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Reexamination of the Helfrich-Hurault effect in smectic-A liquid crystals
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The Helfrich-Hurault effect is a phase transition that occurs in samples of cholesteric or smectic liquid
crystals subject to external electric or magnetic fields. In this paper we analyze the Helfrich-Hurault effect of
smectic-A liquid crystals in an electrostatic field taking into account the complete electromechanical coupling.
A comparison is made with the results already obtained for the partially coupled case where one takes into
account only the effect of the field on the crystal configuration and considering that field unaffected.
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I. INTRODUCTION

The smectic-A liquid crystals [1] exhibit an intermediate
order between that of a solid and a liquid; they possess a
long-range orientational order and one-dimensional posi-
tional ordering. Their rodlike molecules organize themselves
into layers. The average alignment is represented by a unit
vector n, called the optical axis or the director, which is
locally perpendicular to the layers. In the presence of an
electric field a liquid crystal tends to align its molecules nor-
mal or along the direction of the field, depending on the
dielectric behavior of the molecules [1]. In smectic-A phases,
rotation of the molecules induces the distortion of the layers.
Hence, electric or magnetic fields are able to induce a switch
from an undistorted liquid crystal configuration to a distorted
one. In cholesteric or smectic liquid crystals, this phase tran-
sition is called the Helfrich-Hurault effect [1-3].

Theoretical results for the Helfrich-Hurault transition in
infinite samples of smectic-A liquid crystals can be found in
[1]. More recently, Stewart [4] extended the theoretical re-
sults of Helfrich [2] and Hurault [3] for infinite samples of
cholesteric liquid crystals under the influence of magnetic
fields, to finite cells of smectic-A liquid crystals subject to a
uniform pressure and magnetic or electric field. However, in
all these approaches the electric field is considered partially
coupled with the mechanical system in the sense that it can
induce layer distortion, but it is not affected by the latter.

In the electro-optic devices, samples of liquid crystal are
placed between two plates, which work as two capacitor
electrodes. The optical properties can be altered by applying
a voltage difference between the two electrodes. The optical
axis distortion induces an alteration of the dielectric proper-
ties and, consequently, of the liquid crystal electric state. The
so-modified electric field further affects the optical properties
and so on. Deuling [5] first took into account the mutual
interaction between the field and the material for nematic
liquid crystals. Self et al. [6] looked at post-threshold effects
of electrically driven Freedericks transition in a nematic cell
confined between two infinite parallel plates. Nevertheless,
in nematics, the fully electromechanical coupling does not
modify the Freedericks critical electric field. More recently,
one of us [7] has proposed a model for smectic-A liquid
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crystals which incorporates the Maxwell equations in order
to describe the mutual interaction between the smectic and
the electric field. This model is fully nonlinear and when one
considers plane deformations of smectic-A infinite samples
in a homeotropic texture that contain a very large number of
layers, the linear analysis of the equations shows a modifi-
cation of the classic Helfrich-Hurault threshold. In this paper
we generalize these findings to the case of a finite sample of
smectic-A in a homeotropic alignment between two parallel
plates.

The equilibrium equations, namely the layers shape equa-
tion and the Maxwell equations, are obtained through varia-
tional arguments. We will show how the classical Helfrich-
Hurault threshold can be modified by taking into account the
fully electromechanical coupling.

This paper is organized as follows: in Sec. I we give the
expression of the free energy which characterizes the
material-field interaction and we also derive the related
Euler-Lagrange equations. The critical threshold is deter-
mined by solving an eigenvalues problem; explicit solution
is obtained in Sec. III; some conclusions are pointed out in
Sec. IV.

II. EQUILIBRIUM EQUATIONS

Smectic-A liquid crystals can be viewed as a continuum
of surfaces 3(¢) defined by the equation

w(x,0) =0, (1)

where x denotes the position in the space of a point on the
surface characterized by the { parameter. Moreover, smectic-
A are characterized by the property that the rodlike mol-
ecules, described by a vectorial field n, are orthogonal to the
respective surfaces; this propriety is expressed by the relation

Vo
n= |V_w (2)

where V denotes the spatial gradient operator; so the tilt of
the molecules depends on the layers’ deformation.

In their natural configuration the layers are flat, and the
smectic-A can be described as a bunch of parallel planes. Let
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us denote with n” the homogeneous field director for a cell of
smectic in its natural configuration. Then, we consider a Car-
tesian coordinate system O(x,y,z) with the third axis parallel
to n’. We suppose that the smectic-A liquid crystal, in a
homeotropic alignment, is confined to the volume 0 <x=a,
0<y=b, and 0<z=<d. In an actual experiment the planes
placed at z=0 and z=d can be the electrodes of a capacitor.
When an electric potential V, is applied between the elec-
trodes, it gives rise to an electric field E=-V ¢ inside the
material, where ¢ is the electrostatic potential.

We consider the smectic-A to be a perfect insulator with
dielectric anisotropy. The static dielectric constants & and & |
are measured along and normal to the molecular axis, respec-
tively; the quantity e,=¢—&, gives the dielectric anisotropy.
In particular, if g, is negative, then the molecules tend to
rotate their axis towards the plane orthogonal to the electric
field. It is widely known [ 1] that there is a critical voltage V.,
above which the electric forces exceed the elastic strength;
then the smectic switches from the undistorted state to a
distorted one.

Let us consider an applied potential V, slightly larger than
the critical threshold V,,, so we have

$(x,y,0)=0, (3a)

oy, d) =V, =V, (1+€), e<l (3b)

and, as a consequence, we suppose that the smectic layers
undergo a slight distortion; by using Eq. (2) the correspon-
dent distorted director is

n=[-eu,—eu,l- E(Vau) 2]+ o(€), 4)

where eu(x,y,z) represents the layer displacement in n® di-
rection. V denotes the bi-dimensional gradient in the (x,y)
plane, V,=(d/dx,d/ dy). Also, we assume that the molecules
stick to the boundary with a free orientation. This means that
eu vanishes on the boundary, while its derivative with re-
spect to the boundary outward normal » is arbitrary. In par-
ticular, we have the boundary conditions

eu(x,y,0) = eu(x,y,d) =0. (5)

The free energy per volume unit related to the distortion and
to the presence of the electric field is a sum of two contribu-
tions. The first is the elastic energy (see pp. 343 of [1]),
including the nematic energy of distortion (namely, the splay
and the saddle-splay terms) and the smectic energy of com-
pression of the layers

X B
wa = LA + 40y — a1+ S, (6)

XY

where K, and B are positive constants. The quantity A\

=VK; /B is the characteristic length of the material, of the
order of the smectic layer thickness.

The second contribution is due to the interaction between
the field director and the local electric field. According to
[5,1], the interaction director-field energy density is, in
Lorentz-Heaviside units [9],
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wg=-3D-E, (7)

where D=¢ | E+¢,(E-n)n is the dielectric displacement. So,
in terms of the electrostatic potential ¢ we have

we=—j3le, (V)* +e,n- V). (8)

The introduction of this term can modify the convexity of the
total energy giving rise to the buckling of the layers under an
imposed voltage difference.

Let us consider electrostatic potentials of the type

V.,
p= A €o(x,y,2); 9)

notice that ¢ satisfies the boundary conditions (3) provided
that the potential ¢ satisfies the homogeneous boundary con-
ditions

€¢(x,y,0) = €g(x,y,d) =0. (10)

We recover the classical theory by taking ep=0 everywhere.
To make the problem more tractable, we assume

€U = ug sin(Zz)v(x,y), (11a)

0=, sin(%z)w(x,y), (11b)

with uy and ¢, small constants, allowing u and ¢ to satisfy
the boundary conditions (5) and (10), respectively.
The total free energy is

G=f (wy +wg)d(; (12)
Q

by inserting Egs. (6), (9), and (11) into Eq. (12) gives

__&a

2

K
G E2Q + duj f |:?1(Asv)2 +2K,(0%, - v v )

S

B m\? 1
+ E(E) v+ EsaEzr(st)z}dS

- MO(POSudf [(sz) : (st)Ecr]dS
S

2
—wﬁdf {%(Vxlp)h%(? z,bz}dS, (13)
S

where S is the plane region 0 <x=a, 0<y=, with bound-
ary I'. A is the usual two-dimensional Laplace operator and
E. =-V.,/d.

We now vary G in order to obtain the related Euler-
Lagrange equations to the variables u and . The variation of
the first integral of (13) is carefully discussed by Stewart [4]
and Landau and Lifshitz [8] in the case of simply supported
boundary conditions. Let s(x,y) be the variation of the dis-
placement v. Then
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B m\?
it 3 2 el 2
5fs[ (Aw) +2K1(v o =V U ) + 2<2> v

1
+ EsaEf,.(st)z} ds

:f {K1A3v+l_?<d)v ek A?v]GdS (14)
s

and, since s=0 and ds/dw is arbitrary on I', we obtain

v=0, onl (15a)
U,=0, inx=0, x=a, (15b)
vy,,=0 iny=0, y=b. (15¢)

In Eq. (14) A? denotes the two-dimensional biharmonic
operator.

In order to vary the remaining terms we introduce the ¢
variation {(x,y) such that d/dv=0 on I'. The variation of
the second and third integral in the free-energy expression
gives

5f [(Vvlzb) ' (V.vv)Ecr]dS == f Ecr[(Asl;b)g + (Avv)g]ds
N S

+3€ E.,(v-Vo)ldl,  (16)
T

of [Smers(i) o
L[%W(g)z}gds

+3§ e, (v-Vp)dl. (17)
r

At equilibrium 6G=0 and taking into account the arbitrari-
ness of s and { we obtain, in S,

2
AU+< )
)\d

——E2A +-20F ¢ Ay=0 (18
Kl cr OKl crsa slr// ( a)

ﬂ_ 2
Ajp— —+1 U+ E——Av— (18b)
€ d € Qo
and by arbitrariness of { on I' it follows
SﬂPow,x + SaEchOU,x = O» inx= 0, XxX=a (193.)
8L¢0¢,y+8aEcruov,y=0a in y=0, y=b (19b)

These conditions express the absence of polarization-induced
charges on I'.

Equation (18a) states that the layer’s deformation v is
determined by four terms: the first two come, respectively,
from the nematic distortion and the smectic compression en-
ergy of the layer; the last two are due to the electrostatic
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interaction energy. On the other hand, Eq. (18b) looks like a
Poisson equation for ¢ with the charge density proportional
to the curvature of the layer. Then the local electric field is
the sum of the external field plus the “corrections” coming
from (18b).

It is easy to see that the classical case is recovered in the
limit of e,/e | —0. Then =0 everywhere and it easily fol-
lows that the remaining equation (18a) is identical to the
homogeneous version of the equation (3.1) of Stewart [4]. In
nematic literature [ 10] this assumption is called the magnetic
approximation.

III. DETERMINATION OF THE CRITICAL FIELD

For any future development we assume €,<<0 in order to
create competition between the electric field and the elastic
strengths.

Developing v and ¢ as

- 2
v(x,y)= E Uy ™= sin(gx)sin<ﬂy>, (20a)
n,m=1 ' V’ab a b
- 2 ni mir
x,y) = > Uy = sin| —x |sin| —y (20b)
n,m=1 ab a b

which already satisfy the boundary conditions expressed in
Egs. (15). By substituting (20) into (18) we obtain in a
straightforward way an infinite homogeneous linear system
for the unknowns v, ,, and , ,,. After a closer inspection of
this system we notice that it is factorized into an infinite set
of 2 X2 linear homogeneous systems, each of which can be

written as
An m B}’l m Un m
P g TG
Cn,m Dn,m wn,m
where
Ann = (W)z CE) (22a)
= +|{— | = —(E. , a
n,m nn,m )\d K1 cr. 7]n,m
1)
Bn,m: - Ecrsa'”n,ms (22b)
upk;
Cn ELV_ 7]}1 m? (22’C)
%o
g, \?
Dnm=mm—<—+l)<—> . (22d)
’ ’ SL d

and 7,,,=—m(n*/a*+m?/b*) are the eigenvalues of the la-
placian operator. This simple structure is a consequence of
the fact that in (18) only the laplacian operator and its square
appear, which do not give rise to “off-diagonal” terms.

To have a nontrivial solution of (21) the determinant must

be zero,
An,mDn,m - Cn,mBn,m =0. (23)

This equation can be solved for (E,),, to obtain the critical
field for each mode.
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Before developing the calculations any further let us dis-
cuss in our formalism the magnetic approximation defined
above.

A. The magnetic approximation

The magnetic approximation is obtained in the g,/e
— 0 limit. After some simple algebra we obtain

Y ARV
(Ecr nam — 8_ .

a Tn.m

(24)

As usual the minimum value can be found by considering
M.m s a continuous variable. Then using standard tech-
niques one finds

2K1 o
Ecr min = Ema n= N 25
(E,) ="\ o, M (25)

in correspondence to 7, ,,= Mg, =—7/(Ad), which is the
classical Helfrich-Hurault critical field for smectic-A liquid
crystals [1,4]. Moreover, the amplitudes ¢, ,, are zero be-
cause A, , =0, in correspondence to (24).

B. The coupled case

After some tedious but straightforward algebra an expres-
sion is found for the critical field. Introducing the parameter
a defined as

aZZ’JT, Osasw (26)

and passing to the continuous using the dimensionless vari-
able ¢ defined as

m\*1

nnm—>(—> —£<0 (27)
’ d) a
the result can be expressed as

o (T2l (E+D(E-ap)
(Ee) _Kl< )808” §é-a) ’

Nd
where B=¢g/e . The stationary points of (28) are the roots
of the following polynomial:

208 +(?B-1)E+2aBé-a*B=0 (29)

and can be written in a closed form. However, the expres-
sions are so involved that we prefer to discuss in detail the
special case a@<<1. Otherwise we give some numerical
results.

(28)

1. Many smectic layers

In this case the layer thickness A is much smaller than the
length d of the sample that is a<<1. This is a good approxi-
mation in the case of many smectic layers contained in the
sample.

To obtain the solution of (29) as a perturbative expansion
in «, notice that when a=0 the solution of interest is &,;, ¢
=-1 giving
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Ecr / Emagn

FIG. 1. Ratio between the calculated electric field E,, and E,
keeping constant g,=-1.

magn

(Ecr)minz ﬂ<1)8_l (30)

€, \d €|

A consistent perturbative solution can be found at all the
orders in & by simply putting &,;, ,=—1+2_a,o into (29)
obtaining something like Ei’z’lbka’EO and solving with re-
spect to the a,. For instance, the first terms are

a=1-4,
ay=—3(1-B)(1+3p),
az=-B(1-B)(1-4p). (31)

The substitution of these expressions into (28) gives us the
asymptotic expansion of the critical field

- 2K, (1)2
€, \d g

X[1=(1=-Ba-pg1-pBa*+...]. (32)

Notice that we find two kinds of corrections to the well-
known expression for the Helfrich-Hurault critical field. The
first one is the overall factor Ve, /g;> 1, while the second,
given by the asymptotic expansion (32), is related to the
small but finite thickness of the layers, that is 0 <a<<1. So
we find that for very small layer thickness the critical thresh-
old is higher than the classical value of Helfrich-Hurault.

(Ecr)min =

2. Numerical results

In situations where « is not a small quantity, a numerical
calculation of the roots of (29) is needed and can be easily
done with standard methods.

We are interested in the case of negative electric aniso-
tropy, so we choose g,=—1 as a typical value. Figure 1
shows the ratio of E,/E,,,,,, S0 we can compare our results
directly with the magnetic approximation.

We have also constructed the corresponding pictures for
values of &, in the range [-10?,—1073] and we have found a
quite similar behavior. As we can see from Fig. 1 in the
region a<<1, the critical field is greater than the magnetic
value by the factor Ve, /g, according to (32). When « in-
creases, that is the number of layers decreases, there is a
reduction in the critical threshold that becomes comparable
with E,,;p-

Figure 2 shows the ratio 7.,/ 7,,4,,- Notice that the value
of 7.,=(71.)min gives us information about the modes that
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FIG. 2. Calculated ratio between 7. and 7,,,,, with g,=-1
constant.

start the Helfrich-Hurault transition. It is interesting to see
that for small « the same modes are involved in the starting
of the transition. Increasing « the modes involved lower and
for roughly a=1, there is a minimum corresponding to the
layer thickness d/3. It can be seen by inspection that the
lower the 7,,, the smoother the undulation of the layer
which starts the phase transition.

IV. CONCLUDING REMARKS

We have presented a model describing the interaction of
an insulator smectic liquid crystal with an electrostatic field.
Our model goes beyond the usual approach [1,4], that is, the
so-called magnetic approximation in which the electrostatic
field is not affected by the smectic. Instead we solved the
usual shape equation completely coupled to the Maxwell
equation for the electrostatic potential.

We have found that the electric field becomes nonuniform
and it can be different from the classical one. In the case of
a very large layer number, we have found an analytical ex-
pression for the critical field which shows that the classical
Helfrich-Hurault field is an underestimation. This behavior is
also confirmed numerically. However, by decreasing the
number of layers the classical field becomes a better esti-
mate.
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We would like to point out a fundamental difference be-
tween the study of the critical threshold in nematic liquid
crystals (the Freedericksz transition) and smectic-A liquid
crystals. In the case of nematics [5,6], it is supposed that the
problem is homogeneous on every plane parallel to the elec-
trodes (i.e., not dependent on x and y variables); therefore
every unknown field depends only on the z variable. The
consequence is that the correction to the director field is of
the first order, while that of the electric potential is of the
second order. Therefore, in the eigenvalues problem [which
involves just the O(e) equations] the potential field does not
influence the critical threshold. In other words, the linearized
problem for nematics is still partially coupled. On the con-
trary, in the case of smectics the problem cannot be consid-
ered independent of the x-y variables due to the undulation
of the layers. Both the correction of the displacement field
and the correction of the electrostatic potential are O(e).
Thus, the complete electromechanical coupling already takes
place in the linearized problem and therefore the eigenvalues
problem to be solved involves two equations. Observe how,
in accordance with our reasoning, the presence of the only
source term of the linearized Maxwell equation [the last ad-
dendum in Eq. (18b)] follows by allowing inhomogeneous
displacements (and therefore inhomogeneous director align-
ments) in the planes parallel to the delimiting electrodes. In
light of this and our calculations, we conclude that the com-
plete coupling is responsible for raising the Helfrich-Hurault
critical threshold in smectic-A liquid crystals.
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