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We present a numerical study of colloidal crystal growth on finite templates. Specifically, we consider
planar, crystalline templates with the structure of the 100, 110, and 100 faces of a fcc crystal. We explore how
the size of the induced crystallites depends on template area, lattice spacing and degree of supersaturation. We
find that thermal fluctuations of the templating particles around their average positions have a strong effect on
the size of the crystallites that grow epitaxially. If the fluctuations exceed the Lindemann criterion, the tem-
plates cease to function as a crystallization seed. We find that our numerical results are well described by a
suitably modified version of classical nucleation theory.
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I. INTRODUCTION

The ability to control the structure, size, and orientation of
colloidal crystals is of considerable technological impor-
tance, as such crystals could be applied as switches �1�, op-
tical filters �2–4� and as photonic band gap materials �5,6�. It
is, however, difficult to generate large single crystals of the
desired structure and orientation. Experiments by van Blaa-
deren et al. �7� showed that high-quality colloidal crystals
could be grown using template-driven crystallization. The
experiments of Ref. �7� have inspired much experimental and
numerical work �8–14�. Most numerical studies consider
crystallization on infinite �strictly speaking, periodically re-
peated� crystal planes that are commensurate with the simu-
lation box. Recently, it has become possible to perform ex-
periments on crystallization induced by two-dimensional
templates of arbitrary structure, using arrays of colloidal par-
ticles trapped by multiplexed optical tweezers �15�. In such
experiments, only a relatively small number of particles, NT,
can be trapped by the tweezers. Typical templates in dense
solutions consist of about 100 particles �however 20�20
templates have been generated in low-density solutions
�16��. Limiting factors are the effective optical trap stiffness
keff felt by each particle in the template and the overall size
of the window the laser beam can span. keff, decreases with
the number of particles trapped and if keff is not sufficiently
large, thermal fluctuations can drastically reduce the ability
of the template to induce crystallization in the sample. More-
over, constructing the templates is not easy, tracer particles
that have a slightly different index of refraction than the
solution must be located and incorporated in the template.
This is a laborious work which requires some care, as no trap
should contain more than one particle.

In this paper, we report Monte Carlo simulations that con-
sider template-induced crystallization on finite templates of
sizes comparable to those used in experiments. We per-
formed Monte Carlo simulations on a system of spherical
particles in the presence of a finite planar template with par-
ticles arranged in a square or hexagonal lattice. The position
of the particles in the template is set in the x-y plane. All
spheres have the same diameter, �, and interact via a hard-
core potential. The total number of particles in the system
was N=7776 �including the ones in the template which are

maintained fixed at their lattice positions at all times�. All
simulations were carried out in the NPzT ensemble, where Pz
denotes the diagonal component of the pressure tensor per-
pendicular to the template.

The geometry of the simulation box was rectangular with
periodic boundary conditions. The side length in the x and y
direction was fixed to Lx=18a and Ly =18a �where a is the
lattice spacing of the template�, while the height of the box
Lz was adjusted to accomodate the system constant external
pressure Pz. Throughout the paper all length scales are nor-
malized by the diameter of the particles �.

We systematically explored how symmetry, size, template
lattice spacing and supersaturation of the solution affect the
ability of the templates to induce crystallization. Specifically
we investigated templates with particles arranged according
to 111, 110, and 100 faces of an fcc crystal �see Fig. 1�.

II. METHODS

One should be careful when quantifying the ability of the
different templates to induce crystallization as different tem-
plates may favor different crystal structures. Our analysis of
crystal formation should be unbiased, i.e., we should be able
to detect all relevant crystal structures. To achieve this, we
considered several possible order parameters. To identify
crystalline layers, it is usually convenient to use a two-
dimensional bond-order parameter,

�n�i� =
1

Nb
�
k=1

Nb

ein�ik. �1�

FIG. 1. Sketch of 100, 110, and 111 templates.
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To detect crystal growth on square �100, 110� and triangular
�111� substrates, it is logical to use �4�i� and �6�i�, respec-
tively. However, we are not simply interested in detecting
crystal growth. Rather, we wish to compare in an unbiased
way, the relative efficiency of different templates to induce
crystalline ordering and, for such a quantitative comparison,
we found it inconvenient to use the above bond-order param-
eters. An alternative would be to use a single bond-order
parameter that would detect both square and hexagonal pat-
terns �e.g., �12�i��. However, we also found this order param-
eter to be computationally inconvenient �noisy�. We also
considered three-dimensional bond-order parameters �17�,
but these are less practical for this specific application than
the method we describe below. In bulk systems, bond-order
parameters are used to detect crystallites in an otherwise iso-
tropic system. However, in the present system, the symmetry
is already broken and we know where to expect the next
crystalline layer to form. This allows us to determine the
number of crystalline particles as follows: first, we determine
the location of the �incipient� crystal planes that form parallel
to the template. This is done by finding the peaks in the
distribution function g�z�, where z denotes the perpendicular
distance from the plane of the template. We then tag a par-
ticle as crystalline if its coordinates projected in the nearest
crystal plane lie within a circle of radius rin from the closest
predetermined lattice site. The cutoff rin is adjusted as
follows: we first compress the system to a density at
which the first layer covering the template is fully crystalline
�this can be checked by imaging the particles�. The value of
rin is then chosen such that the prepared layer is recognized
as crystalline. If rin is too small, only few particles in the
first layer will be detected as crystalline. Increasing rin the
number of solidlike particles NS will increase and eventually
level off. As both sides of the templates that we consider
are exposed to the solution, crystallites can grow on both
sides. Throughout this paper, NS denotes the average of the
sizes of the crystallites on both sides of the template, NS
= �NS

Up+NS
Down� /2. If rin is chosen too large, disordered layers

will be identified as crystalline. Hence, we should choose rin
as small as possible. Figure 2 shows the ratio between the
crystalline particles detected ND by the order parameter in
the first layer and the total number of particles in the tem-
plate as a function of rin. The inset shows how the order
parameter performs if the first layer is filled with 1000 dif-
ferent configurations of randomly disposed particles. We
have chosen rin so that at least 90% of solid particles are
correctly detected. With this setup, only 5% of the randomly
positioned particles are recognized as crystalline. Figure 3
shows a typical snapshot of crystallites forming on the 100
and 111 templates.

Crystals growing on the 100 and 110 templates are
straightforward to analyze with this order parameter as the
stacking is unique. A bit more care is required in the case of
the 111 template as it has three distinct positions for the first
layer and two choices for any subsequent layer �see Fig. 4�.
To reduce “false positives” due to fluid particles that happen
to be close to a lattice site, we impose that particles will not
be considered crystalline if they do not have at least two
crystalline neighbors in the previous layer.

With this scheme to detect crystalline particles, we ana-
lyzed the size distribution of crystallites induced by the dif-

FIG. 2. Average number of crystalline particles on the first layer of the template detected by the order parameter, ND, divided by the total
number of particles in the template NT as a function of rin. The image on the left-hand side refers to the 111 template, while the image on
the right-hand side refers to the 100 template. Insets show the same analysis done on particles disposed at random in the first layer of the
template. In both cases we used templates of 64 particles. The lattice spacing is taken to be a=1.11� for both templates.

FIG. 3. �Color online� Snapshots of 111 �left-hand side� and 100
�right-hand side� templates. The particles that belong to the tem-
plate have been highlighted by a black circular border. The grey
spheres represent solid particles crystallizing directly on the tem-
plate. Darker grey labels represent crystalline particles in subse-
quent layers.
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ferent templates, as a function of the lattice constant a of the
template and of the volume fraction of colloids in solution,
�.

III. RESULTS

In a first simulation, we studied how the number of par-
ticles in an epitaxially grown crystallite �NS� depends on the
size of the template �expressed by NT, the number of par-
ticles in the template�. To this end, we considered a system of
hard spheres at coexistence �P*=11.56, �=0.494�. Under
these conditions, we should not expect to observe spontane-
ous bulk crystallization. For templates of four different sizes,
we computed P�NS� as a function of NS. Results are shown in
Fig. 5. As the figure shows, curves for different template
sizes do not superimpose. Hence the average size of the epi-
taxially grown crystal is not simply proportional to the area
of the template. Clearly, larger templates are more effective
in producing crystalline particles. The curves in the insets
show how the ratio �NS /NT�max, corresponding to the most
likely value of NS shifts with the number of particles in the
template NT. This result is not immediately obvious as at
coexistence there is no driving force to form a bulk crystal.
Hence, the crystallites only form because they wet the tem-
plate. But, apparently, the thickness of the wetting layer is
limited. To understand, at least qualitatively this behavior,
we follow the approach exposed in Ref. �14�. Using this
approach, we can approximate the surface free-energy den-
sity of a circular template of radius RT. For convenience, we

assume that we can approximate the volume of the NT crys-
talline particles that cover the substrate by a spherical cap of
height z. At coexistence, the surface free-energy density can
be approximated as

� = �ls�1 + �z/RT�2� + ��sw − �lw� + �0e−z/z0, �2�

where � fs, � fw, and �sw are, respectively, the the fluid-solid,
fluid-wall, and solid-wall, interfacial free energy densities. �0
and z0 parametrize the effective repulsion between wall-solid
and solid-fluid interface which is expressed by the last term
of Eq. �2�.

We should mention that the last term in Eq. �2� is strictly
speaking only correct for flat surfaces with large z. A more
microscopic description would be required when dealing
with a small number of layers. This would greatly complicate
the present analysis. However, as our aim is not to obtain a
quantitative description of the simulation data, but rather to
gain qualitative understanding of the relation between the
size of the template and of the crystallite, we use the very
simplified picture of Eq. �7�.

The main difference with the analysis reported in Refs.
�13,14� is the presence of the �z /RT�2 term which is due to
the finite lateral size of the template. It becomes irrelevant in
the RT→	 limit. By minimizing Eq. �2� with respect to z we
obtain

z =
RT

2�0

2z0� fs
e−z/z0. �3�

This equation can be solved numerically to give a set of
points describing the functional dependence of the cap height
z and the template size �RT

2� �see Fig. 6�. A power-law fit to
these points z��RT

2�� yields an apparent exponent ��1/3.
Hence, to a good approximation, the number of induced solid
particles NS=
sVcap per template area AT=�RT

2 �NT is ex-
pected to increase as NT

1/3. This estimate is consistent with
the value �=0.30�5�. obtained by fitting the results of the
simulations as shown in Fig. 5.

The ability of a template to induce crystal growth is, of
course, sensitive to the quality of the template. To test this
effect, we consider the effect of fluctuations in the position of
the template particles on the size of the epitaxially grown
crystallite �Fig. 7�. This figure shows that the size of the

FIG. 4. �Color online� 111 template stackings.

FIG. 5. �Color online� Probability distribution of finding NS crystalline particles induced by templates 100 �left-hand side� and 111
�right-hand side� containing NT particles as a function of NS /NT. The insets show how the ratio �NS /NT�max, corresponding to the peak of the
distributions, depends on the number of particles in the template. Solid lines indicate power law fit to the data. All data have been taken at
the equilibrium bulk lattice spacings of the respective crystals.
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epitaxial crystal decreases when the templating particles are
allowed to fluctuate around their lattice positions �both in
and out of the template plane� under the influence of an
harmonic potential,

V„r��i�… =
k

2
„r��i� − r�0�i�…2. �4�

Here k is the spring constant, r��i� is the position of the ith
particle in the template, and r�0�i� is the lattice site the particle
is bound to.

This harmonic potential mimics the experimental setup
where template particles are fixed in space with optical twee-
zers. Figure 7 shows how the number of induced crystalline
particles NS decays with the average root-mean-square dis-
placement �per lattice spacing� of the particles in the tem-
plate. We call this quantity L0. It is clear that as long as L0 is
contained to 0.05 the overall number of crystalline particles

induced by the template is unaffected. For larger values fol-
lows a rapid decay. It is interesting to compare these data to
the empirical melting criterion due to Lindemann which
states that a crystal melts when the root-mean-square vibra-
tion amplitude per lattice spacing exceeds 13% of the
nearest-neighbor distance. From Fig. 7 we see that for this
value NS /NT�0.65 which means that when the Lindemann
criterion is satisfied, the crystal cannot act as a substrate for
crystal nucleation. It also implies that little is gained by re-
ducing the rms displacement of template particles by more
than 50% with respect to the Lindemann limit. Next, we
consider the effect of a lattice mismatch between the tem-
plate and the epitaxial crystal. To this end, we studied the
variation of P�NS� with the template lattice spacing a at co-
existence. Results are shown in Fig. 8. As expected �13,14�
the optimal templates are those with a lattice spacing equal
to the lattice constant aeq of the stress-free equilibrium crys-
tal. Making the spacing larger, decreases the quality of the
template, but only slowly. However, decreasing the lattice
spacing of the template quickly kills the tendency of the
template to act as a seed. The dependence of the size of the
epitaxially grown crystallite on the lattice spacing of the tem-
plate is shown in the insets of Fig. 8. This observation sug-
gests that if two crystals with different lattice spacing can
grow on a template, a judicious choice of the lattice spacing
of the template will make it possible to grow preferentially
the crystal with the smaller lattice spacing. However, it will
be difficult to select the crystal with the larger spacing.

As already noticed in Ref. �15�, when the lattice spacing
of the template is expanded even more than shown in Fig. 8,
there comes a point where additional particles can occupy
the vacancies in the template lattice. We explored to what
extent each of the templates induces order within its own
plane. We systematically examined lattice spacing ranging
from a=1.3� to a=2.4� with an interval of 
a=0.02�. We
find that order is established in all template planes as soon as
space is made to fit a particle in between. Figure 9 shows a
density plot in the template plane �brightest spots correspond
to the templating particles�. In images A, B, C we can ob-
serve the restructuring inside the template layer when one
particle can fit in between the templating particles, while
images D, E, F in Fig. 9 show a density plot for lattice
spacings that are large enough to accommodate more than
one particle. For larger values of a the ability of the template
to confine fluid particles in its interstitials decreases substan-
tially but some residual order can still be found for slightly
larger lattice spacings. These results are likely to be of prac-
tical importance given the practical restrictions on the total
number of particles that can be trapped by the optical twee-
zers. The present results suggest that the number of template
particles can be drastically reduced without affecting the
quality of the template.

Thus far, we have only considered epitaxial growth at
coexistence. The advantage of studying the system under
those conditions is that the crystal formation is exclusively
due to the template, as there is no thermodynamic driving
force for bulk crystallization. However, in practice, experi-
ments are always performed at finite supersaturation. It is
therefore relevant to know how the tendency to grow epitax-
ial crystals is influenced by changing the osmotic pressure of
the hard-sphere suspension.

FIG. 6. �Color online� Plot and fit of the solutions of Eq. �3� as
a function of the template area AT. Here we used �0=0.43kBT /�2

and z0=2.5� �13�.

FIG. 7. Number of crystalline particles NS induced by a template
of area NT particles as a function of the average root-mean-square
displacement per lattice spacing of the particles in the template.
This simulation has been carried out at P*=12.5 for the 100 tem-
plate with NT=64.
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It should be stressed that, as soon as the system is super-
saturated, there is the chance that bulk crystallization will
take place. However, this is an activated process. Hence, at
moderate supersaturations, it is still possible to observe a
finite �metastable� epitaxial crystallite. We measured the size
of crystallites at different supersaturations for each template
at their equilibrium lattice spacings with 64 particles. Figure
10 shows the results of this analysis. Higher pressures cause
complete crystallization in the sample limiting our study to
relatively small undercoolings. Notice how template 111,
which has the smallest interfacial free energy density �18�
among the three templates, always induces a crystallite that
is larger than the other two templates. In order to describe
how the crystal size increases with the suspension’s osmotic
pressure P, we proceed as we did earlier by writing the
Gibbs free energy of the system as


G = � fsS − �
��Ns + S�0e−z/z0, �5�

where S is the surface area of the nucleus and 
� is the
difference in chemical potential between the solid and the
liquid. In our specific case we assume the shape of the
nucleus to be a spherical cap �see Fig. 11�. It follows that

S = Scap = � fs��z2 + RT
2�, Ns = 
sVcap = 
s

�

6
z�3RT

2 + z2� ,

�6�

keeping only the z dependent terms we have


G = �z2 − 
s�
��	�

6
z�3RT

2 + z2�
 + �RT
2�0e−z/z0. �7�

Minimizing Eq. �7� with respect to z we find

2z −

s�
��

2
�z2 + RT

2� =
RT

2�0

z0
e−z/z0 �8�

which can be solved numerically for different values of 
�.
Re-expressing 
� in terms of the bulk pressure P we find
that the P dependence of z can be fitted to a power law
z� P� with �=1.9�1� �see Fig. 12�.

This result shown in Fig. 10 shows that the simple ana-
lytical model accounts well for the numerical simulation
data.

It is reasonable to assume that crystal nucleation at mod-
erate undercooling can be described by classical nucleation
theory �CNT�. The Gibbs free-energy barrier to form a crys-
tal nucleus composed of NS particles surrounded by fluid can
be expressed using Eq. �7�. Ignoring the exponential term for
large z we can find an analytical solution for the height of the
critical spherical cap

z = R0�1 + �1 + �RT/R0�2� , �9�

where R0=2� fs / �
s�
��� is the CNT prediction for the radius
of the critical nucleus in the absence of the template, and 
s
is the equilibrium density of the crystal. Figure 13 shows the
typical shape of free energy barrier as a function of the cap
height z. Interestingly, the free energy as a function of z has
a minimum for z=R0�1−�1+ �RT /R0�2�. This minimum cor-
responds to the thickness of the metastable, precritical crys-

FIG. 8. �Color online� Probability distribution of finding NS crystalline particles induced by templates 100, 110, and 111, as a function of
the lattice spacing a. The insets show how the ratio �NS /AT�max corresponding to the peak of the distributions depends on a.
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tallite that forms spontaneously on the template. The nucle-
ation barrier corresponds to the free-energy difference
between the critical nucleus and the metastable precritical
crystal. Hence, the presence of the metastable crystallite has
the effect to increase the nucleation barrier compared to that
expected in the presence of a bare substrate �19�.

We used this simple theoretical model to predict the pres-
sure dependence of the nucleation rate. Of course, in a Monte
Carlo simulation, we do not really compute rates. Rather, we
know from earlier numerical studies of hard-sphere crystal
nucleation that complete crystallization can take place on the
time scale of a simulation, once the nucleation barrier is less
than �15kBT �20� �the actual value depends weakly on sys-
tem size�. We therefore expect to observe spontaneous crys-
tallization on a template at an excess pressure such that

G�15kBT. We can estimate 
P if we insert 
G=15kBT in
Eq. �7� and solve for 
�. Figure 14 shows the result that we
obtain for 111 templates of different size. In all cases, we
have assumed that �0=0. As can be seen from the figure, the
simple analytical model accounts surprisingly well for the
simulation data.

IV. CONCLUSIONS

To summarize, we have used Monte Carlo simulations to
investigate the effect of crystallization templates, consisting

FIG. 9. �Color online� In-plane particle density plot. Bright
spots correspond to the position of the center of the template par-
ticles. From top to bottom we imaged templates 100, 110, and 111.
The lhs corresponds to a lattice spacing large enough to accommo-
date one fluid particle in the template, namely �A� a=1.48� �100�,
�B� a=1.48� �110�, and �C� a=1.75� �111�. The rhs correspond to
larger lattice spacings where additional particles could be inserted.
�D� a=2.14� �100�, �E� a=1.76� �110�, and �F� a=2.12� �111�.
Data are averaged over 500 configurations.

FIG. 10. �Color online� Peaks of the probability distribution of
inducing NS crystalline particles by templates 111, 110, and 100
containing NT particles as a function of the system reduced pressure
P*.

FIG. 11. Sketch of the assumed spherical cap shape forming
over the template.

FIG. 12. �Color online� Plot and fit of the solutions of Eq. �8� as
a function of the bulk pressure P minus the equilibrium pressure.
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of hard, colloidal spheres, on the growth of crystals from
solution. We found that, for a given number of template par-
ticles, the 111 template is most effective in inducing epitaxial
crystal growth. The size of the crystallites that form on the
templates at coexistence are not simply proportional to the
template area. However, a simple “wetting” picture accounts
for the observed relation between template area and crystal-
lite size. We find that disorder in the template can suppress
its effectiveness, provided that the rms displacement of the
template particles from their lattice sites is comparable to
that specified by the Lindemann criterion ��10% of the
nearest-neighbor distance�. However, if the disorder is a fac-
tor 2 less, the template is almost 100% effective. By intro-
ducing a lattice mismatch between the template and its target
crystal, we can suppress crystal growth. However, the effect
of lattice mismatch is much stronger for compressed tem-

plates than for expanded templates. We find that a simple
modification of classical nucleation theory accounts well
both for the size of metastable adsorbed crystallites at finite
supersaturation and for the observed pressure dependence of
the nucleation rate.
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