It describes the mass and momentum transport on the
cage scale, with mass and momentum fluxes including diffu-
sive and viscous contributions modeled as self-consistent
stochastic processes with thermally activated hopping rates,
as well as convective contributions. It assumes a mean field
factorization of joint configurational probabilities into a
product of one-body probabilities for molecules interacting

with a self-consistent field representing adjacent molecules
and walls. The polymer DSCF theory presented here aims at
a similar objective for unentangled polymer fluids, a task that
is complicated by the need to account for intrachain correla-
tions and for deformation of chain conformations under flow.

Motivated by the discussion above, we start the formula-
tion of our DSCF theory by discretizing the space between a
pair of parallel sheared walls into unit cells centered about
the sites r of a face-centered cubic (fcc) lattice [62,63], and
forming L triangular lattice layers stacked parallel to the
walls, as shown in Fig. 1. Lattice-gas models are widely used
to model equilibrium states of simple fluids and are related to
the Ising model of ferromagnetism [64]. In lattice-gas mod-
els of simple fluids, each unit cell may be occupied by a
single molecule. However, flexible linear polymers are ap-
proximated by freely jointed chains of Kuhn segments [7].
The simplest lattice-gas model for polymer fluids, the Flory-
Huggins (FH) theory [65-67], assumes that each unit cell is
occupied by a Kuhn segment.

Let a be the lattice constant of the fcc lattice. We identify
a with the larger of the Kuhn lengths of the two homopoly-
mer species. The volume of the Wigner-Seitz unit cell on the
fee lattice is w=a3/\5. Let e;=(1,0,0), e,=(0,1,0), and
e;=(0,0,1) be a triad of unit vectors serving as the basis for
the (x,y,z) Cartesian system of coordinates. A site r
=(x,y,z) belonging to the fcc lattice has 12 nearest neigh-
bors at r+ay, where

a,=a(1,0,0)=—-a,,

—
1 V3
a =da 5,7,0 =—as;,

3
az=da\ — ,7,0 =—3aq

0| =
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11 \F 0
ag=al--,—=,\/Z|=—ap.
9=4a 3 2\", 3 12

The six sites {r+a;,r+a,,r+a;,r+a,,r+as,r+aq form
a nearest-neighbor shell on a triangular lattice within the
(x,y) plane at distance z from the origin. The three lattice
sites {r+a;,r+ag,r+ay}, stacked as shown in Fig. 1(c), oc-
cupy another triangular lattice on the (x,y) plane at a dis-
tance z+ v’TBa from the origin. Similarly, the three lattice
sites {r+a;q,r+a;;,r+a,}, stacked as shown in Fig. 1(c),
form another triangular lattice on the plane (x,y) at a dis-
tance z—2/3a from the origin. Our objective is to obtain the
time evolution of all relevant dynamic variables defined at
the sites of the fcc lattice belonging to L triangular lattice
layers parallel to the walls, at z;=2/3ia (where i=1,...,L).
The bottom wall is located in the plane z=0, and the sites of
the triangular lattice layer adjacent to the bottom wall are
located in the plane z=z,= V2/3a. Similarly, the top wall is
in the plane z=v2/3a(L+1), and the sites of the triangular
lattice layer adjacent to it are in the plane z=z;, =\2/3alL.
We assume periodic boundary conditions within the triangu-
lar lattice layers.

At any time ¢, each Wigner-Seitz cell centered at lattice
site r represents a segmental cage advected at an instanta-
neous mean velocity u,. We assume that it is either (a) oc-
cupied by a Kuhn segment of type A, in which case the site
is assigned an occupancy (pseudospin) variable o,.=1, or (b)
occupied by a Kuhn segment of type B, in which case it is
assigned an occupancy variable o.=—1, or (¢) vacant, in
which case it is assigned an occupancy variable o.=0. Seg-
ments or vacancies occupying this cell have an instantaneous
velocity v, which fluctuates about the mean cage velocity u,.
The microscopic state of the system at time 7 is specified by
the values of the occupancy variables o, and the segmental
velocities v, assigned to every lattice site r between the two
walls. Denoting the collection of all the sites between the
two walls by (), the microscopic state is assigned the exact
joint probability P, ({oy, Vi }req, )]l cqdV,, defined at all the
lattice sites between the walls. Note that the presence of
vacancies makes our DSCF model for polymer fluids com-
pressible. In this respect it is different from the original
Scheutjens and Fleer lattice SCF theory for equilibrium poly-
mer fluids [68], but is similar to its compressible variants
[69-71].

Self-consistent field theories approximate the joint con-
figuration probability for all the constituents in a system with
many-body interactions by a product of one-body probabili-
ties for each constituent, interacting solely with a mean ex-
ternal potential field representing interaction with all the
other degrees of freedom. In the case of singlet-level SCF
lattice-gas models of simple fluids with short-range interac-
tions, and other Ising-like systems, the factorization is over
local one-body occupancy probabilities defined at each lat-
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tice site. However, the potential at this site is obtained self-
consistently by averaging the interaction of a molecule occu-
pying this site with its neighbors using one-body
probabilities at adjacent sites, which requires a nonlocal
computation. For lattice-gas models of a compressible liquid
at equilibrium, the simplest SCF theory is equivalent to the
Bragg-Williams theory for the Ising ferromagnet [64,72-74].
An early example of a dynamic mean field theory is Boltz-
mann’s Kinetic equation [60] for the time evolution of one-
body probability distributions in gases, where products of
one-body probabilities approximate pair probabilities.
Lattice-Boltzmann methods [75-79] are lattice versions of
Boltzmann’s kinetic equation. In the continuum limit, they
reproduce the description of transport in inhomogeneous flu-
ids by means of partial differential equations (such as the
Navier-Stokes, Cahn-Hilliard-Cook [80,81], and time-
dependent Landau-Ginzburg [62,82] equations), but are com-
putationally more efficient. The same assumption about fac-
torization of correlations plays a key role in the derivation of
kinetic mean field equations from the underlying master
equation governing the time evolution of configurational
probability in stochastic lattice-gas models [11].

Polymer SCF theory at equilibrium can be formulated by
considering the equilibrium statistical mechanics of ex-
tended, flexible, interacting chains. However, to gain compu-
tational advantage, the statistical mechanics of any system of
interacting extended objects can be reduced to statistical me-
chanics of smaller constituents of the extended objects, with
internal interactions, correlations and constraints between the
constituents of each extended object. For example, the statis-
tical mechanics of extended molecules is often reduced to the
statistical mechanics of constituent atoms or united atoms (as
in MD simulations), or of interaction sites (as in the refer-
ence interaction site model and its polymer version). We fa-
cilitate the nonequilibrium formulation of our DSCF theory
for polymer fluids by reducing the statistical mechanics of
interacting freely jointed chains to statistical mechanics of
Kuhn segments, and regard the latter as basic system con-
stituents.

As in any self-consistent mean field theory formulated on
the singlet level, the joint probability for a many-segment
system is approximated initially by a product of one-body
probabilities for a Kuhn segment of a given type (or a va-
cancy) to occupy a given site,

PEX({O-I"VI‘}I'EQ’I) H dvr: H P(O-r’t)Q(o-r’Vr’t)dvr'
re() re()

()

We refer to P(o,,t) as the time-dependent free segment
probability at site r, since under equilibrium conditions it
reduces to the time-independent free segment (monomer)
probability originally proposed by Scheutjens and Fleer in
their lattice SCF theory for inhomogeneous polymer fluids at
thermodynamic equilibrium [68]. P(o,,f) is the time-
dependent one-body probability for a free segment of type A,
or type B, or a vacancy, to be at the lattice site r. The seg-
ments occupying this site interact solely with a local poten-
tial field, representing interactions of a free segment at this
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site with either walls or segments at adjacent sites that be-
long to freely jointed chains. Note that our model is com-
pressible, since we allow vacancies at lattice sites. Similarly
O(0,v,,1)dv, is the one-body probability for the velocities
v, of the respective free segments or vacancies at lattice sites
r to be in a volume element dv,. in velocity space. A similar
factorization approximation was used previously in a mean
field study of convective-diffusive model of sheared simple
fluids [3,4]. However, in that study, each cage was occupied
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by a compact atom or molecule, rather than by a Kuhn seg-
ment of a polymer chain.

Henceforth we use a local equilibrium approximation for
the velocity probability distribution function Q(o,,V,,1).
This means that, locally, it has the same form as the equilib-
rium Maxwell-Boltzmann distribution of segmental veloci-
ties, in the frame of reference of a cage centered at site r and
moving at a mean velocity u,, and that vacancies are ad-
vected at the mean cage velocity u,, as follows:

Qmm’kgT,) " exp[— m*(v, —u,)*/2kpT,] if o,=1,
0(0y,vp,1) =1 QmmPhgT,) ™ exp[- mB(v, —u,)*/2kgT,] if o,=—1, . (3)

é\(Vr - ur)

Here m* and m® are the masses of Kuhn segments of
types A and B, respectively, and T is the local temperature of
the cage centered at site r. The local equilibrium approxima-
tion in Eq. (3) neglects the dependence of the velocity prob-
ability distribution function on other (second and higher)
moments of the velocity. Accounting for this dependence re-
quires better approximations, such as Grad’s “thirteen mo-
ments” method [10,60]. For the remainder of this paper, we
assume that the system is isothermal, so that at all times ¢,
T,.=T for all r € (), though in the case of simple fluids it has
been shown how this assumption can be relaxed to model
nonisothermal and Marangoni flows [4]. Since Q(oy,V,,1)
are simple Gaussians or J functions of v,, velocity moments
such as [viQ(oy,V,,1)dv, are easily evaluated functions of
the mean cage velocities u, and the temperature 7 that no
longer depend on v,.

To simplify the form of the equations, we henceforth drop
the explicit time dependence of various quantities, and de-
note P(ay,t)=P2 or P¥ when site r in layer i is occupied by
a segment of species A or B (o,==%1), respectively, and
P(ar,t)=1—Pf—Pf when this site is vacant (o,=0). The
free segment probabilities P¢ relate to P¢, the statistical
weights to place a free segment of species « at site r, as

P%=P%(1 + P* + PP, (4)

and hence
Py =Pi(1- P} - P)). (5)

According to Eq. (5) a vacancy at a site is always as-
signed a constant statistical weight of 1 (since vacancies can-
not interact with a self-consistent potential), while the statis-
tical weights for a free segment of type A or B to occupy a
site can be a non-negative number larger or smaller than 1
(reflecting either an attractive or a repulsive self-consistent
potential for free segments of this type occupying the site r,
respectively). Equation (4) just states that the free segment
probability for a segment of type A or B to occupy site r
equals the statistical weight for this event, normalized by the

if 0,=0.

sum of the statistical weights for all three possible outcomes
(a segment of type A, a segment of type B, or a vacancy) at
this site. Hence the probabilities for all three possible out-
comes at the site sum up to 1, as they should. This assign-
ment of statistical weights for free segments is consistent
with the one used by Scheutjens and Fleer in their original
derivation of equilibrium SCF lattice theory for incompress-
ible polymer fluids [12].

B. Random walk model for chain conformations
and intrachain correlations

Note that Eq. (2) neglects any correlations between clus-
ters of free segments. Thus, in general, the free segment
probability P(o,,?) is different from the local segmental vol-
ume fraction ¢;(r) of Kuhn segments belonging to freely
jointed chains of N* segments of species « at site r, which
reflects the effect of intrachain correlations between seg-
ments arising from chain connectivity. The FH theory
[65-67] crudely accounts for these correlations by reducing
the translational entropy per segment in a system containing
chains of N* connected segments by a factor of 1/N¢. Thus it
assumes that if one segment in a chain is translated, all the
other segments belonging to the same chain are translated
along with it. However, this is not necessarily true if the
chain changes its conformation as it is being translated in an
inhomogeneous fluid, due to changing segmental interactions
across interfaces. Accounting for such corrections requires a
more accurate treatment of the intrachain correlations and of
the statistics of chain conformations than in FH theory [83].
This is achieved if, in addition to the many-body interac-
tions, the intrachain correlations between the Kuhn segments
are treated self-consistently as well, as both affect the devia-
tions of chain conformations from ideality across interfacial
regions. In line with the prevalent terminology of polymer
physics, the term “polymer SCF theory” is reserved for such
“doubly self-consistent” methods, to distinguish them from
FH or related theories, in which only interactions between
segments are treated self-consistently.
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In SCF theories of inhomogeneous polymer fluids at equi-
librium, the local segmental volume fractions ¢y at each site
are calculated from known values of one-body free segment
probabilities Py’ within a sphere of a radius corresponding to
the extended length of the freely jointed chain of species a.
In the equilibrium lattice SCF approach of Scheutjens and
Fleer [68], this is achieved by modeling chain conformations
as lattice random walks in a self-consistent potential field. In
the continuous version of equilibrium polymer SCF theory
[19-22], the random walks are described by a diffusion equa-
tion in the self-consistent field, describing the quasi-time-
evolution of the probability to find a terminal segment of the
chain at a particular position, where the contour length vari-
able plays the role of time.

Consider a homogeneous, three-dimensional melt of iden-
tical homopolymer chains at thermodynamic equilibrium,
each consisting of N freely jointed Kuhn segments. In such a
melt the chains are overlapping (the number of chains in a
volume pervaded by each chain is N'/?), even if the chains
are unentangled (i.e., N<N,, where we adopt a conservative
lower bound N, =35 for the mean number of Kuhn segments
between entanglements). Beyond the overlap concentration,
the repulsive excluded volume interactions between seg-
ments belonging to the same chain (which lead to swelling
and non-Gaussian scaling for an isolated chain in a good
solvent) are screened by the presence of other chains within
the pervaded volume of the coil, at length scales exceeding &,
the correlation length for concentration fluctuations (Flory’s
theorem [5,7,84]). In a homogeneous melt at thermodynamic
equilibrium far from criticality, £ is close to the Kuhn length
a. Both a self-consistent field argument [84] and a perturba-
tion analysis [5] indicate that the second moment of the end-
to-end distance (Q?) of a chain in a such a melt scales lin-
early with N, where N is the number of Kuhn segments. Thus
the conformations of such chains obey Gaussian statistics
similar to that of an ideal (noninteracting) chain. Moreover, it
is known [7,84] that a test chain consisting of N; Kuhn seg-
ments in a melt of chains consisting of N, chemically iden-
tical Kuhn segments also obeys Gaussian statistics, as long
as N1<N§. Such ideal (noninteracting) Gaussian chains are
modeled as isotropic lattice random walks [85,86] depositing
noninteracting segments at successive lattice sites, with the
chain contour length variable s playing the role of time [68].
All possible chain conformations of an ideal chain of N¢
segments, starting with the first segment being at a given
site, are generated recursively with equal statistical weight.
At equilibrium, this is done by selecting any of the sites
adjacent to the terminus of a chain of s segments with iso-
tropic (equal) single-step displacement (stepping) probability
[85,86] A=1/¢g, where ¢ is the lattice coordination number
(g=12 for the fcc lattice). A segment is then placed at this
adjacent site and connected to the terminus of the s-segment
chain, producing a conformation of a chain of s+ 1 connected
segments. The process is repeated recursively, until a confor-
mation of a chain of N“ jointed Kuhn segments is produced.
Such a random walk is a Markov chain obeying a master
equation [85,86]. The continuum limit of this master equa-
tion has the form of a diffusion equation with an isotropic
diffusion coefficient, where s plays the role of time. The
solution of the diffusion equation subject to a point source
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initial condition is an isotropic Gaussian with a second mo-
ment of the end-to-end distance that is proportional to N
-1 [86].

In the lattice SCF theory for equilibrium polymer fluids
by Scheutjens and Fleer [68], there are several contributions
to the local self-consistent mean potential field for the one-
body free segment probability at a particular site r. One con-
tribution is from interactions of a segment at this site with
adjacent segments, solvent molecules, and walls, averaged
over ¢¢,, , the local segmental volume fractions at adjacent

r+ak’
sites, rather than over Pl‘.’+ak, the one-body free segment prob-

abilities. This is needed to account for intrachain correla-
tions: if, instead, the self-consistent field were obtained by
averaging over the free segment probabilities Py, intrachain
correlations would have been neglected, resulting in a much
worse approximation for interfacial regions of inhomoge-
neous polymer fluids. Another contribution originates from
the effect of intrachain correlations on configurational en-
tropy. If it is assumed that the polymer fluid is incompress-
ible, as in most applications of polymer SCF theory to date,
there is an additional contribution to the self consistent field
that imposes the incompressibility constraint. A compressible
version of lattice SCF theory for polymer fluids at equilib-
rium has been formulated by Theodorou [69], combining
ideas from the Scheutjens and Fleer lattice SCF theory [68]
with the equation of state theory of Sanchez and Lacomb
[87,88]. Here we adopt a simpler approach to model com-
pressible polymer fluids by introducing a noninteracting
monomer solvent species representing vacancies into the
Scheutjens-Fleer equilibrium SCF theory [71].

The additional feature of our DSCF theory is that here the
two parallel walls are allowed to move at different velocities,
driving the fluid out of thermodynamic equilibrium. Thus all
quantities of interest may depend on time. Momentum trans-
fer at the walls induces a time-dependent, nonuniform veloc-
ity field u,, representing the mean cage velocities at sites r
[3,4], which is a lattice discretization of the continuous non-
uniform velocity field in the real fluid. Such a nonuniform
flow field stretches and orients the polymer chains along pre-
ferred directions. As a result, the second moment of the chain
end-to-end distance becomes anisotropic even in a melt of
ideal chains of homogeneous density [6,10,41]. We account
for such anisotropic stretching by allowing )\;‘k’r, the stepping
probability (from a segment belonging to an ideal chain that
is located at site r to a connected segment at the adjacent site
r+ay), to be anisotropic and dependent on both position and
time. Hence we replace the equilibrium assumption that the
stepping probabilities {)\:k’f} are isotropic (identical for all k)
[68], with a less restrictive reflection symmetry. Explicitly,
we assume that at any site r belonging to the fcc lattice of
Fig. 1(c),

)\;"Pr =N\g

apr

if a;=—ay. (6)

Thus of the 12 stepping probabilities from a site toward
its nearest neighbors on the fcc lattice, only six are indepen-
dent.

At any given time, the statistical weights for conforma-
tions of ideal chains generated by such an anisotropic ran-

041801-8



DYNAMIC SELF-CONSISTENT FIELD THEORY FOR...

PHYSICAL REVIEW E 72, 041801 (2005)

FIG. 2. Random walk and elastic dumbbell representations of chain conformation statistics (for simplicity, a triangular, rather than the fcc
lattice, is shown). (a) Chain conformations at equilibrium represented as a lattice random walk (isotropic stepping probabilities denoted by
identical bond shading). The isotropic second moment of the end-to-end distance is represented by a sphere. (b) In nonuniform flow, stepping
probabilities become anisotropic (denoted by different shading of bonds along different lattice directions). The second moment of the
end-to-end distance becomes anisotropic as well (represented by an ellipsoid). (c) Interactions of segments with adjacent segments and with
walls in an inhomogeneous polymer fluid are represented by random walk in an external self-consistent field (shaded background).

dom walk [86] procedure will depend on the direction of the
steps taken to generate this particular conformation. All pos-
sible conformations of chains in a flow field, which interact
with other chains or with the walls, are similarly generated
by a random walk in a self-consistent mean potential field
representing such many-body interactions. The statistical
weight to find the terminus of a chain of N* connected Kuhn
segments at any site is found recursively following the algo-
rithm specified by Scheutjens and Fleer [68], but the step-
ping probabilities for steps toward different nearest neigh-
bors on the fcc lattice are now anisotropic (depend on k),
subject to the reflection symmetry constraint Eq. (6). Let
PY.,,(5) be the statistical weight to find a terminus of a chain
of s freely jointed segments of type « at any of the sites r
+a, that are adjacent to a given site r. The transition rate to
connect an additional segment of type « at site r to the
terminus of an s-segment chain at an adjacent site r+ay is

the product of the statistical weight Isﬁ‘ for a free segment of
type « to be at site r and an anisotropic stepping probability
N rea,- The value of Ag | for each bond in the a; direction
emanating from site r is represented by the shading of that
bond in Fig. 2, and the value of P at site r is represented by
the background shading. Figure 2 is a schematic representa-
tion of a chain conformation generated on a triangular, rather
than the fcc lattice, for simplicity reasons. Thus the time-
dependent statistical weight Py (s+1) for finding a terminus
of an arbitrary a-type subchain of length s+1 at the lattice
site r is defined recursively as follows [89]:

12
PXs+1)= PN, v POa (s), (7
k=1

—ayr+a;” r+a,

with the initial condition P;(1) =13f Equation (7) is a master
equation for the evolution of statistical weights Py (s), where
the contour length variable s plays the role of time. In the
continuous version of polymer SCF theory [19-21] it is re-
placed by a Chapman-Kolmogorov integro-differential equa-
tion [85].

Note that for an ideal, noninteracting chain of type a we
have P*=1. In this case the background is uniform [shown
as a white background in Figs. 2(a) and 2(b)]. If, in addition,
the chain and the surrounding fluid are in thermodynamic
equilibrium, the values of all the stepping probabilities used
in generating the chain are isotropic (independent of bond
directions), as represented by identical bond shading for
bonds along different directions in Fig. 2(a). The second mo-
ment of the distance between the two ends of the chain (de-
noted by the zigzag line connecting two solid circles) is iso-
tropic [denoted by the dashed circle in Fig. 2(a)
corresponding to a sphere on the fec lattice]. On the other
hand, if the fluid has homogeneous composition, but the ve-
locity of the surrounding fluid is nonuniform, stretched and
oriented conformations will be assigned higher statistical
weights because of higher values of )\;"k’r along preferred
bond directions. This is shown by different shading of bonds
emanating from each site along different directions a;. In this
case the second moment of the chain end-to-end distance is
stretched and anisotropic [denoted by a dashed ellipse in Fig.
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2(b), representing an ellipsoid on the fcc lattice]. If, on top of
that, the fluid has an inhomogeneous composition, the values

of P® at different sites will be different [as shown by the
nonuniform shading of the background in Fig. 2(c)].

The volume fractions ¢; of connected segments of type «
occupying a site r at a given time are calculated from known
values of Py(s) at that time, as follows [68]:

Na
N Pi(s)Py(N*—s+1)
¢r=Cu 50 : (8)
s=1 r

According to Eq. (8), first the statistical weight for having
segment s of an N*-segment chain at site r is calculated. It is
expressed as a product of the statistical weights for two sub-
chains, one of length s and another of length (N“~s+1), to

terminate at a common site r, which is then divided by ﬁf to
compensate for double counting of the statistical weight of
placing the terminal segment, which is shared by the two
subchains. To get the volume fraction ¢y at site r, these
statistical weights are then summed over all possible values
of s for the common terminal segment along the chain, and
normalized. In the continuous version of polymer SCF
theory [19-21], the sum over discrete values of s is replaced
by an integral over a continuous contour length variable s.
The normalization constant is

¢n,
@ = s 9
N2, PE(N%) ©)

where n; is the total number of sites in the system, and ¢* is
the mean segmental fraction of species a:

_ 1
¢ = n—E b (10)

Note that in a nonreacting, closed system between imper-

meable walls, J)"‘ is constant. For a two-component A-B
blend, we define ¢,, the total segmental volume fraction at

site r, and (?5 the average mean segmental volume fraction,
as follows:

b=+ B,

b=+ 4" (11)
Let m“ be the mass of a segment of species a. Then the
mass density of species « at site r is pS=m*¢w!. Let

3
gt =2 g% (12)
k=1

be the momentum density of connected segments belonging
to chains of type « at that site; then the local mean velocity
of species « is given by
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a

3
a a — w a_8
urzzur,kek=< )gr=_l¢;' (13)
k=1 p

m ey r
We identify the local mean cage velocity with the mass-
averaged mean velocity at the same site, defined by

u =2, (14)
Pr
Here grzgf+gf is the total momentum density and p,

=(m ¢ +mP $P)/w is the total mass density at site r.

C. Evolution of anisotropic stepping probabilities

At any moment in time, the modified Scheutjens-Fleer
procedure outlined above allows determination of the local
segmental volume fractions ¢; at all sites r. However, in a
system sheared out of thermodynamic equilibrium, this pro-
cedure requires as input not only the free segment probabili-
ties Py, but also the anisotropic stepping probabilities )\;’k’r,
which become functions of position and time. We proceed
now to show how to calculate the time evolution of )\Zlk»f'

As stated previously, a homogeneous, one-component ho-
mopolymer melt can be considered as a fluid of ideal chains
where configurational interactions between segments are
negligible. However, the statistical weights for ideal chains
are perturbed from their equilibrium values when subjected
to flow with nonvanishing velocity gradients [see Eq. (7) and
Fig. 2(b)]. Their time evolution should reflect chain stretch-
ing and orientation under nonuniform flow, as well as their
entropically driven relaxation toward thermodynamic equi-
librium. Bead-spring models of such phenomena were con-
structed for modeling the rheology of unentangled, homoge-
neous polymer fluids [5,6,8,9]. A homopolymer chain
consisting of N* identical, freely jointed Kuhn segments in
an unentangled homogeneous melt, can be represented by the
Rouse model [90], consisting of N* beads connected by en-
tropic springs, subject to friction and random forces exerted
by the surrounding fluid.

Here we adopt an even simpler elastic dumbbell [6]
model for the time evolution of the second moment Sy
=(QyQy) of the end-to-end distance Q; of an ideal (nonin-
teracting) chain in a homogeneous fluid undergoing nonuni-
form flow (in Fig. 2, solid circles represent the two beads and
the zigzag line represents the elastic spring). A Hookean
dumbbell consisting of two beads connected by a linear
spring [91,92] has unbounded end-to-end distance, which is
not realistic. Here we use the so-called FENE-P dumbbell
model — a finitely extensible, nonlinear elastic spring in the
Peterlin approximation [13-18], where the nonlinear spring
force is preaveraged over the probability distribution of end-
to-end distances. Thus in our DSCF theory, the effect of the
local velocity gradient Vu, on conformation statistics of an
ideal (noninteracting) test chain of N Kuhn segments placed
in homogeneous fluid with its center of mass being posi-
tioned at r, is computed using the FENE-P dumbbell model
for the time evolution of Sy, which is a function of Vu, and
of an entropically driven relaxation time.

Let Qy be the end-to-end distance of an ideal (noninter-
acting) test chain of N* freely jointed Kuhn segments joined
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by N*—1 rigid links, of length a each, with its center of mass
positioned at r, where the mass-averaged fluid velocity and
its gradient are u, and Vu,. We use a FENE-P dumbbell
model for the time evolution of the probability distribution of
Q¢ and its second moment. In this model, Qy is the distance
between the two dumbbell beads (representing the two ends
of the freely jointed chain of N Kuhn segments), connected
by an entropic spring with a spring constant given by
3kpT{(N*~ 1)@ [1-((QH)*/QH]}". Here Q, is the maxi-
mum extension of the spring [13-18], and a,=c,a is a length
proportional to the Kuhn length. We approximate the prob-
ability for such a test chain to have an end-to-end distance
between QY in a volume element d°Q¢ by #2(QYd*QY,
where (Qy) is the probability density for an ideal (nonin-
teracting) FENE-P test dumbbell to have the same end-to-
end distance when its center of mass is positioned at r, where
the mass-averaged fluid velocity is u,. The time evolution of
the probability distribution ;(Qy’) is described by a Smolu-
chowski equation [6,18]. In continuous space, the time evo-
lution of the second-rank symmetric tensor S{=(QrQy) is
derived by evaluating the second moment of each term in the

Smoluchowski equation, resulting in the following equation
[6,18]:

So_ 1[ s¢ (N* = D&
T L1 =[BT - D@ ITIS? 3

o,
(15)

v

where S¢=DS¢/Dt—(Vu,)"-S¥-S¢-(Vu,) is the upper-
convected time derivative of S; and DS;/Dt=dS;/dt
+u,- VS is its material derivative. The local mass-averaged
velocity u, is calculated from Eq. (14) using Egs. (4)—(11),
and the values of the free segment probabilities Py and the
momentum densities g resulting from the transport equa-
tions (28) and (54), as described in Sec. III D. Here the di-
mensionless finite extensibility parameter [18]

378 (N“
“:—Q—a ’r( a)=3(N“—1) (16)
7-db,r(jv )
is thrice the ratio between the relaxation time
NN = 1)L

17
24kyT (17

Tg’r(N“) =
of a rigid dumbbell of extension (N*-1)a,, and the relax-
ation time

NN® = 1)L
24k,T

o f—
Tabxr =

(18)
of a Hookean dumbbell with spring constant 3kgT/[(N“
—1)@%]. Note that gy 1S proportional to a local segmental
friction coefficient ;. In the limit 5% — o, Eq. (15) becomes
the evolution equation for the second moment of the end-to-
end distance of such a Hookean dumbbell.

At thermodynamic equilibrium, the second moment of the
end-to-end distance a chain consisting of N Kuhn segments,
joined together by N“—1 freely jointed links, each of length
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a, is a diagonal second-rank tensor with isotropic diagonal
components having common value (N®—1)a?/3. On the
other hand, the equilibrium solution of Eq. (15) governing
the evolution of Sy for the FENE-P dumbbell model with the
spring constant 3kzT{(N*— 1)52[1 —((Qﬁ”)Z/QS)]}‘1 yields

a N N b \(N*= 1),
Sr,xx = Sr,yy = Sr,zz = pe43 3 s
Sf,xyzsf,yzzsf,xz:o’ (19)

where @,=c,a. Thus Eq. (19) recovers the equilibrium value
of S; expected for a freely jointed chain of N* Kuhn seg-
ments only if the FENE-P spring constant is tuned so that the
relation ¢,=+/(b*+3)/b* is satisfied.

We proceed now to establish a relation between the values
of S and the values of A , at any given moment in time.
We know that in the FENE-P dumbbell model, the probabil-
ity density #¢(Qy) for Qf, which is the solution of the ap-
propriate Smoluchowski equation, has the form [6,18]

exp[- 5(89)7:QQ;]
V@midet(SY)

P (Q) = (20)

In the equation above, S_ at any particular time is ob-
tained as a solution of Eq. (15) for a FENE-P dumbbell with
its center of mass at position r, which requires the history of
u, and Vu, at prior times as an input. Sy approximates the
second moment of the end-to-end distance of a freely jointed
chain of Kuhn segments with its center of mass at position r.
One can then ask what would be the simplest model of the
same ideal, freely jointed chain of Kuhn segments as a ran-
dom walk on the fcc lattice at zero external potential that
reproduces the same distribution of end-to-end distances as

Eq. (20). This case corresponds to setting P®=1 for all r in
Eq. (7), which thus assumes the form

12
Plo-((s +1)= 2 )\fak,nakpfmk(s)’ 21
k=1

where P;(1)=1. To obtain the simplest random walk model
reproducing the properties of the FENE-P dumbbell model
under flow, we assume that )\:k’r,=)\;‘k,r for segments at sites
r’ belonging to the same freely jointed chain of Kuhn seg-
ments with its center of mass at position r. Subtracting Py (s)
from both sides of this equation, and using E,Zl)\;‘k’r= I, we
then get
12

Pls+1) = Pi(s) = 2 [N% g Pria (8) = Ny Pr(9)].
k=1

(22)

This is a master equation generating statistical weights for
finding the terminus of an ideal (noninteracting) chain at r in
a homogeneous fluid undergoing nonuniform flow character-
ized by a mass-averaged velocity gradient Vu,, modeled as a
biased random walk on a fcc lattice. Expanding Eq. (22) in a
Taylor series to first order in s and to second order in space,
and neglecting spatial variation of x;’km over the length scale
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of the chain end-to-end vector, we see that Py(s) satisfies a
diffusion equation

W) _ papypa), 23

where the contour length variable s plays the role of time,
and the initial condition is P;(0)=48(r). Using the symmetry

_ak r—)\“ at each site and collecting terms from the Taylor
expansion, we get

a o 1 o a o (23
A |:)\al,r + Z()\az,r + )\33,1‘ + )\ag,r + )\ag,r :| 2

xxr
a()l‘:|

+ —()\

yy.r

a 3 (23 (23 1
A% = a{z(’\az,r N+ N

2
A¢ |:§()\ + )\;18 rt )\:9’1. :| s

721‘

a 2 \’3 a
Axyr l 4 ()\azr

)\:S,r) + /—(7\218 r a9 ] >

}Zl‘ ay,r

(23 \J’E a a
A ?()\ +A 2)\37’1. s

A;ir—a {—()\ 39 } (24)
The solution of Eq. (23) for Pf+Qa(N“— 1) with the initial
condition Py (0)= &(r) is '

PN _exp{= 320 - DATQPQy}
rQy Vem? det2(ve - DAY

(25)
By comparing Eq. (25) with Eq. (20), we get a system of six

linear equations,
Sy =2(N“=1)A}. (26)

Solving Eq. (24) for the six independent stepping probabili-
ties at each site, we get

N —; lSa lSa iS“ ! —=S
al,r_(Na_l)a 2 xx,r 6 yy,r 12 7z,r 3\‘6 yz,r |

% L (Lse - Lsa 4
= o S T St TSN
2T (NT=1)a\ 37T 127 3T

1
+ =S~ —=Ser |
6\‘”2 yz,r 2\6 Z r)

X S B
)\33’r:(N“—1)a2 gsyy,r Esvr ESX}

1
b =S 4 ——=52 |
6\"2 yz,r 2\/8 XZ,)
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a 1 1 a a
)\a7,r = (N*— l)az(zszz,r - ESyz r) 4

1
Ny r= 5| Se .+ =S,
ag,r (Na_ 1)02(4 z,r 242 yz.r

(3

A ! (15“ e Yo ) 27
agr (Na_ 1)612 4 zr 2\6 yar 4 Sanr | ( )

The last equation expresses, for any particular time, each
of the six independent stepping probabilities A, . from site r
as a linear combination [normalized by (N*— l)az] of the six
independent components of the symmetric, second-rank ten-
sor Sy of the second moment of the end-to-end distance of a
FENE-P dumbbell, with its center of mass at position r,
given the history of u, and Vu, at prior times. These step-
ping probabilities )\;Xk’r can then be used in Eq. (7) to gener-
ate the statistical weights for the terminal probabilities of
interacting chains of jointed Kuhn segments at site r, mod-
eled as random walks in an inhomogeneous self-consistent
potential field representing the interactions. Substituting Eq.
(19) [the equilibrium solution of Eq. (15)] into Eq. (27), we
recover the equilibrium SCF values )\;’k’rzﬁ.

In a sense, the FENE-P dumbbell serves as a probe for
measuring the extent of local stretching and orientation
caused by nonuniform flow. Although the length scale of the
square roots of the eigenvalues of S; is of order (N®
—1)!2a, the components of S¢ vary on the same length scale
as u, and Vu,. It will be shown in the next subsection that u
and Vu,, as well as Py and ¢y, vary on the Kuhn length
scale a. Thus our DSCF model resolves the variation of step-
ping probabilities )\:k’f on the Kuhn length scale a. This is
analogous to using a magnetic compass with a needle of
finite length, as a probe to map fine spatial variations in the
orientation of a magnetic field by centering the compass at
grid points with a smaller spacing than the length of the
needle.

D. Self-consistent mean field transport theory
1. Main ideas and relation to existing methodologies

At any given time, local composition and kinematics in
our inhomogeneous polymer fluid is described by the values
of ¢¢ and uy, and local rheology by the relation between the
local deviatoric stress and the rate of strain Vu,. The seg-
mental volume fractions ¢y are determined from Eq. (8),
using input from Egs. (5), (7), (9), and (10), provided that Py
and )\:M are known. The latter are related by Eq. (27) to the
second moment S; of the end-to-end distance of FENE-P
dumbbells under nonuniform flow in a homogeneous fluid.
Their time evolution is described by Eq. (15), which depends
on the mass-averaged velocity u, that is, in turn, a function
of segmental momentum densities g, given by Eq. (13).
Hence, if we know how to calculate the time evolution of Py
and g; at each site r on the fcc lattice, we can obtain S,

A and ¢ as well. Thus, in order to get a self-consistent,
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closed system of equations, it is necessary to augment the
equations derived above with a set of time evolution equa-
tions for P, and g

Our evolution equations for Py and gy have the form of
transport equations obtained by balancing fluxes of P, or g;
across the boundaries of a control volume of segmental di-
mensions, which is a unit cell of our fcc lattice. The flux
expressions are derived using a mean field approximation of
the joint probabilities by products of one-body probabilities
and segmental volume fractions. This resembles derivation
of transport equations arising from both the continuous [60]
and lattice [75-79] versions of Boltzmann’s Kinetic theory
for simple fluids [60], where the collision cross section on a
molecular scale determines the control volume. It bears even
greater resemblance to the diffusive transport equations de-
rived in kinetic mean field theories [11] for stochastic lattice
gases [93-95] from a microscopic master equation. Diffusive
dynamics in stochastic lattice gases and other Ising-like sys-
tems are modeled microscopically as thermally activated,
stochastic pair exchange events between adjacent sites
[93,94]. The exchange occurs only if the adjacent sites are
occupied by a molecule and a vacancy in a lattice gas model,
or by opposite pseudospins in an Ising system. The activated
pair exchange events occur with certain transition rates de-
pending on the change in the nonequilibrium free energy
caused by the pair exchange, in dimensionless units set by
the temperature. To assure convergence to thermodynamic
equilibrium, the transition rates have to satisfy a local de-
tailed balance condition. The time scale for the transition rate
is set by the appropriate diffusion constant. The time evolu-
tion of the system’s configurational probability is a Markov
process governed by a master equation [93].

The complexity of the problem precludes an analytic so-
lution to the master equation, except for very simple limiting
cases. Such Markov processes can be simulated directly us-
ing Monte Carlo methods [96], which do not neglect many-
body correlations, but have strong local fluctuations that may
blur the connection to mesoscopic descriptions, such as the
Cahn-Hilliard-Cook  [81,97], time-dependent Landau-
Ginzburg [62,82], and phase-field models [98,99]. This is
avoided by the kinetic mean field theories [11] that were
developed for stochastic lattice-gas models [100,101]. Simi-
larly to equilibrium mean field theories, kinetic mean field
theories approximate the configurational joint probability for
system constituents by a product of one-body probabilities
for each microscopic constituent, interacting solely with an
external potential field. The interaction of a constituent with
its conjugate field is expressed as a mean configurational
energy of interaction with all the other system constituents.
However, in kinetic mean field theories both the mean poten-
tial fields and the one-body probability distributions are time
dependent. The time evolution of the local one-body prob-
abilities and of the self-consistent fields is obtained by bal-
ancing fluxes of one-body probabilities about a control vol-
ume on molecular length scale. The resulting transport
equations are formulated on this scale. The factorization of
joint probabilities into a product of one-body probabilities
suppresses correlations and fluctuations in these models,
making them akin to mesoscopic, deterministic transport
equations, such as Cahn-Hilliard-Cook [81,97] and time-
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dependent Landau-Ginzburg [62,82] equations, typically de-
scribed by high-order, nonlinear PDEs. They are very differ-
ent from classical macroscopic equations, such as the
diffusion or Fokker-Plank equations, which are typically lin-
ear, second-order PDEs with Gaussian solutions describing
fluctuations about a deterministically evolving mean. The lat-
ter can be formally obtained as a low-order truncation of the
so-called ) expansion of the master equation in powers of
QU772 developed by van Kampen [85], where () is associ-
ated with the number of microscopic constituents in a mini-
mal control volume. Low-order truncation of the ) expan-
sion is justified only for large (), and, as noted by van
Kampen [85], keeping successively higher-order terms in the
() expansion gives rise to higher-order derivatives and non-
linear coupling in the resulting PDEs for the continuous
probability density, which are responsible for the deviation
of fluctuations from a Gaussian distribution. Indeed, when
binning averages are performed on trajectories of MD simu-
lations using bins with spatial dimensions approaching the
dimensions of a single constituent, the resulting averages
typically exhibit strong fluctuations which cannot be de-
scribed as small Gaussian fluctuations about a deterministi-
cally evolving mean.

A dynamic SCF lattice gas model for simple fluids has
been derived by Khan and Shnidman [3,4], and used for
molecular-scale computational modeling of interfacial and
wetting flows. Their model includes convective contributions
to one-body probability fluxes due to cage advection, as well
as a diffusive contribution to the one-body probability fluxes
arising from activated hopping between cages as described
above. Momentum fluxes similarly include a convective con-
tribution due to cage advection, a viscous contribution from
momentum transferred by activated hops, as well as a term
representing friction forces generated by net cage velocities
arising from biased hopping across bonds. This dynamic
SCF model for simple fluids has been used successfully to
study both isothermal and nonisothermal interfacial and wet-
ting dynamics in one-, two-, and three-component compress-
ible simple fluids. Truncated Taylor expansions of the evolu-
tion equations of this DSCF lattice model lead to continuous
evolution equations similar to those of Model H [62,82], a
time-dependent Landau-Ginzburg model coupling convec-
tive and diffusive transport of local mean species densities
with convective and viscous transport of momentum.

Note that the PDEs describing the continuous phenom-
enological models above indeed involve higher- (fourth-)
order derivative terms and nonlinearities which are crucial
for modeling interfacial dynamics. Our transport equations
have instead the form of a system of nonlinear ODEs. Using
truncated Taylor expansions, they can be approximated by a
system of nonlinear, higher-order PDEs similar in form to the
continuous, deterministic transport models formulated phe-
nomenologically on the mesoscopic scale. However, trunca-
tion of the ) expansions at higher orders leads to unphysical
behavior, such as violation of the positivity of the probabil-
ity, and of its approach to a steady state [85].

A central objective of our polymer DSCF theory is to
extend the approach above to unentangled polymer fluids.
This requires accounting for intrachain correlations and for
deformation of chain conformations under flow.
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FIG. 3. Hopping contributions to the diffusive and viscous
center-of-mass fluxes transporting mass and momentum. (a) A seg-
ment (denoted by the black solid circle) hopping out of an occupied
site enclosed by a Wigner-Seitz control volume), into a vacant site
(denoted by the white circle). The different shading of circles at the
surrounding sites denotes different mean segmental volume frac-
tions used to calculate the inhomogeneous self-consistent field at
the central site. (b) A reverse hop by a segment at the neighboring
site into the vacant site enclosed by the same control volume.

2. Time evolution of free segment probabilities

The balance of fluxes of one-body probabilities Py of spe-
cies a across a unit cell centered at site r leads to the fol-
lowing time evolution equation for the free segment prob-
ability density of species a within the control volume of a
unit cell:

dpP;

d_:_v (P ur) E

l‘ l‘+ﬂk

(28)

The first term on the right-hand side (RHS) of Eq. (28) is
the divergence of convective fluxes of free segment prob-
abilities. In our computations we use a second-order centered
difference approximation for the fcc lattice, except at the first
and the last layers adjacent to the bottom and top walls, for
which the second-order forward and the backward difference
approximations are used, respectively. The second term on
the RHS of Eq. (28) represents the divergence of diffusive
fluxes of the free segment probability Py due to hops into
and out of the control volume from/into adjacent unit cells,
as shown in Fig. 3 in the case of a triangular lattice, for
simplicity. The net diffusive flux of free segments of species
a across each bond is given by

o
rr+a;

" (1
Jr,r+ak ( (1 B (?5)

- 5(r+ak)~e3,0)(] -

5(r+ak)-e3,zL+\52_/3a)

Ar,r+ak<H3>
X | Pr(l=dra)e| —
B

Ar,r+ak<ch~y> ) :| a
7 (29)

r+ak(1 (;Zsr)qo(_ koT
B

It is assumed that there are no fluxes coming into or out of
the walls. The factors (1=0(sa)e0) and (1
_5(”31{)'33&”%“) suppress any contributions to fluxes from
bottom and top walls, respectively. The net flux across a
bond consists of the finite difference gradient of the probabil-
ity current due to activated hops between the two adjacent
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sites. Consider a Markov chain model for the hopping flux
from site r to site r+a,. It is given by the product of the
initial probability Py for the site r to be occupied by a free
segment and the transition rate [Dy. +, /(1-¢)](1
- ¢r+ak)<p(Ar’r+ak<Hl‘f‘)/kBT) to hop from r to r+a,. This tran-
sition rate vanishes if the site r+a; is not vacant. This is
assured by the factor (1— ¢, +ak), which is the probability that
the site r+a,; is not occupied by a segment, including intra-
chain correlations in a chain of N* freely jointed Kuhn seg-
ments. As discussed before, intrachain correlation effects are
pronounced near walls and interfaces, where chain confor-
mations are constrained. Note that ¢¢=P, in homogeneous
or simple (monomer) fluids. For simple fluids [3,4], this form
of diffusive fluxes is identical to the diffusive fluxes used in
kinetic mean field theories [11] modeling diffusive hopping
transport in stochastic lattice gases [93-95,102]. Since hop-
ping is an activated rate process, the transition rate is propor-
tional to @(Ap iy (Hy)/kpT), where the form of the rate
function ¢ realizes a particular coupling to a heat bath. As a
necessary condition to achieve convergence of the dynamic
model to an equilibrium state under equilibrium conditions,
the rate function has to satisfy the so-called local detailed
balance relation [95]

¢(h) =e"(=h). (30)

In our computation we use the Kawasaki form for the rate
function (see discussion of this choice below)

2 —h/2
olh) = e—_m (31)

This form of the transition rate function is certainly not
unique [11,95]. There are many possible functional forms of
the transition rate function satisfying Eq. (30), reflecting the
many different possible realizations of the couplings to the
heat bath in real systems. This is a well-known problem,
which is by no means limited to the particular method for
modeling nonequilibrium dynamics chosen here. For ex-
ample, in the Langevin approach a particular coupling to the
heat bath is realized by the functional form of the fluctuating
noise term. As a necessary condition for converging to an
equilibrium state under equilibrium conditions, the noise
term has to satisfy the fluctuation-dissipation theorem, but
there are many different forms of the noise term satisfying it.
Similarly, there is a multitude of different methods for ther-
mostating MD simulations, which have to satisfy some nec-
essary conditions to reproduce equilibrium statistics under
equilibrium conditions, but may lead to distinct nonequilib-
rium evolution.

In practice, it is found that, as long as detailed balance is
satisfied, different realizations of the coupling to the heat
bath may certainly affect the short-time and small-scale de-
tails of the dynamics, but recover similar qualitative trends at
longer times and large scales. Hence the choice of a particu-
lar realization of the coupling to the heat bath in a nonequi-
librium model is guided by simplifying assumptions idealiz-
ing such couplings in real systems, in order to make
modeling practical. For example, in the Langevin approach a
S-function form for the “white” noise is commonly used for
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analytical calculations, while a finite Gaussian form may be
used in simulations. For kinetic lattice gases, the simplest
analytical form for the transition rate function that satisfies
Eq. (30) is @(h)=e""?. However, since it is not bounded in
the limit #— —, it may cause frequent crashes in computer
simulations due to overflows. The Metropolis form (k)
=min{1,e ™} is bounded, and indeed has been used exten-
sively in Monte Carlo simulations, but its derivative has a
discontinuity at £=0. This may not be important in Monte
Carlo simulations, where the discontinuity is smeared by
fluctuations, but it may cause stability problems when solv-
ing the mean field ordinary differential equations. The Ka-
wasaki form of the rate function in Eq. (31) satisfies the local
detailed balance relation (30), is bounded between 0 and 2,
and is a smooth function.

The argument of the transition rate function
A, +=,k<Hf>/kBT represents the change in the self-consistent
potential field (Hy) at site r that is caused by a hop of a
single a-type Kuhn segment from site r to an adjacent vacant
site r+a,. Note that in a homogeneous system at thermody-
namic equilibrium, the quantities P, ¢y, (H{), and DY,
are independent of r and a;, and Ar,Hak(H“) 0. Therefore
the net diffusive currents across each bond vanish in such a

system. We also know that 7, (Hy), and Df,., are nonlin-

ear functions of P;. Consider small composmon perturba-
tions from an equilibrium homogeneous state far from the
wall, while constraining the velocity field u, to be uniform.

Noting that 1—¢,=1-¢ and ¢(0)=1 in Eq. (31), Eq. (29)

assumes the form
Pa Pa
- D¢ (-5fi——1)ab (32)

-]l‘ r+ak rr+a; a

which is similar to Fick’s first law. Since the time evolution
of ¢ is determined by the time evolution of Py, we identify

Dy, +a, With the translational self-diffusion coefficient D* in

the homogeneous equilibrium melt of homopolymer species
a, given by the Stokes-Einstein relation

kyT
N« ga ’

D= (33)

where N“{“ is the chain friction coefficient, and {* is the
segmental friction coefficient. For an inhomogeneous non-
equilibrium system we assume

kT
N

a
r,r+ak

(34)

r+a,\

where {f rea =y {Ha is the geometric average of the local

segmental frlctlon coefﬁments at the two sites r and r+a,.
For a polymer melt above its glass transition, it is well
known that local friction coefficients have a strong depen-
dence on the local free volume 1-¢,. This dependence is
captured by the Doolittle law [103]

F=iexpl(1-¢)" = (1- )], (35)

where £ is the friction coefficient in a homogeneous melt at
the reference temperature and pressure, whose density is ¢
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=(T,.s, Prep). Note that Eq. (35) recovers the Doolittle law
for the free volume relaxation time 7,= ¢! in a system
with homogeneous distribution of free volume f=1-¢. The
Doolittle law is equivalent to the Vogel-Fulcher-Tammann-
Hesse relation [104-107] and to the Williams-Landel-Ferry
equation [108,109], and thus ensures recovery of the time-
temperature superposition in a homogeneous system.

Within the framework of a dynamic self-consistent mean
field approximation described above, a Kuhn segment of
type a occupying the lattice site r interacts with a self-
consistent potential field () of the following form, when
measured in units of kzT:

SLI I

T :5 ; aﬁ)Xaﬁ<<¢ﬂ>> + X5 (0, 2z T z,ZL)

w
o2 4 I
T ok, T kT

(36)

The first term on the RHS of the equation above accounts
for pair interactions with Kuhn segments at adjacent sites.
These interactions are characterized by the segment-segment
interaction parameter x,s which is related to the Flory-
Huggins [67] interaction parameter 12y, defined as the en-
ergy change (normalized by kzT) due to the transfer of an «
segment from a melt of pure a to a melt of pure B. For
segments of the same size, it is assumed that x,,=xpp=0
and that y,p=xps- Within a mean field approximation
[72-74], the form of the segment-segment contribution to the
self-consistent potential field is obtained by averaging over
all contacts that an a-type segment, located at site r, has with
segments of type 3, located at sites r+a;. We use the double
angular brackets to denote summation over all nearest neigh-
bors. Therefore, for the fcc lattice between the two walls we
have

.

9 12
«M»EMMJEU Ooc) B + 2 (1= 8. )40,
k=7

k=10
(37)

Note that, since the segments at adjacent sites belong to
freely jointed chains of Kuhn segments, the probabilistic av-
eraging over segmental occupancies at the adjacent sites uses
segmental volume fractions d)B L at these sites, rather than
free segment probabilities PP, , to account for intrachain
correlations. Thus the self-consistent computation of the po-
tential field at site r is nonlocal, since it depends on segmen-
tal volume fractions ¢'f+ak at adjacent sites. This is true even
for monomer fluids, where ¢¢=P;. For polymer fluids, the
self-consistent field calculation at site r involves Py, at even
more remote sites. This is a consequence of Eq. (8), which
relates the segmental volume fraction ¢y at site r to free
segment probabilities P at all sites r’ within a sphere about
the site r, with its radlus being the extended length of the
freely jointed chain.

The second term on the right-hand side of Eq. (36) repre-
sents interactions between the segments in the first and the
last layers and the solid walls. The wall interaction parameter
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X< is defined as the energy change (normalized by kzT) due
to the transfer of an a segment from a layer adjacent to a
wall to a layer further away from the wall, in a pure fluid of
a-type segments. It is negative for attractive segment-wall
interactions, and positive for repulsive segment-wall interac-
tions.

The first two terms in Eq. (36) are the familiar segmental
interaction terms, which have the same form as in the equi-
librium lattice SCF theory of Scheutjens and Fleer [12]. The
last two terms make a nontrivial (i.e., nonconstant) contribu-
tion to the self-consistent potential only if the system is
driven out of thermodynamic equilibrium by applied
stresses, establishing a nonuniform velocity field u,, which,
in turn, perturbs the conformation tensor Sy corresponding to
the second moment of the end-to-end distance of ideal
jointed chains from its equilibrium isotropic form. The third
term is the kinetic energy contribution arising from the local
mass averaged velocity of segments advected by the flow,
based on the local equilibrium approximation defined in Eq.
(3). A similar term arises in a dynamic self-consistent mean
field theory for simple fluids [3,4]. The last term is not
present in simple (monomer) fluids. It accounts for the local
contribution to the free energy due to the deformation of
polymer chains by the nonuniform flow, and is given by [10]

f = By Ty == kT f JElin o~ In y£1dQ2. (38)

Here n&=(¢fw™!)/N® is the number density of a-type
chains, u, is the local internal energy of the polymer chains
per unit volume, defined by the elastic potential energy of the
springs in the FENE-P model, 5, is the configurational con-
tribution of the chains to the entropy per unit volume,
P2(Qy) is the local time-dependent probability distribution
for finding a chain of type « with the center of mass at site r
and the end-to-end distance Qy, given by Eq. (20), and
Preo(Qr) is ¥ (Qy) at equilibrium. Evaluating the integral in
Eq. (38) we get [10]

1 3
B elnfa 3
kT~ 2 (N~ 1)a

3 (23
+ln|:det<msr>:|}. (39)

3. Time evolution of momentum density

Let us consider first the time evolution of momentum den-
sity in an incompressible homogeneous system of ideal (non-
interacting) chains of type « that are modeled as FENE-P
dumbbells. The time evolution of the second moment of the
end-to-end vector for ideal dumbbells is given by Eq. (15),
which we rewrite as follows:

v 1 (S* (N“-1)&
S¥=-— L _ a5
M 3

m (40)
Tab,r

where
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Mr=1

—— TiS? 41
FT T e @b T “1)

originates from the nonlinear spring force in the FENE-P
model (M¢=1 in the Hookean dumbbell model that is recov-
ered in the limit % — ) and 75, . is the local relaxation time
for a Hookean dumbbell. Multiplication of Eq. (40) by 7, .
=74,M; and rearrangement of the resulting equation gives

TSy + 8¢ = —————M6. (42)

Let us define a deviatoric chain conformation tensor as

follows:

N¥—1 ~2
To=S% - %’Mﬁﬁ. (43)

Using Eq. (43) to find Sy as a function of Ty, and substitut-
ing it into Eq. (42), we obtain

v, (N -1@
~r:;,,,r(T:w 018+ i =0,
) (44)
where
v v o
oM
(MES)=ME6+ Lo+ (u.- VMY 6.
r r (9t & (45)

The upper-convective time derivative of the unit tensor is
given by
vV D&

6=——-Vu] - 6- 6 Vu,=-2D,, (46)
D1

where
1 T
D, = E(Vur +Vu,) (47)

is the rate-of-deformation tensor (i.e., the symmetric part of
the velocity gradient).

Substituting Eq. (45) into Eq. (44) and using Eq. (46)
yields the following expression for the deviatoric chain con-
formation tensor:

(N*= 1)@,

To=2%,

MED,

(N* = 1)a [ oM
4 —L 5+ (u,- VMNS] |,
3 ot

(48)

v
~a a
- 7-dh,r Tr +

If ny is the local number density of ideal (noninteracting)
FENE-P chains of type « at site r, their contribution to the
stress is

ol= nf%sﬁ (49)
MEN* - 1)

where the chain number density n; is constant in an incom-
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pressible system. The contribution of these chains to the de-
viatoric stress tensor at site r is defined as
=n—— T} 50
T MAN-a, T (0
Multiplying Eq. (48) by n®[3kzT/M*(N%—1)a>], and using
Topr=Tap.c/ My and Eq. (18) defining the Hookean relaxation
time 77, , we obtain

7 =27 D~ g, (51)
where
L N Y (NT-1)as [ oM .
r= 1‘8 l‘|: r 3 (%ra"'(ur'VMr)ﬁ 5

(52)

and both n and ¢} are constant in an incompressible system.
In Eq. (52),

=7 G = nMINA (N - 1) Ea224 (53)

is the contribution to the local shear viscosity in a system of
ideal chains of type « with local density n;. Here Gy
=ngkpT is the chain contribution to the bulk modulus and
Topr 18 the effective relaxation time for FENE-P dumbbells.
Thus the first term on the RHS of Eq. (51) is a Newtonian
viscous contribution to the deviatoric stress. The second term
on the RHS of Eq. (51) vanishes for a homogeneous system
at the steady state. We will refer to it as the elastic contribu-
tion to the deviatoric stress. The time evolution of the mo-
mentum density of segments belonging to a melt of ideal
chains of type « is given by

der

=VeCgue+ D), (54)

where —gru,, —£¢, and 27D, are the convective, elastic,
and viscous contributions to the stress, respectively. Note
that for a one-component incompressible fluid, where py and
7 are constant, V-u,=0, and gy=pu;. The viscous term
represents diffusion of the momentum density components,
as seen from the following

V-27D,) = 5%V - (Vu, + Vul) = 12Vg%,  (55)

where the kinematic viscosity vy =7 /p; plays the role of a
diffusion coefficient for propagation of momentum.

We postulate here that in real (compressible) inhomoge-
neous fluids this term is caused by hopping of segments from
an occupied cage to an adjacent vacant one. Such a postulate
was used in the DSCF theory for simple (monomer) fluids of
Khan and Shnidman, which produced detailed computations
of interfacial and wetting flows. However, the concept of
viscous momentum propagation by activated hopping can be
traced all the way back to the classic kinetic theories of lig-
uids by Eyring [1] and Frenkel [2].

Applying the postulate above to an inhomogeneous, com-
pressible blend of chains of two types a=A,B, interacting
with each other and with the walls according to the self-
consistent model (37), Eq. (54) is replaced by the following
equation for the evolution of momentum density at site r:
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dt k=1 a W k=1
(56)

The term g;u, in Egs. (54) and (56) represents the con-
vective contribution to the stress, and is unchanged. How-
ever, note that now u,. is the mass-averaged mean velocity, as
given by Eq. (14). The term —&; in Eq. (56) represents the
elastic contribution to the stress and is still given by Eq. (52),
except that ny and {; are now functions of r.

The divergence of the viscous stress V-(27¢D,) in Eq.
(54) is replaced by the term X7 . +a,/@ In Eq. (56), using a
Markov chain model for activated-rate viscous transport of
momentum between adjacent sites. The net change

=T ra,/@ i local momentum density due to hopping of

segments of species a across each bond between adjacent
sites r and r+a, is given by

(¢4

a Vr,r+ak
Trrea, = (1- 5(”31()*3’0)(1 - 5(r+ak)-e3»zL+\f%a)m
AP
& ¢r+ak ¢ kg T
Ar,r+a ,<Ha> a
- gf+ak(1 - ¢3)<P<— kB—kTr ;k_ (57)

For each component of the segmental momentum density
vector g, Eq. (57) has the same form as Eq. (29), which
defines diffusive free segment probability fluxes j; . +ap With
components of segmental momentum density gy replacing
the free segment probability Py, and the local kinematic
shear viscosity coefficient at zero shear rate vy, +a,/ (1-¢)

replacing the local self-diffusion coefficient Dy, /(1 - ).
In a FENE-P dumbbell model for the chain,

~2
Lirva, AMy

Vlo‘ir+ak= 24me (58)

where {1, = V{7 L, 15 the geometric average of the local
segmental friction coefficients at sites r and r+a; obeying
the Doolittle law [103] [Eq. (35)]. The transition rate func-
tion ¢ has been defined in Eq. (31). It depends on
Apy +ak(Hf>/ kgT, the change in the self-consistent potential
field at site r resulting from a segment of type « hopping
from site r to an adjacent vacant site r+a;. The dependence
of (H)/kgT on segmental interactions (with segments of
opposite type and with walls), local kinetic energy, and chain
conformations has been described by Egs. (36)—(39).

For a one-component, incompressible fluid, 1 —¢,.=1- 65,
and ¢(0)=1 in Eq. (31), and the kinematic viscosity coeffi-
cient vy, +a,= V= 7"/ p® is constant. In this case, we recover
Newton’s law for viscous contribution to the stress —77

arising from hops between sites r and r+ay,

(04
rr+a;
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€ria, — &r U, — U
~ Tra = V"‘(%)m: na(% a;. (59)

The last term in Eq. (56) has no counterpart in Eq. (54).
Its origin can be understood as follows. The probability
density for a segment belonging to a chain of con-
nected segments of type a is ¢/w. If jr,., is not zero,
there is a net drift velocity ji,, /Py due to biased
hopping between the sites r and r+a,. This contributes
(¢f/w)(—§ﬁr+akjﬁr+ak/ Py) to the friction force density, and
the total friction force density is obtained by summing over
all the bonds (it is negligible for an incompressible one-
species fluid of ideal chains).

Our isothermal DSCF theory for unentangled polymer
blends results in a system of coupled nonlinear ordinary dif-
ferential equations for a set of independent variables defined
at each site r on the fec lattice: P2, gA, and S? (one-
component fluid), or Pf, Pf , g’;‘, gé , /5, and S; (two-
component fluid). For systems exhibiting translational invari-
ance within triangular layers parallel to the walls, the spatial
computational grid becomes one dimensional. In order to
solve these DSCF equations, one has to prescribe boundary
conditions for u,=g,./p, at sites adjoining the walls. We as-
sume that if a connected segment of type a occupies a site r
adjacent to a wall (which occurs with probability ¢¢), then it
acquires the velocity of that wall. Therefore, for the geom-
etry specified in Figs. 1 and 2, the mass-averaged mean ve-
locity at the sites next to the walls is set to

u_, =- > PL. uyey, U = > oL, uer,  (60)
o o

where z,=12/3a, z;=12/3aL, and L is the number of tri-
angular lattice layers stacked in a fcc lattice arrangement
between the walls. Periodic boundary conditions are used in
the directions perpendicular to the walls.

IV. ONE-COMPONENT MELTS
A. Simulation setup and parameter estimation

As our first application of the DSCF theory, we have stud-
ied the morphology and rheology of unentangled homopoly-
mer melts consisting of a single component A in a sheared
planar channel between two solid walls [see Fig. 1(a)]. We
assume that the homopolymer chains in the melt are linear
and unentangled. Furthermore, we assume that the melt stays
invariant under translations in directions parallel to the walls,
and is kept isothermal and isobaric at temperature T
=509 K and atmospheric pressure. Each homopolymer chain
is modeled by N freely jointed Kuhn segments. For the
Kuhn segment length, we adopted the value a=4.6 A used
by Li and Ruckenstein [110] in their equilibrium SCF study
of polyethylene chains. The lattice constant of the fcc lattice
used in our DSCF model is assigned the value of the Kuhn
length cited above. The molecular weight of a homopolymer
melt is assumed to be below the entanglement molecular
weight, M <M. This restricts the number of Kuhn segments
in a homopolymer chain to N*<N,, where N, is the mean
number of Kuhn segments between entanglements. The
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value of N, has been controversial. Estimates in the literature
[111] vary between 35 and 75. Since the present form of our
DSCF model is limited to unentangled fluids, we conserva-
tively limited the number of Kuhn segments in the ho-
mopolymer chains to N*<32, which is below the lower
bound for N, cited above.

We used the Stokes-Einstein relation to determine the seg-
mental friction coefficient from the value of the self-
diffusion coefficient for an equilibrium polyethylene melt at
the same temperature and pressure, obtained by Paul et al.
[45] from MD simulations and neutron spin-echo spectros-
copy. The free volume in the bulk of the melt is estimated
from the difference between the densities of polyethylene at
T=509 K and at the glass transition temperature 7,=263 K,
both at atmospheric pressure. This leads to the estimate of
the free volume fraction in the bulk phase of polyethylene
melt at 7=509 K and atmospheric pressure being ¢’=1-¢
=0.15, where $=0.85 is the volume fraction of polymer
chains.

The DSCEF theory is first used to equilibrate a homopoly-
mer melt between static planar walls by solving the evolution
equations with gf:ur=0 at each site, using the isotropic
equilibrium stepping probabilities )\Qk,r=ll—2 for all k. The
equilibration run was always started from the homogeneous
bulk phase values for polyethylene melt at 7=509 K and
atmospheric pressure. The results of the equilibration run
provided the initial values for solving the DSCF evolution
equations in a channel between an upper and a lower planar
walls moving at constant velocities u,,=+u,e;, respectively,
until a nonequilibrium steady state was reached. This corre-
sponds to a constant nominal shear rate y=2u,/[v2/3(L
+1)a], where \J’%(L+ 1)a is the distance between the two
walls containing L triangular lattice layers of Kuhn segments
stacked in a fcc lattice arrangement. This procedure was re-
peated for a number of different values of 3 and N*. To
investigate relaxation from a nonequilibrium steady state
back to thermodynamic equilibrium, in some instances we
furthermore used the steady-state results as initial values for
solving the quasi-one-dimensional DSCF equations at y=0.
The DSCEF results reported below use a system of fundamen-
tal units consisting of [energy]|=kzT, [length]=a, and
[time]=7, where 7=a?/Dj is the characteristic time for a
probe (unconnected) segment of type A to diffuse a distance
a, and Dé is the self-diffusion coefficient of the A-type probe
segment, related to its friction coefficient {6‘ by the Stokes-
Einstein relation Dj=kzT/{y. All the quantities obtained
from the DSCF simulations reported below are expressed in
these units.

B. DSCF simulation results for melts

In this subsection we report the results of DSCF
simulations of a one-component homopolymer melt across a
planar channel that is sheared at a nominal shear rate
¥=1X10737"!. The channel contained L=64 triangular lat-
tice layers stacked in the fcc lattice arrangement. We used
linear chains of N*=24 freely jointed Kuhn segments in the
simulations reported in this subsection, unless stated other-
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FIG. 4. Steady-state segmental volume fraction profiles of a
one-component homopolymer melt, across the channel, obtained at
a nominal shear rate y=1X 103771, The polymer chain consists of
NA=24 Kuhn segments. The short-range interactions between the
polymer segments and the solid walls vary between attractive (x;
<0), neutral (x,=0), and repulsive (x,>0).

wise. Figure 4 shows the variation of segmental volume frac-
tion ¢, across the channel. At this nominal shear rate, the
segmental volume fraction profiles at nonequilibrium steady
state are not discernible from the equilibrium profiles. The
three profiles correspond to attractive (y,<<0), neutral (x,
=0), and repulsive (y,>0) segment-wall interactions. Thus
the depletion of polymer segmental volume fraction in the
layers next to the solid wall is sensitive to the segment-wall
interactions. The depletion at the wall is followed by a non-
monotonic, oscillatory approach toward bulk values, span-
ning the next few layers. If the system were infinite, the bulk
values would correspond to the mean total volume fraction

of the polymer fluid, ¢=0.85. However the bulk densities

deviate from ¢, due to the finite size effects caused by the
small separation between the wall and the segment-surface
interactions.

Note that if the original equilibrium SCF lattice theory of
Scheutjens and Fleer [68] were applied to a one-component
melt at equilibrium between two static walls, the segmental
volume fraction profile across the channel would be homo-
geneous, since their theory is incompressible. However,
similar wall-depletion and finite-size effects are produced by
compressible variants of the equilibrium Scheutjens-Fleer
SCF theory [69-71]. It is also worth noting that a depleted
layer adjacent to the wall also occurs in lattice gas models of
simple liquids consisting of small molecules [3,4], if there is
a strong repulsive interaction between the wall and the mol-
ecules in the adjacent layer. However, wall depletion of seg-
mental volume fractions in polymer melts is predominantly
caused by an entropic, rather than enthalpic effect, as the
number of available chain conformations is reduced next to
the walls. As shown in Fig. 4, wall depletion of segmental
volume fractions in polymer melts occurs even when the
walls are neutral (x,=0), though it can be enhanced by re-
pulsive wall interactions (y,>0) and diminished by attrac-
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FIG. 5. Time evolution of the velocity in the lower quarter chan-
nel, obtained at a nominal shear rate y=1Xx 107!, The walls are
neutral (y,=0), and the chain length is N4=24.

tive interactions with the wall (y,<<0). The oscillatory decay
of the depletion at increasing distances from the wall can be
attributed to intrachain correlations between the segments. In
all the other simulations reported here we used neutral walls
(x;=0).

In Figs. 5 and 6 we analyze further the results of a DSCF
simulation of the system with the same parameters as in Fig.
4, restricted to neutral (y,=0) segmental interactions with the
walls. We have studied the time evolution of the x compo-
nent of the velocity in a planar channel between two sheared
walls. Prior to initializing shear at =0, the velocity of both
walls and of the fluid between them was zero, corresponding
to a system at thermal equilibrium. At subsequent times, we
first observed rapid, nonmonotonic propagation of the mo-
mentum (and, therefore, of the velocity) from the wall. This

x 10

1:
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x
=
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FIG. 6. Velocity profiles across the channel, given at selected
times and at steady state (denoted by the dash-dotted line).
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quasi-oscillatory behavior originated from —g{", the elastic
contribution to the stress [see Egs. (52), (53), and (55)], and
it disappeared when the elastic contribution to the stress was
neglected in the momentum evolution equations. In a con-
tinuum PDE model of a sheared incompressible non-
Newtonian fluid [112], a similar elastic contribution to the
stress introduces a term of hyperbolic nature into the mo-
mentum evolution, giving rise to shock waves which are
smeared and damped by the viscous term. It is known that
smearing of shock wave solutions to hyperbolic partial dif-
ferential equations is enhanced by finite difference approxi-
mations of the type that we used here [113].

Figure 5 displays the time evolution of the x component
of the velocity profile in a layer parallel to the walls located
at a lower quarter channel. Note that we use a logarithmic
time scale. Notice that at early times (#< 107!7), the velocity
at the layer is zero, as momentum has not yet propagated to
this layer. Between ¢~ 107!7 and =3 X 107! 7 the x compo-
nent of the velocity exhibits a slight undershoot, which may
not be physical, but is rather an artifact of our finite differ-
ence approximation. After this time, the smeared velocity
shock wave is reflected back and forth between the two chan-
nel walls, with the amplitude damped by the viscous term.
Finally, around r=~2 X 107 the oscillations are completely
damped out, and the x component of the velocity approaches
its steady state value at this layer.

Figure 6 shows the wavelike propagation of the x compo-
nent of the velocity across the channel at earlier times, and
its subsequent damping by the viscous term in the momen-
tum transport equation [the first sum on the RHS of Eq. (56)]
resulting in a Couette-like steady-state profile at long times.
This profile is linear across the channel, except near the
walls, where we observe a noticeable velocity slip. We note
that a velocity slip can be observed even in DSCF simula-
tions of simple liquids of small molecules in a sheared cap-
illary, if there is a strong unfavorable interaction between the
molecules and the walls that leads to a depletion layer at the
walls [3,4]. Such velocity slip effects have been known since
Tolstoi’s pioneering observations [114] on capillary flow of
water in hydrophobic microcapillaries, and have been dis-
cussed extensively in the literature [115-117]. We believe
that, in the case of polymer melts, the velocity slip at the
wall (Fig. 6) is also caused by the depletion of the segmental
volume fraction near the walls, as seen in Fig. 4, though in
this case the depletion is dominated by the chain entropy
effects mentioned above.

The time evolution of the shear stress, in a layer at the
lower quarter channel, is shown in Fig. 7. The system is first
equilibrated and then subjected to a steady shear flow (at a
nominal shear rate y=1X1077""). Figure 7(a) shows the
development of the shear stress, at the layer located at the
lower quarter of the channel, after the onset of shear. Until
around t=7 X 107! 7 the velocity has not propagated to this
layer yet, and the shear stress is zero. After this time, a slight
undershoot develops in the shear stress before it starts rising.
However, as explained above, this behavior could be an ar-
tifact of our model. From this time on, the shear stress de-
velops in the manner of a smeared shock wave with decaying
amplitude. In the course of time, these shock waves are
damped out by the viscous term, and the shear stress reaches
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FIG. 7. Time evolution of the shear stress, at the lower quarter
channel, following (a) the onset of a steady shear, and (b) the re-
cession of the shear.

its steady state value. This steady state is used as a starting
point for a consecutive simulation in which the wall velocity
is set to zero, and the system is allowed to relax. Figure 7(b)
displays this stress relaxation. The shear stress initially re-
tains its steady state value until the velocity at this layer
starts to decay. The overshoot observed at t=~7 X 10772
X 10°7 could be just an artifact as mentioned above. After
this time, the shear stress decays in the fashion of a smeared
shock wave, with the amplitude of the shock waves being
damped viscously, until it vanishes.

The extent to which an ideal (noninteracting) polymer test
chain is stretched under a nonuniform flow velocity field can
be quantified by calculating the eigenvalues of the tensor of
the second moment of the end-to-end vector. The three ei-
genvalues quantify stretching along the three principal axes
of this tensor. Figure 8 displays the time evolution, at a mid-
channel layer, of the (a) largest, (b) intermediate, and (c)
smallest eigenvalues, normalized by their equilibrium values.
At the reported nominal shear rate y=1X 1075771, the
stretching of the homopolymer ideal test chain consisting of
NA=24 Kuhn segments is slight. However, note that, simi-
larly to the time evolution of the flow velocity, both the
highest and smallest eigenvalues seem to converge toward
their steady-state values in a nonmonotonic, oscillatory fash-
ion.

Figure 9(a) displays the time evolution of the first normal
stress difference, defined by Ny=0,,— 0. Its positive value
indicates that there is a higher degree of orientation in the
flow direction (the x direction) than in the direction of the
velocity gradient (the z direction). The four different curves
in Fig. 9(a) correspond to four different chain lengths N*
=8, 16, 24, and 32, showing the dependence of N; on the
chain length. The other parameters have the same value as in
Fig. 5 (with x,=0). The time-dependent growth of N; upon
startup of steady shearing also follows a nonmonotonic, 0s-
cillatory trend, until N; converges to its steady state value.
Figure 9(b) displays an enlarged view of the rise and decay
of these oscillations.
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FIG. 8. Time evolution of the stretching of an ideal (noninter-
acting) polymer chain under flow (at y=1X1077"!). The stretch-
ing is calculated using the (a) largest, (b) intermediate, and (c)
smallest eigenvalues of the second moment of the end-to-end dis-
tance, normalized by their values at equilibrium.

V. PHASE-SEPARATED SYMMETRIC BLENDS

A. Simulation setup and parameter estimation

As the next application of our DSCF theory, we chose to
simulate phase-separated, two-component homopolymer
blends in a planar channel. We have assumed the same Kuhn
segment length, glass transition temperature and bulk values
of the density, friction coefficient and transport coefficients
for the pure one-component phases of the two A and B spe-
cies as for the one-component A melt in Sec. IV. The dis-
tance between the two walls, the temperature, and the nomi-
nal shear rate were also set at the same values as in Sec. 1V,
but the nominal shear rate was set at a much higher value
7=1x%10737"". The segment-wall interactions were assumed
to be neutral (y*=x?=0) with respect to both species, and
the segment-segment interaction parameter between both
species was set at x,5=0.55/12, corresponding to a Flory-
Huggins interaction parameter 12y,5=0.55.

The two-component immiscible blend was first equili-
brated by integrating the DSCF equations at zero wall veloci-
ties. The equilibration was initialized using a sharp step func-
tion profile of the segmental volume fraction of the two
species across the channel, and resulted in a coexistence of a
majority-A and a majority-B bulk phases, with smooth inter-
facial profiles of the segmental volume fractions of the two
species across the interface between the two phases, as
shown by the solid lines in Fig. 10. Using equilibrium results
as an initial input at time #=0, the DSCF equations are then
integrated for 1>0 with the top and bottom wall velocities

set to constant but opposite values u,, = +u, e, corresponding
to the chosen nominal shear rate.

B. Simulation results for immiscible blends

Figures 10—13 present the results of simulating the phase
separated, two-component unentangled polymer blend in a
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FIG. 9. (a) Time evolution of the first normal stress difference,
N,=0,,—0.. The chain length varies from N*=8 to 24. The other
parameters are the same as in Fig. 4 with (y,=0). (b) An enlarged
view of the rise of the first normal stress difference.

sheared channel, using the parameters specified in Sec. V A.
Figure 10 shows the segmental volume fraction profiles of
the phase-separated two-component homopolymer blend,
across the channel. The system exhibits coexistence of two
bulk phases A and B, and an interfacial region of finite width
between them. Phase A has a majority of A-type homopoly-
mers and a minority of B-type homopolymers. Phase B is
just the opposite. The solid lines denote the equilibrium pro-
files (corresponding to time r=0). Upon equilibration, the
system is sheared at the nominal shear rate y=1X 10737
until the steady state is achieved. The segmental volume
fraction profiles at the nonequilibrium steady-state are repre-
sented by the symbols. At this shear rate, the nonequilibrium
steady state profiles are not noticeably different from the
equilibrium profiles. The short-range interactions between
the polymer segments and the solid walls are neutral (y,
=0). For such interactions, the depletion of polymer

041801-21



MIHAJLOVIC, LO, AND SHNIDMAN

09— T T T T T T

06

03

TN P A

-30 -20 -10 0 10 20 30
z/a

FIG. 10. Steady-state segmental volume fraction profiles of a
two-component polymer blend, across the channel, obtained at a
nominal shear rate y=1X10737"!, Polymer chains consist of N4
=NP=24 Kuhn segments. The segment-segment interaction param-
eter is x45=0.55/12 and the walls are neutral (y,=0).

segments in the vicinity of the wall is slight on the scale
shown.

Figure 11 displays the cross-channel variation of u,, the x
component of the mass-averaged steady-state velocity, cen-
tered about the polymer-polymer interface (z=0), obtained at
a nominal shear rate y=1X10737"!. There is a significant
upward kink in the velocity profile in the interfacial region.
This phenomenon is known as interfacial velocity slip. It can
be quantified by the intercepts of the extrapolation of linear
portion of the velocity profiles with the velocity axis (deter-
mining a velocity slip), or with the z axis normal to the
interface (determining a slip length).

In Fig. 12, the variation of the shear viscosity across the
interface is shown centered about the mid channel plane. The
local shear viscosity decreases from the bulk values and

x107?
1

u, [al]

o 5 0 5 10
z/a

FIG. 11. Steady-state velocity profile, centered about the planar
interface. Simulation parameters are the same as in Fig. 10.
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FIG. 12. Steady-state viscosity profile, centered about the inter-

face of a phase-separated, two-component polymer blend. Simula-
tion parameters are the same as in Fig. 10.

reaches a minimum at mid-channel. It is calculated by divid-
ing the local shear stress, obtained from the local momentum
density flux, by the local shear rate, obtained from the gra-
dient of the velocity. The interfacial velocity slip and the
accompanying reduction of shear viscosity across the inter-
face have been first predicted based on scaling arguments
[118,119]. More recently, it was analyzed [120] using nu-
merical solutions of approximate constitutive equations for
the evolution of the composition and of the deviatoric stress
derived from the Rouse model assuming fluid incompress-
ibility. Figures 11 and 12 are qualitatively similar to these
predictions, as well as to results obtained by MD simulations
[46,47] of the same phenomena. Similar phenomena have
been observed experimentally [121-123], though the bulk
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FIG. 13. Cross-channel stretching profile of an ideal (noninter-
acting) polymer test chain at the steady state. The stretching is
calculated using the (a) largest, (b) intermediate, and (c) smallest
eigenvalues of the second moment of the end-to-end distance, nor-
malized by their values at equilibrium. Simulation parameters are
the same as in Fig. 10.
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phases of the observed polymer fluids were in the entangled
regime.

The local stretching of an ideal (noninteracting) polymer
test chain by nonuniform flows can be quantified by calcu-
lating the eigenvalues of the tensor of the second moment of
the end-to-end vector for ideal chains, with their center of
mass located at a particular layer. The three eigenvalues mea-
sure stretching along the three principal axes of this tensor.
Fig. 13 shows the variation across the channel of the (a)
largest, (b) intermediate, and (c) smallest eigenvalues at the
steady state, normalized by their equilibrium values. At the
nominal shear rate y=1X10737"!, the strongest stretching
(=4%) occurs next to the walls, compared to =2% in the
bulk phases. However, keep in mind that Fig. 13 displays
stretching of an ideal (noninteracting) chain due to the non-
uniform steady-state velocity profile. Note that chain stretch-
ing is affected by interfacial flows. The stretching shown in
Fig. 13 does not account for segment-segment and segment-
wall interactions. These are modeled by the interactions of
segments with a self-consistent field as they perform random
walks generating a chain configuration. The free segment
and stepping probabilities obtained by numerical solutions of
the DSCF evolution equations can be used to provide transi-
tion rates for Monte Carlo sampling of the second moment of
the end-to-end distance of interacting chains. Such Monte
Carlo DSCF calculations have been presented in a separate
work [124].

VI. DISCUSSION

We have presented a lattice formulation for a DSCF
theory for inhomogeneous fluids consisting of unentangled
homopolymer chains between sheared parallel walls. It is
based on probabilistic conservation laws for species occu-
pancies and momentum that are coupled to models of poly-
mer structure and conformation. Since the DSCF theory is
formulated on the Kuhn length scale, it provides a computa-
tional method for resolving interfacial structure and dynam-
ics at sheared interfaces with walls and between phase-
separated domains. This was illustrated by DSCF simulations
of transient and steady-state interfacial composition, flow,
and rheology in unentangled, inhomogeneous polymer melts
and blends.

Like any singlet-level mean field approach, the DSCF
theory approximates the joint probability distribution of seg-
ments on a lattice by a product of one-body free segment
probabilities at each site interacting with a local self-
consistent potential field. Such an approximation underesti-
mates many-body correlations and thermal fluctuations.
These are enhanced as the equilibrium critical point for
phase separation is approached, shifting the true critical tem-
perature downward from its mean field value, and causing
scaling crossover from the mean field to the three-
dimensional Ising universality class in a narrow region about
the critical point of a width characterized by the Ginzburg
number Gi. Modeling the conformations of freely jointed
chains as lattice random walks in a self-consistent field ac-
counts for intrachain correlations imposed by the freely
jointed chain constraint, but not for correlations propagated
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by interactions with adjacent segments and walls. The accu-
racy of equilibrium SCF theories for symmetric polymer
blends increases with the chain length N, so that the mean
field value for the critical point of a symmetric blend be-
comes asymptotically exact as N— . The mean field critical
point y=yx, satisfies y.N=2 where y=12y,z is the Flory
parameter related to y,p, the segment-segment interaction
parameter on the fcc lattice that is used in our DSCF model.
The leading correction causing the downward shift of the
true critical temperature from its mean field value scales with
chain length as N~"?, while the Ginzburg number Gi scales
as N~!. The current version of our DSCF theory is limited to
unentangled polymers with N<N,=35. For simulations of
symmetric blends with chain length N=24 reported here, Gi
is significantly smaller (by a factor of 0.04) than in a mixture
of monomers, but the shift of the critical temperature from its
mean field value is appreciable (assuming a pre-factor of
order unity, the first order correction is about 20%). Applica-
tion of shear further affects the critical fluctuations, the criti-
cal temperature shift, and the Ginzburg number Gi.

The DSCF simulations of sheared polymer blends re-
ported here were done far from criticality, and hence are not
affected by critical thermal fluctuations. However, our DSCF
simulation neglects capillary thermal fluctuations, which are
expected to broaden significantly the effective thickness of
the interface between the two phases compared to the “in-
trinsic” DSCF interfacial profiles, such as those shown in
Fig. 10. For a quantitative comparison of DSCF interfacial
width with experimental observations or with MD and
Monte Carlo simulations, it is necessary to account for such
broadening of the “intrinsic” interface profile by using theo-
retical estimates of the capillary wave spectrum [125-128].
We report such a quantitative comparison of DSCF and MD
interfacial profiles, accounting for capillary waves broaden-
ing, in a separate work [124].

The DSCF approach presented here can be generalized to
account for different chain structure (e.g., block copolymers
or branching) or for additional conservation laws and trans-
port equations (e.g., for energy and/or charge). As any mean
field theory, it can also be improved systematically by relax-
ing the factorization approximation for configurational prob-
abilities, to account for joint probabilities of nearest-
neighbor pairs, or of even larger compact clusters. For
practical purposes, it is important to make it applicable to
entangled polymer fluids. We have already succeeded in pro-
ducing a crude version of a DSCF theory for inhomogeneous
entangled polymer fluids. This was achieved by regarding
reptation tube segments, rather than Kuhn segments, as the
basic elements for our lattice DSCF model, and relating Lar-
son’s differential constitutive equation for tube segment ori-
entation [8] (which is an approximation of the Doi-Edwards
reputation theory [5]) to the evolution of the stepping prob-
abilities used for modeling the primitive chain of the tube as
arandom walk in a self-consistent field under flow. However,
this approach is limited to interfaces wider than the length
scale of a tube segment. Resolution of interfacial dynamics
of entangled polymers on the finer Kuhn length scale re-
quires a more sophisticated approach. Work along these lines
will be reported in future publications.
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