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We study the first- and second-order statistical properties of a dynamical Maier-Saupe model for liquid
crystals that is given in terms of a nonlinear Smoluchowski equation. Using Shiino’s perturbation theory, we
analyze the first-order statistics and give a rigorous proof of the emergence of a phase transition from a uniform
distribution to a nonuniform distribution, reflecting phase transitions from isotropic to nematic phases, as
observed in nematic liquid crystals. Using the concept of strongly nonlinear Fokker-Planck equations, the
second-order statistics of the dynamical Maier-Saupe model is studied and an analytical expression for the
short-time autocorrelation function of the orientation of the crystal molecules is derived.
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I. INTRODUCTION

Nematic liquid crystals composed of anisotropic, elon-
gated molecules with cylindrical symmetry typically exhibit
a phase transition from an isotropic phase to a nematic phase
�1–4�. In the isotropic phase there is a random orientation of
the symmetry axes, whereas in the nematic phase there is
orientational order of the symmetry axes. According to the
Maier-Saupe theory this order-disorder phase transition re-
sults from the competition of a fluctuating force that tends to
destroy any orientational order and a mean-field force that is
produced by all molecules and tends to align the molecule
axes �5–7�. At present, many researcher have focused on dy-
namical aspects of nematic liquid crystals. In this context, a
dynamical mean-field model in terms of a nonlinear self-
consistent Smoluchowski equations has been proposed by
Hess �8� and Doi and Edwards �9� and, since then, has found
many applications and generalizations �see, e.g., �10–18��.
To this end, one studies the single-particle density P�u , t ;w�
of the director u describing the molecules’ symmetry axes,
where P is normalized to unity like �P�u , t ;w�dO=1 and
w�u� denotes the initial distribution at time t=0. The evolu-
tion of P�u , t ;w� for t�0 is given by �8,9�

�

�t
P�u,t;w� = DrL · �LP +

1

kT
�Le�u,P��P� , �1�

with L=u�� /�u. Here, Dr denotes the rotational diffusion
constant and e�u , P� describes the self-consistent potential of
the Maier-Saupe mean-field force �see below�. Using spheri-
cal coordinates with the polar angle �� �0,�� and the azi-
muthal angle �� �0,2��, the director is given by u
= �sin � cos � , sin � sin � , cos ��. In what follows, we assume
a cylindrical symmetry of the director field with respect to
the z axis. In this case, the order parameter of the liquid
crystal is then given by q= �A�cos ��	 with A�cos ��
= �3 cos2���−1� /2 �1,2,4,19�. Alternatively, we may put
A�x�= P2�x�= �3x2−1� /2, where P2 is second Legendre poly-
nomial. The Maier-Saupe energy functional reads E�P�
=−U0kTq2 /2. The corresponding potential function e��� oc-

curring in Eq. �1� is given by the variational derivative e
=�E /�P and reads explicitly

e��,P� = − U0kTA�cos ���A�cos ��	 . �2�

Here, U0 is a parameter characterizing the interaction
strength. In terms of the single-particle density P(u��� , t ;w)
normalized like 2�
0

�P(u��� , t ;w)sin � d�=1, Eq. �1� be-
comes

�

�t
P„u���,t;w… =

Dr

sin �

�

��
sin ��3U0sin � cos � q�P�P

+
�

��
P� . �3�

Following the study by Felderhof and Jones �20�, we put
now x=cos � with x� �−1,1� and subjected to periodic
boundary conditions. Then, the single-particle density
P�x , t ;w� is given by P(x��� , t ;w)= P(u��� , t ;w) /2� with

−1

1 P�x , t ;w�dx=1. Recall that we have u
= (�M�x�cos � ,�M�x�sin � ,x) with M�x�=1−x2. Therefore,
P�x , t ;w� describes the first-order statistics of the z compo-
nent of the director field u. The order parameter now reads
q= �3�x2	−1� /2, and Eq. �3� becomes

�

�t
P�x,t;w� =

�

�x
M�x��−

9

2
�x��x2	 −

1

3

P + Dr

�

�x
P�

�4�

for �=U0Dr.
Two important issues in the context of the dynamic

Maier-Saupe model �1� are �i� to give a rigorous proof that
the model can describe a nematic-isotropic phase transition
as observed in liquid crystals and �ii� to derive analytical
expressions for the evolution of expectation values.

So far, a rigorous proof has not been given for the funda-
mental Maier-Saupe model �1�. The reason for this is that
although for nonlinear Fokker-Planck equations of the form
�1� a bifurcation theory was developed by Shiino for order
parameters that involve the first moment of P �21,22�, a bi-
furcation theory for equations of the form �1� that involve
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order parameters in terms of second- and higher-order
moments—as in Eq. �4�—was not available for a long time.
This situation, however, has changed recently. In a series of
recent studies �23–27� a bifurcation theory for nonlinear
Fokker-Planck equations involving second- and higher-order
moments has been developed. Therefore, our first objective
�see Sec. II A� is to apply this theory to the dynamical Maier-
Saupe model given by Eq. �4�.

Up to now, theoretical studies of dynamical mean-field
models such as Eq. �1� have primarily been focused on the
evolution of expectation values related to first-order statistics
�i.e., moments and the order parameter�; see, e.g.,
�9,10,12,13,20,28�. Only little is known about how to derive
analytical expressions for expectation values related to
second-order statistics �e.g., correlation functions�. However,
quantities of second-order statistics, in general, and correla-
tion functions, in particular, provide very useful information.
Especially, they have been exploited in the context of
fluctuation-dissipation theorems in order to determine system
parameters; see, e.g., �29,30�. In principle, second-order sta-
tistics can be determined numerically from the multivariate
Langevin equation corresponding to Eq. �1�. Only recently
has it been shown how to determine them in an analytical
fashion using the concept of so-called strongly nonlinear
Fokker-Planck equations �31–36�. Therefore, our second ob-
jective �see Sec. II B� is to exploit this concept in order to get
insights into the evolution of correlation functions as defined
by the Maier-Saupe model �4� for liquid crystals with cylin-
drical symmetry.

II. BIFURCATION THEORY AND SECOND-ORDER
STATISTICS

A. Bifurcation theory

We will carry out the bifurcation theory of the model �4�
using several key concepts such as linear nonequilibrium
thermodynamics, H theorems, Lyapunov’s functionals, and
Shiino’s decomposition of perturbations as reviewed in �37�.

1. Linear nonequilibrium thermodynamics

In order to interpret Eq. �4� in terms of linear nonequilib-
rium thermodynamics, we assume that the distribution
P�x , t ;w� of the z component of the director field satisfies the
continuity equation

�

�t
P = −

�

�x
j , �5�

where j denotes a probability current. We assume that there
is a linear relationship between the current j and a thermo-
dynamical force Xth given by j�x , t�=M*�x�PXth �38–41�,
where M* is a generalized mobility function that may depend
on x and will be determined below. We assume that the ther-
modynamical force can be derived from a generalized chemi-
cal potential � like Xth�x , t�=−�� /�x and assume that � is
given by the variational derivative of a free energy functional
F :��x , t�=�F /�P. Then, the continuity equation �5� be-
comes the free-energy Fokker-Planck equation

�

�t
P =

�

�x
M*�x�P

�

�x

�F

�P
. �6�

We would like to emphasize that this approach is consistent
with the GENERIC approach developed in �42–45�. For the
Maier-Saupe model we use the free-energy functional F�P�
=U−DrS involving the Maier-Saupe energy functional U
=−�q2 /2 and the Boltzmann entropy S=−
P ln P dx �note
that we put here the Boltzmann factor equal to unity�. We
can show that

�F

�P
= −

3

2
�x2q + Dr�1 + ln P� �7�

holds. Substituting Eq. �7� into Eq. �6�, we see that the free-
energy Fokker-Planck equation �6� is equivalent to the non-
linear Smoluchowski equation �4� if we put M*�x�=M�x�.

2. Stationary distributions

In general, stationary distributions Pst of Eq. �6� are given
by j=const. In particular, we find that the relation j=0 holds
because we have M =M*=0 at x= ±1. From j=0 it follows
that stationary distributions are given by �F /�P=�, where �
is constant and serves as a normalization factor. From Eq. �7�
and �F /�P=� it follows that the distributions Pst satisfy the
implicit equation

Pst�x� =
1

Z�q�
exp�3�qx2

2Dr
� , �8�

where Z is a normalization constant depending on q and q is
given by q= �3�x2	st−1� /2. It is clear that the uniform distri-
bution Pst�x�=1/2 is a stationary distribution of Eq. �4� and
satisfies the implicit equation �8� with q=0. In order to de-
termine order parameter values different from zero, we need
to solve the the self-consistency equation

q = R�q� , �9�

with

R�m� = �
−1

1 3x2 − 1

2
P�x,m�dx �10�

and

P�x,m� =
1

Z�m�
exp�3�mx2

2Dr
� . �11�

For the sake of convenience, we introduce the function
R��m�=m−R�m�. Then, q is determined by R��q�=0. Figure
1 shows R��m� for several control parameters Dr /�. We read
off from Fig. 1 that for Dr /��C with C�0.223 there is only
one solution of R��q�=0 which is given by q=0 and is re-
lated to the uniform distribution describing the isotropic
phase. For Dr /�� �1/5 ,C� there are three solutions of
R��q�=0 given by q0=0 and q1,2�0 related to the uniform
distribution and two nonuniform distributions. The latter de-
scribe nematic phases. For Dr /�	1/5 the self-consistency
equation R��q�=0 has two solutions given by q0=0 and
q1�0. In sum, for Dr /�	C the Maier-Saupe model �4� de-
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scribes liquid crystals that can exhibit two different station-
ary phases: an isotropic and a nematic one. In view of these
findings, the question arises as to whether or not both phases
are stable in the sense that small perturbations will vanish.
We will address this question next using Lyapunov’s direct
method in combination with an H theorem for the model �4�.
In doing so, we will also derive the aforementioned bound-
ary value of 1 /5.

3. H theorem

For solutions of Eq. �6� the free energy F evolves like

d

dt
F = − �

−1

1

M�x�P� �

�x

�F

�P
�2

dx 
 0. �12�

That is, we have a monotonically decreasing function. Note
that in deriving Eq. �12� we have exploited the fact that the
expression j�F /�P�−1

1 arising due to partial integration van-
ishes. Next, we realize that the implication �P /�t
=0⇒dF /dt=0 holds. In addition, from dF /dt=0 it follows
that �F /�P=const �see Eq. �12�� which, in turn, implies that
�P /�t=0 �see Eq. �6��. In sum, the implication

d

dt
F = 0 ⇔

�

�t
P = 0 �13�

holds. Furthermore, note that F is bounded from below be-
cause we have q
1 and S is maximal for the uniform dis-
tribution P=1/2 with S�P=1/2�=ln 2. That is, we have
F�−� /2+Drln 2 �see also �37,46��. From the boundedness
of F and Eqs. �12� and �13� we conclude that any transient
solution converges to a stationary one:

lim
t→�

�

�t
P = 0. �14�

That is, we have an H theorem for the nonlinear Smolu-
chowski equation �4� similar to a variety of H theorems that
have been derived recently in the context of nonlinear
Fokker-Planck equations �20,22,41,47�.

4. Stability analysis by means of Shiino’s perturbation theory

As shown above, stationary distributions correspond to
extrema of the free-energy functional F �Sec. II A 2� and F is
a monotonically decreasing function of t �Sec. II A 3�. Con-
sequently, stable stationary distributions correspond to
minima of F, whereas unstable stationary distributions cor-
respond to maxima or saddle points of F �Lyapunov’s direct
method�. Using Shiino’s decomposition of perturbations
�22–24,26,27�, we determine next the character of the ex-
trema of stationary distributions �8� for given order param-
eters q. To this end, we first put P�x�= Pst�x�+
�x�, where 

describes a small perturbation with 

�x�dx=0. From Eq. �7�
it follows that the second variation of F is given by

�2F�Pst� = −
9�

4
�� x2
�x�dx�2

+ Dr� 
2�x�
Pst�x�

dx . �15�

Now, let us expression the perturbation in terms of 
�x�
=�Pst�x�
��x� with 
��x�=�0�x�+���x� and 
�0�x����x�dx
=0. That is, �0�x� and ���x� are orthogonal functions.
We further require that the first expansion function �0 in-
volves the order parameter q :�0=��A�x�−q��Pst=��A�x�
− �A�x�	st��Pst. Note that from 

�x�dx=0 it then follows that

���x��Pst�x�dx=0 and 
���x�A�x��Pst�x�dx=0. The sec-
ond expansion function �� accounts for all contributions to

��x� orthogonal to �0 such that 
��x� indeed reflects all pos-
sible perturbations satisfying 
�Pst�x�
��x�dx=0 �22,37�. In
sum, the original perturbation function 
�x� reads


�x� = ��A�x� − �A�x�	st�Pst�x� + ���x��Pst�x� . �16�

Substituting, Eq. �16� into Eq. �15� and exploiting the afore-
mentioned orthogonality properties of �0 and ��, we obtain

�2F�Pst� = �2KA,st�Dr − �KA,st� + Dr� ��
2 �x�dx , �17�

where KA,st denotes that the generalized stationary variance:

KA,st = ��A�x� − �A	st�2	st. �18�

Introducing the stability coefficient �̃=Dr−�KA,st, we write
Eq. �18� as

�2F�Pst� = �2KA,st�̃ + Dr� ��
2 �x�dx . �19�

Consequently, for �̃�0 we have �2F�0. Stationary distri-

butions Pst that yield �̃�0 describe free-energy minima and

correspond to stable distributions. In contrast, for �̃	0 we
have �2F	0 for 
�x� with ��=0. Therefore, stationary dis-

tributions Pst that yield �̃	0 describe free-energy maxima or
saddle points and correspond to unstable distributions.

Finally, we need to determine KA,st. For the isotropic
phase given by Pst=1 /2 with q=0 we find KA,st=1 /5,

which gives us �̃�q=0�=Dr−� /5. We conclude that for
Dr /��1/5 the isotropic phase is stable. In contrast, for
Dr /�	1/5 the isotropic phase is unstable. In general �i.e.,

FIG. 1. Illustration of the self-consistency equation R��m�
=R�m�−m=0. Solutions of R��m�=0 describe order parameters of
stationary distributions. If dR��m� /dm	0 ��0� at R��m�=0, the
corresponding stationary distribution is stable �unstable�. From bot-
tom to top: Dr /�=0.24, Dr /��0.223 �saddle node bifurcation
point, emergence of the nematic phase�, Dr /�=0.22, and Dr /�
=1/5 �the isotropic phase becomes unstable�.
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for q�0�, KA,st can be determined from Fig. 2 �37�. In order
to see this we differentiate Eq. �10� with respect to m and
evaluate the result at m=q. Thus, we get

� dR

dm
�

m=q
=

�

Dr
KA,st. �20�

Therefore, the stability parameter �̃ as a function of q is
given by

�̃�q� = Dr��1 −
dR�m�

dm
�

m=q

 . �21�

This expression can be written like �̃�q�
=−DrdR��m� /dm�m=q. Since q is defined by the relation
R�q�−q=0—that is, by R��q�=0—we obtain

�̃�q = m� = − Dr�dR��m�
dm

�
R��m�=0

. �22�

In other words, if the slope of R��m� at the intersection with

the m axis is negative, then �̃�q� is positive and Pst is stable.
If the slope of R��m� at the intersection with the m axis is

positive, then �̃�q� is negative and Pst is unstable. From Fig.
1 we see that for Dr /�� �1/5 ,C� there are two nonvanishing
solutions of R��q�=0 given by q1	q2. The solution with q1

exhibits a positive slope of R��m� at q1 and corresponds to an
unstable distribution and an unstable nematic phase. For q2
the slope of R��m� at m=q2 is negative and, consequently,
the solution is related to a stable nonuniform distribution
describing a stable nematic phase. For control parameters
Dr /�	1/5 the nonvanishing solution q1 of R��q�=0 yields a
negative slope of R��m� at m=q1 and reflects a nonuniform
stationary distribution Pst describing a stable nematic phase.

In sum, the stability analysis for the Maier-Saupe model
�4� yields the following result: For Dr /��C there exists
only the isotropic phase with q=0 and the isotropic phase is
stable. For Dr /�� �1/5 ,C� an isotropic phase with q=0 and
two nematic phases with q�0 exist. The isotropic phase and
the nematic phase with the larger order parameter are stable.
The nematic phase with the smaller order parameter is un-
stable. For Dr /�	1/5 an isotropic phase and a nematic

phase exist. The nematic phase is stable, whereas the isotro-
pic phase is unstable. That is, given small perturbations,
there will be a phase transition from the isotropic phase to
the nematic phase. Figure 2 shows the order parameter q as a
function of the control parameter Dr /� and summerizes the
bifurcation diagram of the Maier-Saupe model �4�. Note that
in Fig. 2 only q values related to stable phases are shown.

B. Second order statistics

1. Strongly nonlinear Smoluchowski equation and Langevin
equations

In general, the second-order statistics of the z component
of the director u is described by the joint probability density
P�x , t ;x� , t��. The function P�x , t ;x� , t�� can be computed
from the transition probability density P�x , t�x� , t�� and the
transient probability density P�x , t�� like P�x , t ;x� , t��
= P�x , t�x� , t��P�x , t��. Since P�x , t�� is defined by Eq. �4�, we
are left with the problem of determining the evolution of
P�x , t�x� , t��. In order to solve this problem, we first note that
the nonlinear Smoluchowski equation �4� involves the drift
coefficient D1�x , P�=3M�x��xq�t� with q�t�= ��3x2−1� /2	.
The explicit evolution of q�t� depends on the initial distribu-
tion w�x�. For every initial distribution w�x�, the drift term
D1�x , P� can be regarded as a time-dependent drift coeffi-
cient D�1�x , t�=D1�x , P�. Therefore, for every w we can as-
sign to the nonlinear Smoluchowski equation a linear Smolu-
chowski equation with a drift term that depends explicitly on
t. Due to this property, we say that the nonlinear Smolu-
chowski equation belongs to the class of strongly nonlinear
Fokker-Planck equations �31,37�. In line with the theory of
strongly nonlinear Fokker-Planck equations, we can show
that the second-order statistics P�x , t�x� , t�� is determined by

�

�t
P�x,t�x�,�t�� =

�

�x
M�x��−

9

2
�x�� x2P�x,t;w�dx

−
1

3

P�x,t�x�,�t�� + Dr

�

�x
P�x,t�x�,�t��� .

�23�

Note again that �as mentioned in the Introduction� the vari-
able x describes the z component of the director u. Conse-
quently, Eq. �23� describes the second-order statistics of the z
component of u.

Let us dwell next on the Langevin equation associated
with Eqs. �4� and �23�, which will be used below for numeri-
cal simulations. Let X�t�� �−1,1� denote the random vari-
able of the stochastic process described by Eqs. �4� and �23�
with P�x , t�= ��(x−X�t�)	 and P�x , t ;x� , t��= ��(x−X�t�)�(x�
−X�t��)	, where ��·� denotes the delta function. First, we
realize that the diffusion term in Eq. �4� has the so-called
Klimontovich form �48,49�. The Klimontovich form can be
transformed into the Stratonovich from, which gives us

FIG. 2. Bifurcation diagram of the order parameter q of the
Maier-Saupe model computed from the self-consistency equation
R��q�=R�q�−q=0. Only solutions related to stable stationary
phases are shown.
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�

�t
P�x,t�x�,�t�� = −

�

�x
�9

2
�xM�x��� x2P�x,t;w�dx −

1

3



+
Dr

2

dM

dX
�P�x,t�x�,�t��

+ Dr
�

�x
�M

�

�x
�MP�x,t�x�,�t�� . �24�

From Eq. �24� we read off that X�t� satisfies the self-
consistent Stratonovich Langevin equation

�25�

where ��t� is a Langevin force �50,51� normalized like
���t���t��	=2��t− t��. Instead of the Stratonovich calculus
we will use in the numerics the Ito calculus. Using the iden-
tity �52�

�26�

we can transform Eq. �25� into

�27�

see also �37��Sec. 7.2.3�. Note that the Ito-Langevin equation
can also be derived in an alternative way by writing the
Klimontovich form �24� into Ito form

�

�t
P�x,t�x�,�t�� = −

�

�x
�9

2
�xM�x��� x2P�x,t;w�dx −

1

3



+ Dr
dM

dX
�P�x,t�x�,t�� + Dr

�2

�x2 MP�x,t�x�,�t��

�28�

and using the Ito calculus to derive Eq. �27� from Eq. �28�.
For more sophisticated methods to deal with self-consistent
Stratonovich- and Ito-Langevin equations the reader is also
referred to �16,53�. In closing this section, we would like to
point out that the Stratonovich and Ito Langevin equations
given by Eqs. �25� and �27�, respectively, can also be derived
directly as the rotational Brownian walk of a director u that
evolves in a self-consistent potential e�u , P� �see Sec. II C�.

2. Short-time correlations

The objective is now to derive analytical expressions of
the autocorrelation function C��t�= �X�t�X�t+�t�	st and the

mean-square displacement ���X��t��2	st for small time differ-
ences �t. To this end, we exploit the strongly nonlinear
Smoluchowski equation �23�. As can be shown by a detailed
calculation �see the Appendix�, from Eq. �23� it follows that

lim
�t↓0

d

d�t
C��t� = − Dr�M�X�	st. �29�

Consequently, we have C��t�=C�0�−Dr�M�X�	st�t+O��t2�.
Using C�0�= �X2	st= �2q+1� /3 and �M�X�	st=1− �X2	st=2�1
−q� /3, we get

C��t� =
2q + 1

3
−

2Dr�1 − q�
3

�t + O��t2� . �30�

Let ���X��t��2	st denote the mean-square displacement with
�X��t� defined by �X��t�=X�t+�t�−X�t�. Then, in general,
we have ���X��t��2	st=2�C�0�−C��t��. In the context of the
Maier-Saupe model, from Eq. �30� it follows that
���X��t��2	=2Dr�M�X�	st�t+O��t2�. That is, the mean-
square displacement evolves like

���X��t��2	 =
4Dr�1 − q�

3
�t + O��t2� . �31�

Figure 3 shows ���X��t��2	 as a function of �t for several
parameters q as obtained from Eq. �31� and as obtained by
solving numerically the Ito-Langevin equation �27�.

FIG. 3. Mean-square displacement �MSD� ��X��t�2	st of the dy-
namical Maier-Saupe model given by Eqs. �4� and �23� as a func-
tion of �t. Solid line: analytical expression computed from
��X��t�2	st=4Dr�1−q��t /3 �see Eq. �31�� valid for short-time dif-
ferences �t. Diamonds: exact result obtained by solving the Maier-
Saupe model numerically by means of the corresponding self-
consistent Ito-Langevin equation �27� using an Euler forward
scheme �50� �single time step 10−5, number of realizations 10 000,
random numbers via Box-Muller�. Parameters �from bottom to top�:
�=5 �q=0.60�, �=6 �q=0.75�, and �=7 �q=0.80�. Other param-
eters: Dr=1. Initial distribution w�x�= ���x−0.8�+��x+0.8�� /2. Be-
fore computing ��X��t�2	st, the Euler forward scheme was iterated
repeatedly until the system settled down in the stationary regime
�single time step 10−3, 1000 iterations; the order parameter q was
checked to be equivalent to q derived from the self-consistency
equation�.
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C. Microscopic derivation of Eqs. (25) and (27) from
Brownian rotational motion

In what follows, we will exploit the concept of Brownian
rotational motion as reviewed, for example, in Doi and Ed-
wards �9� �Sec. 8.2� and Coffey et al. �54� �Secs. 1.15 and
7.2�. Accordingly, our departure point is the rotational evo-
lution equation of the director u:

d

dt
u�t� = ��t� � u�t� , �32�

where ��t� is the angular velocity of the director u. Let a
describe the angles corresponding to � like da /dt=�. The
angles satisfy the second-order Langevin equation

I
d2

dt2a + �
d

dt
a = N + ��kT� , �33�

where I is the inertia of the molecule under consideration, �
is a damping coefficient, N is the torque, and ��t� is a Lange-
vin force with ��t�= ��1 ,�2 ,�3� and ��i�t��k�t��	=2�ik��t
− t��. Note that the noise amplitude is given by �kT �54�—
just as in the case of the Kramers equation �50�. As usual, we
will consider the overdamped motion. That is, at issue now is
to reduce the second-order Langevin equation �33� to a first-
order Langevin equation by neglecting the inertia term
Id2a /dt2. Roughly speaking, we simply put I=0. A more
sophisticated transformation procedure is the Smoluchowski
limit �50�. Putting I=0 or using the Smoluchowski limit,
from Eq. �33� we obtain

d

dt
a = �−1N +�kT

�
� . �34�

We can rewrite Eq. �34� as

� = �−1N +�kT

�
� . �35�

The torque is given by N=u�F�u , P�, where F is a self-
consistent force that may depend on the probability density
P. We derive F from a potential e�u , P� like F
=−�e�u , P� /�u. Substituting these definitions into Eqs. �32�
and �35� together with Dr=kT /�, we get the self-consistent
Stratonovich Langevin equation

d

dt
u�t� = −

Dr

kT
�u �

�

�u
e�u,P�� � u + �Dr� � u . �36�

Now, let us turn to the special case addressed in Sec. I. We
have u= �u1 ,u2 ,u3�= (�M�X�cos � ,�M�X�sin � ,X) and e
=e�X , P�. Our next objective is to evaluate the third compo-
nent of Eq. �36� describing the evolution of u3=X. From the
equivalence −�u��e /�u��u=−�u�2�e /�u+ �u ·�e /�u�u and
�e /�u�3=de /dX, we obtain

−��u �
�

�u
e�u,P�� � u�

3
= − M�X�

de

dX
, �37�

whereas the term ��u gives us ��u�3=�M�X��sin ��1

−cos ��2�. In sum, from Eq. �36� we obtain for the compo-
nent u3=X the Stratonovich Langevin equation

d

dt
X = − Dr

M�X�
kT

de

dX
+ �DrM�X��sin ��1 − cos ��2� .

�38�

Likewise, we can derive an evolution equation for �. From
tan �=u2 /u1 it follows that M�x�d� /dt=u1du2 /dt
−u2du1 /dt. Exploiting the first and second components of
Eq. �36� we obtain

d

dt
� = − X� Dr

M�X�
�cos ��1 + sin ��2� + �Dr�3. �39�

The main point to make here is that Eqs. �38� and �39� can be
cast into the form dX /dt=hx+g11�1+g12�2 and d� /dt
=g21�1+g22�2+g23�3. Just as in �50� �Secs. 3.4.1 and
12.1.2�, we can determine then from the set of noise ampli-
tudes gik the drift coefficients Dx and D� and the diffusion
coefficients Dxx and D�� of the X and � dynamics, respec-
tively. A detailed calculation shows

Dx�x,P� = − Dr
M�x�

kT

de

dx
+ Dr

dM

dx
, �40�

Dxx�x� = DrM�x� , �41�

D� = 0, �42�

D�� = Dr, �43�

where the drift Dx involves the spurious drift term DrdM /dX.
Finally, we exploit the concept of stochastic equivalence,
which states that two Langevin equations that look formally
different can nevertheless describe the same stochastic pro-
cess provided that they exhibit the same drift and diffusion
coefficients �50�. From Eqs. �40�–�43� it follows that the
Stratonovich Langevin equations

�44�

d

dt
� = Dr�� �45�

and the Ito Langevin equations

�46�

d

dt
� = Dr�� �47�

are stochastically equivalent to Eqs. �38� and �39� for Lange-
vin forces with ��i�t��k�t��	=2�ik��t− t�� with i ,k� �x ,��.
For e�x , P� given by Eq. �2� the stochastic evolution equa-
tions �44� and �46� are equivalent to Eqs. �25� and �27� de-
rived in Sec. II B. In this sense, we have shown that there is
a microscopic derivation of the Langevin equations �25� and
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�27� based on the director Brownian motion given by Eqs.
�32� and �33�.

III. CONCLUSIONS

A Smoluchowski equation that is nonlinear with respect to
its probability density has been studied in order to describe
the orientation of elongated molecules in nematic liquid
crystals. The nonlinearity reflects the emergence of a mean-
field force that acts on individual molecules and is produced
by all molecules as predicted by the Maier-Saupe theory. For
phases with cylindrical symmetries, we have studied both the
first- and second-order statistical properties of the model.
With regard to the first-order statistics, we have carried out a
completely analytical bifurcation theory using concepts in-
troduced in earlier studies by Shiino. In doing so, we have
been able to determine the stability of both isotropic and
nematic phases for several parameter regimes. We have de-
termined three kinds of parameter regimes: a monostable one
involving only the isotropic phase and a bistable parameter
regime involving a stable isotropic and a stable nematic
phase. Finally, we have determined another monostable pa-
rameter regime exhibiting only one stable phase: the nematic
phase. The critical control parameter at which the isotropic-
nematic phase transition from the isotropic phase �of the
bistable regime� to the nematic phase �of the second
monostable regime� occurs is given simply by 1/5. With
regard to the second-order statistics, the evolution equation
for the transition probability density has been derived within
the framework of so-called strongly nonlinear Fokker-Planck
equations. In particular, analytical expressions for the auto-
correlation function and the mean-square displacement have
been determined. Following �55,56� one may define the run-
ning diffusion coefficient D�z� on the basis of the mean-
square displacement ��X��t�2	 like ��X��t�2	=
0

�tD�z�dz. For
the Maier-Saupe model, we then find that the short-time dif-
fusion coefficient D�0�= ��X��t�2	 /�t for �t→0 is related to
the rotational diffusion coefficient Dr and the order param-
eter q by D�0�=4Dr�1−q� /3. This implies that in the isotro-
pic phase �i.e., for q=1� the short-time diffusion coefficient
is given by D�0�=4Dr /3, whereas for a nematic phase with
complete alignment of the molecules �i.e., for q=1� we have
D�0�=0.

APPENDIX: DERIVATION OF EQ. (29)

We proceed similar to a previous study �36�. While in �36�
the assumption has been made that surface terms arising due
to partial integration vanish �which is usually the case in the
context of natural boundary conditions�, in this appendix we
explicitly show that they vanish in the context of the Maier-
Saupe model �which involves periodic boundary conditions�.
First, we write Eq. �23� as a continuity equation involving
the transition probability current j�x , t�x� , t��:

�

�t
P�x,t�x�,�t�� = −

�

�x
j . �A1�

Multiplying Eq. �A1� with x, integrating with respect to x,
and integrating by parts gives us the relation

d

dt
��X�t�	�X�t��=x� = −�xj�−1

1 +� j�x,t�x�,�t��dx , �A2�

which involves the surface term xj�−1
1 . This surface term van-

ishes because we have j�x , t� · ��M�x� with M�x= ±1�=0,
which implies that the product xj vanishes at x= ±1. Let us
write j�x , t�x� , t��=M�x�h�x , �x2	�P+Dr� �M�x�P� /�x with
h�x , �x2	�=9�x��x2	−1/3� /2. Substituting this expression
into Eq. �A2� and integrating by parts yields

d

dt
��X�t�	�X�t��=x� =� MhP�x,t�x�,�t��dx

+ Dr� dM

dx
P��x,t�x�,t��dx

−�M�x�P�x,t� ·���−1
1 . �A3�

The surface term M�x�P�x , t� · ��−1
1 vanishes because of M�x

= ±1�=0. Now, let us focus on the stationary case. In this
case, we have

d

d�t
C��t� =

d

d�t
� �X��t� + �t�	�X�t��=x�x�Pst�x��dx�

=� d

dt
�X��t�	�X�t��=x�,t=t�+�tx�Pst�x��dx�. �A4�

Substituting Eq. �A3� into Eq. �A4�, we obtain

d

d�t
C��t� =� M�x�h�x,�x2	st�x�Pst�x,t� + �t;x�,t��dxdx�

+ Dr� dM�x�
dx

x�Pst�x,t� + �t;x�,t��dxdx�.

�A5�

In the limit �t→0+ we have Pst�x , t�+�t ;x� , t��=��x
−x��Pst�x�, which implies that

lim
�t→0+

d

d�t
C��t� =� M�x�h�x,�x2	st�xPst�x�dx

+ Dr� dM�x�
dx

xPst�x�dx . �A6�

In the stationary case, from Eq. �4� it follows that
Mh�x , �x2	st�Pst=DrMdPst /dx. Multiplying this relation with
x and integrating with respect to x, we obtain

� M�x�h�x,�x2	st�xPst�x�dx = − Dr� d�xM�x��
dx

Pst�x�dx

+�DrxM�x�Pst�−1
1 . �A7�

The surface term DrxM�x�Pst�−1
1 vanishes because of M�x

= ±1�=0. Substituting Eq. �A7� into Eq. �A6�, we obtain Eq.
�29�.
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