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We study dynamical heterogeneity and growing dynamical length scales in two kinetically constrained
models, namely, the one- and two-vacancy assisted triangular lattice gases. One of the models is a strong
glassformer and the other is a fragile glassformer. Both exhibit heterogeneous dynamics with broadly distrib-
uted time scales as seen in the distribution of persistence times. We show that the Stokes-Einstein relation is
violated, to a greater degree in the fragile glassformer, and show how this violation is related to dynamic
heterogeneity. We extract dynamical length scales from structure factors of mobile particles and show, quan-
titatively, the growth of this length scale as density increases. We comment on how the scaling of lengths and
times in these models relates to that in facilitated spin models of glasses.
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I. INTRODUCTION

The dramatic dynamical slowdown accompanying the for-
mation of a glass is a remarkable phenomenon �1–3�. One
explanation for the underlying microscopic cause of this
slowdown relies on the presence of local steric constraints on
the movement of particles, which make themselves felt to an
increasing degree as the temperature is lowered �or the con-
centration of particles is increased�. Kinetically constrained
lattice gas models �4–6� are simple caricatures of glassform-
ers which employ local steric constraints as their sole means
to glassiness in the absence of any nontrivial static correla-
tions between particles �for alternative thermodynamic views
of the glass transition, see, e.g. �7,8��. These constrained
models have been extensively studied �see, e.g. �4,5,9–11��.
Our purpose here is to extend these studies to focus on the
idea of dynamical heterogeneity �12–14� as a manifestation
of excitation lines in space time and to attempt identification
of scaling and universality classes in the dynamics of these
models �15–19�.

The paper is organized as follows. Section II describes the
two models we use as well as details of the computer simu-
lations used to study them. Section III looks at heteroge-
neous dynamics in our models via the distribution of persis-
tence times. Section IV presents the scaling of the structural
relaxation time and diffusion constant, the implications of
which lead to a discussion of the breakdown of the Stokes-
Einstein relation in Sec. V. Section VI discusses the emer-
gence of a dynamical length scale and gives a quantitative
characterization of this length by analyzing structure factors
of mobile particles. Finally, we end with a discussion of our
results in Sec. VII.

II. MODELS AND COMPUTATIONAL DETAILS

We present results for two kinetically constrained triangu-
lar lattice gas �TLG� models introduced by Jäckle and
Krönig �5�. These two-dimensional models are variants of
lattice models proposed by Kob and Andersen �4�. Each site

of the triangular lattice has six nearest neighbor sites and can
hold at most one particle. A particle at site i is allowed to
move to a nearest neighbor site, i�, if �i� i� is not occupied
and �ii� the two mutual nearest neighbor sites of i and i� are
also empty. These rules coincide with a physical interpreta-
tion of steric constraints on the movement of hard core par-
ticles in a dense fluid �5�. We call the model with these rules
the �2�-TLG because both mutual nearest neighbors need to
be empty in order to facilitate movement. We also present
results for the �1�-TLG where the constraints are more re-
laxed: movement is allowed as long as either of the mutual
nearest neighbors is empty. As with other kinetically con-
strained lattice gas models, the TLG has no static interactions
between particles other than those that prohibit multiple oc-
cupancy of a single lattice site. Therefore initial configura-
tions can be generated by random occupation of empty lat-
tice sites by particles until the desired density is reached.

In the computer simulations, we investigated particle den-
sities, �, between 0.01 and 0.80 for the �2�-TLG and between
0.01 and 0.996 for the �1�-TLG. The density �=1 corre-
sponds to the completely full lattice in both cases. For the
�2�-TLG, we used a lattice with edge length L=128 for all
densities. There exists the possibility in the �2�-TLG of initial
configurations containing an unmoveable structure which
percolates throughout the system called a backbone �4,5�.
Since the dynamics obey detailed balance, these backbones
could never be destroyed in the course of the simulation. For
the densities studied here, however, L=128 is sufficiently
large such that the probability of having such a configuration
is vanishingly small �see �5��. For the �1�-TLG, we used L
=128 to 2048. A pair of vacancies in the �1�-TLG can always
diffuse freely �5� so this version of the TLG does not suffer
from the problem of backbones in the same way as the �2�-
TLG. At higher densities, however, one still needs to ensure
that there are a sufficient number of potentially mobile par-
ticles in the system such that the typical dynamics of the
model are observed. For the �1�-TLG, the number of poten-
tially mobile particles at higher densities is approximately
equivalent to the number of vacancy pairs and therefore can
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be estimated as �1−��2L2. The system sizes at the various
densities for the �1�-TLG simulations were chosen such that
the number of potentially mobile particles estimated in this
way was always approximately 100. For both models, peri-
odic boundary conditions were used.

At each density, several hundred independent trajectories
of lengths 10–100 times ��, where �� is the time for the
self-intermediate scattering function at q= �� ,0� �21� to
reach 1/e of its initial value �see below�, were run. Trajec-
tories were stored logarithmically for later analysis �i.e., con-
figurations were saved after 1, 2, 4, 8, 16, 32, etc. sweeps�.
At each state point, between 128 and 256 independent tra-
jectories were acquired. Time was measured in Monte Carlo
sweeps. During each sweep, particles were chosen randomly
and a move was attempted. For the higher density runs in
both models, a continuous time algorithm was used for
greater efficiency �22�. This algorithm involved making and

updating a list of only those particles which have the possi-
bility of moving and choosing from among those exclusively
during every move. The total time �in units of Monte Carlo
sweeps� was then updated accordingly by adding to it the
inverse of the number of mobile particles available during
that continuous time step. The continuous time algorithm
resulted in a speed up of our simulations by as much as one
to two orders of magnitude for the highest density runs in
both the �1�-TLG and the �2�-TLG. Finally, for the distribu-
tion of site persistence times �see below�, statistics were
gathered over runs of very large systems �L=1024 and
2048�.

III. HETEROGENEOUS DYNAMICS AND THE
DISTRIBUTION OF PERSISTENCE TIMES

A central phenomenon behind our perspective of glasses
is dynamical heterogeneity �12,13�. A direct measure of het-
erogeneous dynamics in glassy systems is the idea of persis-
tence times �16,17�. Figures 1�a� and 1�b� show the distribu-
tion of site persistence times, ��log ��, in the �2�-TLG and
�1�-TLG at various densities; that is, the distribution of

FIG. 1. Distribution of local persistence times for �a� the �2�-
TLG model �from left to right� �=0.40, 0.50, 0.65, 0.70, 0.77, and
0.79; and �b� the �1�-TLG model �from left to right� �=0.20, 0.60,
0.70, 0.75, 0.80, 0.85, 0.92, 0.95, and 0.97. The density is defined as
the number of particles divided by the total system size, L2, such
that a density of one indicates a completely full lattice. The abscis-
sae are given on a scale of logarithm base 10. The unit of time is
Monte Carlo sweeps. The density, �o, is the onset density discussed
in the text.

FIG. 2. Self-intermediate scattering function at wave vector q
= �� ,0� for �a� the �2�-TLG �from left to right� �=0.01, 0.05, 0.10,
0.20, 0.30, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75, 0.77, 0.79, and 0.80;
and �b� the �1�-TLG �from left to right� �=0.20, 0.30, 0.40, 0.50,
0.60, 0.70, 0.75, 0.80, 0.85, 0.88, 0.90, 0.92, 0.95, 0.97, 0.98, 0.99,
0.993, 0.995, and 0.996. The unit of length is the lattice spacing.
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times, given an initial configuration of the lattice, before the
first change at a particular site occurs, either due to an empty
site being filled or a filled site becoming empty. These dis-
tributions are multipoint functions because they depend not
only on the state of a lattice site at the initial time and the
time when it changes, but also on all intervening points in
time. As has been shown in spin-facilitated models �16�,
three distinct dynamical regimes are observed: �i� at low den-
sities, there is a single peak at small relaxation times indicat-
ing homogeneous fast dynamics; �ii� at intermediate densi-
ties, two peaks develop and coexist, one at faster times and
the other at slower times, indicating heterogeneous, fluctua-
tion dominated, dynamics; and �iii� as density is increased
even higher, the peak at faster times becomes suppressed
relative to the peak at slower times and the dynamics again
become homogeneous and slow. In region �ii�, or the cross-
over region, the dynamics are broadly distributed over sev-
eral orders of magnitude in time. Following �16�, we can
define, qualitatively, an onset density, �o, for both models
where the dynamics begin to feel the influence of dynamical
heterogeneity and thereby lose their mean-field character, as
well as a crossover density �c where slow processes begin to
dominate. For the �2�-TLG, �o=0.50 and �we anticipate� �c
=0.80 and for the �1�-TLG, �o=0.60 and �c=0.85.

In the next section, we turn to two two-point functions
which have been the more conventional measures of glassy
dynamics: the self-intermediate scattering function and the
mean-squared displacement.

IV. DYNAMICAL SLOWDOWN

A basic ingredient of a glassformer is a precipitous dy-
namical slowdown over a narrow range of temperatures or
densities. This characteristic can already be seen qualita-
tively in the distribution of persistence times by looking at
the movement of the mean of the distributions as � increases.
For example, in the �2�-TLG, from �=0.70 to 77, the mean

persistence time increase two to three orders of magnitude.
The traditional measure of this slowdown is the self-
intermediate scattering function, Fs�q , t�= �eiq·�ri�t�−ri�0���, par-
ticularly its decay at wave vector q= �� ,0�, Figs. 2�a� and
2�b�. Here, ri�t� denotes the position of particle i at time t.
The angled brackets, �¯�, denote an average over different
pairs of configurations along a trajectory separated by a
given time interval. The decay of the scattering function to
1/e at this wave vector is typically defined to be ��, or the
structural relaxation time, as it gives a sense of how density
fluctuations relax at relatively short length scales.

Experiments report the scaling of viscosity versus inverse
temperature, 1 /T. Therefore, for the particular case of a ki-
netic lattice gas, one would like to make connections be-
tween structural relaxation time and viscosity, and density
and inverse temperature. In both experiments and computer
simulations �23,24�, it has been shown that the structural
relaxation time scales like the viscosity. We imagine that the
logarithm of the vacancy concentration, 1−�, is proportional
to the logarithm of the concentration of excitations, c, where
ln c is, to within an additive constant, proportional to inverse
temperature as in spin-facilitated Ising models �6�. That is, to
within additive and multiplicative constants, ln�1−��� ln c
�−1/T. It is reasonable, therefore, to define an effective
temperature as

− ln�1 − �� � 1/T . �1�

In other words, there is an analogy between the triangular
lattice gas models and excitation models which is made ex-
plicit by this particular definition of temperature as we dis-
cuss below.

The structural relaxation time plotted versus T and 1/T is
shown in Figs. 3�a� and 3�b�, respectively. The inset of Fig.
3�a� shows a plot of �� versus T−Tc for the �2�-TLG where
Tc is taken to be the temperature at the crossover density, �c
�as defined in Sec. III�, and the black line is a power law fit
to a portion of the data in the manner of mode coupling

FIG. 3. �Color online� �a� Structural relaxation time as a function of temperature. Circles and squares correspond to the �2�-TLG and
�1�-TLG, respectively, throughout the paper. The inset shows the same data for the �2�-TLG plotted vs T−Tc and a power law fit �solid line�
to a portion of the data. �b� Structural relaxation as a function of scaled reciprocal temperature. Here Tg is such that ���Tg�=107. The lines
are fits to the relaxation times at low temperatures. For the �1�-TLG we use the Arrhenius form ln ���� /T, with �	2.29. For the �2�-TLG
we use a double exponential �10�, ln ���exp�a /T�, with a	1.76.
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theory �MCT� �25�. In MCT, Tc is a critical temperature
where time scales diverge. We see that the MCT fit is valid
for almost five orders of magnitude in time even though
there is no dynamical arrest at Tc, as the relaxation time of
the �2�-TLG diverges only at �=1 �5,10�. A similar MCT

power law fit �not shown� can be made for the �1�-TLG,
valid for about two orders of magnitude.

Figure 3�b� shows the relaxation time on a reduced tem-
perature scale in the manner proposed by Angell �2�. Here,
Tg is defined as the temperature at which ��=107. We see
that the relaxation time of the �1�-TLG is Arrhenius growing
as ���c−� with �=2.29, as �→1. The relaxation of the
�2�-TLG in contrast is super-Arrhenius, and the low tempera-
ture data can be fit with a double exponential in 1 /T �10�.
That is, ln ���const+ln c for the �1�-TLG and ln ��

�const+ f�c�ln c, where f�c� is some function of the concen-
tration of excitations, for the �2�-TLG. These temperature
behaviors follow from the fact that the dynamics of the ex-
citations in the �1�-TLG is diffusive while the dynamics of
the excitations in the �2�-TLG is hierarchical. In this context,
the �1�-TLG is a strong glassformer whereas the �2�-TLG is a
fragile one. It is often the case in experiment that strong
glassformers are networked materials. We have argued else-
where, however, that any material will obey strong scaling at
large enough relaxation times and this behavior arises from
the diffusive dynamics of the underlying mobility field
�15,20�.

Interestingly, the time exponent �	2.3 of the �1�-TLG is
the same as that for the one-spin facilitated Fredrickson-
Andersen �FA� model in dimension d=2, obtained in renor-
malization group �RG� calculations and observed numeri-
cally �18�. This suggests that the �1�-TLG may be in the
universality class of the FA model, the prototypical kineti-

FIG. 4. The mean-squared displacement: �a� the �2�-TLG, �
=0.01 to 0.80; and �b� the �1�-TLG, �=0.01 to 0.996.

FIG. 5. �Color online� Self-diffusion constant as a function of
inverse effective temperature. At low temperatures, the self-
diffusion constant for the �2�-TLG fits well to exp�−2.5 exp�1/T��
and that of the �1�-TLG fits well to exp�−2/T�.

FIG. 6. �Color online� Stokes-Einstein violation in the �a� �2�-
TLG and �b� �1�-TLG.
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cally constrained spin model for a strong glassformer �26�.
We will examine more of these dynamic scaling relations
below.

The mean-squared displacement, �
�ri�t�
2�= �
ri�t�
−ri�0�
2�, is shown in Fig. 4. The self-diffusion coefficient,
Ds, is defined as Ds= limt→��
�ri�t�
2� /4t. We see that at low
densities, Ds for the �1�-TLG and �2�-TLG coincide. At

higher densities, Ds for the �1�-TLG is Arrhenius, and scales
as Ds�c2 as �→1, see Fig. 5. This result is in agreement
with the analytical predictions of �5,10�. Moreover, this is
also the scaling of the diffusion constant for a probe mol-
ecule coupled to the FA model in any dimension �17�, further
evidence that the �1�-TLG is in the FA model universality
class. On the other hand, Ds for the �2�-TLG is super-
Arrhenius �see Fig. 5�. The behavior of Ds is similar, quali-
tatively, to that of ��. The quantitative difference in their
scaling with density, however, is significant, and is an indi-
cation that relaxation behaviors at short and long length
scales are not the same. We turn to this issue now in both the
�1�-TLG and the �2�-TLG.

V. THE BREAKDOWN OF THE STOKES-EINSTEIN
RELATION

An important ramification of broadly distributed hetero-
geneous dynamics is the breakdown of mean-field dynamical
relations such as the much studied Stokes-Einstein �SE� re-
lation. This relation says that diffusion scales inversely with
the relaxation time, Ds���constant. It is a quantitative state-
ment of the expectation that the dynamical behavior of nor-
mal liquids should be similar at all but the smallest length
scales. In supercooled liquids this simple mean-field approxi-
mation fails �28,29�, and, given the results of previous sec-
tions, we would expect a similar violation of the SE relation

FIG. 7. �Color online� Fractional Stokes-Einstein exponent:
scaling of the self-diffusion constant with relaxation time. The
dashed lines are fits to the data at longer times.

FIG. 8. �Top� Self-intermediate scattering function for the �2�-TLG at various wave vectors: �a� �=0.20 and �b� �=0.77. For both graphs,
from left to right: q= �� ,0�, �� /2 ,0�, �� /4 ,0�, �� /8 ,0�, �� /16,0�, �� /32,0�, and �� /64,0�. �Bottom� Ds�q��1/��q�q2 as a function of q
at various densities: �c� �2�-TLG, �from top to bottom� �=0.20 to 0.80 and �d� �1�-TLG �from top to bottom�, �=0.40 to 0.996. The higher
density curves for the �1�-TLG include smaller q values because of larger system sizes �see Sec. II�.
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in the TLG models. We see from Fig. 6 that the SE relation is
indeed violated for both the �2�-TLG and the �1�-TLG, the
effect being more pronounced in the fragile case. Moreover,
we see that the densities at which the product Ds�� begins
deviating from constancy coincide with the onset densities,
�o’s, extracted from the distribution of persistence times.
This observation reinforces the idea that it is the fluctuation
dominated nature of the dynamics that leads to the SE break-
down �17�.

SE violation implies that the self-diffusion constant does
not scale with the structural relaxation time as ��

−1. One pos-
sibility is that it obeys a fractional SE law, Ds���

−� where
�	1. This is observed in experiments �28�, and is obtained
theoretically for probe diffusion in the FA and East models
�17� �see also �30��. Figure 7 shows that the diffusion con-
stant also obeys a fractional SE law in the TLG models. The
SE exponent is �	0.88 for the �1�-TLG, which is the value
expected for the FA model in d=2, �	2/2.3 �17�. In the
case of the �2�-TLG, despite the fact that Ds and �� are both

super-Arrhenius, we find that the scaling exponent is tem-
perature independent at large densities, �	0.58. The devia-
tion of this exponent from 1 is larger than that for both the
FA and East models in two dimensions �17�. It indicates a
larger violation of the SE law, consistent with the fact that
the �2�-TLG is more fragile than either of those models �10�.

VI. DYNAMICAL LENGTH SCALES

A. Indication of a dynamical length scale from a two-point
function

Since the growth in time scales and the violation of the
Stokes-Einstein relation in the TLG models are clearly not
tied to a growth in static length scales, we turn now to the
discussion of dynamical length scales. Such a length scale
can be inferred from examining the relaxation behavior of
the self-intermediate scattering function over more than one
wave vector at different densities. One can appreciate this
fact qualitatively by looking at the decay of Fs�q , t� for the
�2�-TLG over several values of q at low and high density,
Fig. 8 �top� �19�. At low density, the decay of the various
curves looks similar at all wave vectors �except for the larg-
est wave vector� whereas at high density, even the curves at
intermediate wave vector differ greatly from the simple ex-
ponential form seen at smaller wave vectors. The high den-
sity curves bunch up at intermediate to large q indicating that
the relaxation behavior at these length scales is different �i.e.,
slower� than one would expect from the behavior at larger
length scales �5�. Similar behavior has also been observed in
the Kob-Andersen kinetic lattice gas model and kinetically
constrained spin models �4,19�.

To quantify the above behavior, we proceed as in �31,32�.
In the hydrodynamic regime, we have limq→0 Fs�q , t�
�exp�−Dsq

2t�, and one expects the product Ds��q�q2 to be
independent of q, where ��q� is the time when the interme-
diate scattering function at wave vector q decays to 1/e. In
Fig. 8 �bottom�, we plot the quantity Ds�q��1/��q�q2 as a
function of q at various densities. A flat line independent of q
indicates normal diffusive behavior whereas a downward
bend signifies a change to subdiffusive behavior. As density

FIG. 9. �Color online� Data from Fig. 8 collapsed onto a master
curve. The closed symbols correspond to the �2�-TLG and the open
symbols correspond to the �1�-TLG. The straight line is q2.

FIG. 10. Growth of mobile particle regions as a function of
observation time �t at �=0.77 in the �2�-TLG. Black and gray
regions indicate the location of particles and white regions indicate
empty lattice sites. Particles colored in black have moved at least
one lattice spacing in a time �t whereas particles colored in gray
have not. �Top, from left to right: �t=103 and 104; bottom, from left
to right: �t=105 and 106; ���105 at this density�.

FIG. 11. Same as Fig. 10 for the �1�-TLG. Here, �=0.95. �Top,
from left to right: �t=10 and 102; bottom, from left to right: �t
=103 and 104; ���103 at this density.�
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increases, the curves begin to bend at a smaller and smaller
wave vector, q*. This behavior is indicative of a growing
dynamical length scale as density is increased �19,31,32�.

Following the prescription of �19�, we extract a length
scale, �*, from Fig. 8 as �*��Ds�q→0���. This length scale
determines the onset of Fickian diffusion. Using �* to rescale
space, and using ��q�q2 to rescale time, the data from Fig. 8
can be collapsed onto a master curve, Fig. 9.

B. Direct observation and quantification of a dynamical
heterogeneity length scale

We can study dynamical length scales in the TLG models
directly by observing a trajectory over a time �t and coloring
particles which have moved at least one lattice spacing.
Snapshots of applying this procedure to trajectories of the
�2�-TLG and the �1�-TLG at high particle densities over pro-
gressively longer �t’s are shown in Figs. 10 and 11. Mobility
is indeed correlated: mobile particles are clustered and the
clusters of mobility at earlier �t act as seed particles from
which subsequent mobility grows. Moreover, there is a quali-
tative difference in the shape of the clusters in the �2�-TLG
and the �1�-TLG. In the fragile model, the clusters are
smooth and more anisotropic, indicating a directed growth of
mobile regions. In the strong model, the clusters are rugged

and isotropic. These observations can be understood as aris-
ing from the difference in the local constraints of both mod-
els. The strict two site facilitation rule of the �2�-TLG re-
quires cooperative, hierarchical rearrangement of particles
for movement whereas the one site facilitation rule of the
�1�-TLG allows for the random diffusion of vacancy pairs
�5�. These same correlations between fragility and the
smoothness of interfaces and between slow and fast dynami-
cally heterogeneous regions are present in other facilitated
models �15,18,33�.

To quantify the above ideas, we extract a dynamical
length scale, ���t�, from structure factors of the mobile par-
ticles �13,15,31,34�. Motivated by the mobility criterion de-
scribed in the previous paragraph and depicted in Figs. 10
and 11, we consider the following binary field:

nr�t� = �
i


„ri�t� − r…�1 − 
„ri�t + �t� − ri�t�…� . �2�

Here, ri�t� denotes the position of the ith particle at time t,

�x� is the Kronecker delta function, and the sum is over all
particles. This field, nr�t�, is one if the particle at r has
moved at least one lattice spacing in time �t and zero other-
wise. Note that it will not count as mobile particles which, in
time �t, have moved away from, but returned to, their origi-

FIG. 12. �Color online� �Top� Growth of dynamical heterogeneity length as a function of observation time, �t, for �a� the �2�-TLG, �
=0.70 to 0.80; and �b� the �1�-TLG, �=0.95 to 0.996. �Bottom� �c� Scaling of the maximum value of the dynamical heterogeneity length,
�max, from �a� and �b� with relaxation time. The inset shows �max vs c for the �1�-TLG, on a log-log scale to highlight power law scaling. �d�
The scaling of the structural relaxation time, ��, with �tmax, the value of the observation time at �max. The dashed line is ��

−1.
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nal site. It will, however, count particles which have ex-
changed places or are moving in a string-like single file man-
ner. Its structure factor is a four point function: it measures a
correlation function which depends on two points in time, t
and t+�t, and two points in space, r and r�.

We define the structure factor for the mobility field as the
following normalized correlation function:

S�q;�t� =
1

L2

�
nq�t;�t�
n−q�t;�t��
�
nr�t;�t�2�

, �3�

where 
nr�t ;�t�=nr�t ;�t�− �nr�t ;�t�� is the deviation of nr

from its average value and 
nq�t ;�t� is the Fourier transform
of 
nr�t ;�t�:


nq�t;�t� = �
r

exp2�i

L2 r · q�
nr�t;�t� . �4�

The angled brackets, �¯�, denote an average over different
pairs of configurations along a trajectory separated by a
given time interval �t. We then define the length scale,
���t�, to be proportional to the inverse of the first moment,

q̄�t, of the circularly averaged structure factor, S̃�qn ;�t� �35�.
That is, ���t��1/ q̄�t where

q̄�t = �
n

qnS̃�qn;�t�/�
n

S̃�qn;�t� . �5�

Here, qn=2�n /L and n=0,1 ,2 , . . . ,L /2. The length scale
was normalized such that � extracted from the structure fac-
tor of a random configuration of particles on the lattice �i.e.,
an ideal gas� was unity. The length scale ���t� is the typical
linear size of correlated dynamical domains at observation
time �t in units of lattice spacings.

Figures 12�a� and 12�b� show ���t� at various densities
for the �2�-TLG and the �1�-TLG. The basic shape of these
curves is as expected: as �t→0, mobility is sparse and un-
correlated so � approaches unity and as �t→�, everything
becomes mobile and � once again tends towards unity. In
between, as the pictures in Figs. 10 and 11 suggest, mobility
clusters together and grows. Looking at the maximum of
these different curves, �max��tmax�, a growing length scale is
clearly evident as � increases. Pictures of space-time con-
figurations containing correlated dynamical regions of size
close to �max at densities 0.77 in the �2�-TLG and 0.95 in the
�1�-TLG are given in the lower left panels of Figs. 10 and 11,
respectively. It is important to note that, in general, �max
��* �19�. Figure 12�c� shows the value of �max plotted ver-
sus the structural relaxation time for both the �2�-TLG and
the �1�-TLG. At short relaxation times, the curves merge and
approach the ideal gas value of one. As relaxation times in-
creases, the dynamical heterogeneity length scale for the
strong version of the model is always larger than that of the
fragile version at a fixed value of �� �15�. We also find that
the observation time, �tmax, at which the maximum length
scale, �max, occurs, scales with the structural relaxation time,
��, for both models �not shown�.

If the �1�-TLG is in the universality class of the FA model,
then we would expect �max to scale as a power of both the
excitation concentration, �max�c−�, and of the relaxation

time, �max���
1/z. This appears to be the case, as shown in

Fig. 12�c�. For the correlation and dynamic exponents we
find �	0.89 and 1/z	0.36, in reasonable agreement with
Ref. �18�, �	0.7 and 1/z=� /�	0.3 �36�. The z exponents
shown in Fig. 12�c� are what we would expect from Fig.
12�b� where a range of ���t� curves at different densities
merge at early times and display power law scaling with
similar exponents.

As alluded to earlier, the dynamics of the �1�-TLG at high
densities is controlled by the motion of vacancy pairs. The
physics of these vacancy pairs is similar to excitations in the
FA model. Vacancy pairs have the ability to interact with
other lattice vacancies in order to branch and coalesce. It is
important to note that evidence of these interactions can only
be seen in simulations of large enough system sizes where
the number of vacancy pairs is approximately 50–100. As
mentioned in Sec. II, this requirement leads to system sizes,
for example, of L=2048 for �=0.995.

Figure 13 shows the structure factors of the mobility field,
Eq. �3�, measured at the structural relaxation time, �t=�� for
the �2�-TLG and the �1�-TLG. The curves are scaled in a
manner suggestive of a coarsening process. The collapse of
the various structure factors �37� implies that, in the glassy
regime, increasing density corresponds to a coarsening of
dynamic heterogeneity fields in space-time. An appreciation
for the self-similarity of dynamic heterogeneity fields at dif-
ferent temperatures has already been noted in spin-facilitated
models �15,18�.

FIG. 13. �Color online� Structure factors of the mobility field,
Eq. �3�, measured at �t=��, for various densities in the �a� �2�-TLG
and the �b� �1�-TLG. The axes are scaled as indicated.
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Both sets of scaled structure factors in Fig. 13 have an
intermediate power law regime going as k−2.3 for the �2�-
TLG and k−2 for the �1�-TLG. One explanation for the dif-
ference in exponents could be the following. Porod law scal-
ing, k−�d+1�, arises from a system which is extensive in
interfaces. In two dimensions, this implies that a system with
a scaling exponent closer to 3 would have smoother inter-
faces. This interpretation is consistent with the snapshots of
the dynamic heterogeneity fields in Figs. 10 and 11.

The structure factors for the �1�-TLG imply a value of the
dynamical exponent � very close to zero, S�k��1/k2−� as
k→�. This gives a prediction for the exponent  via the
scaling relation = �2−���� of 	1.8. The  exponent con-
trols the scaling of the dynamic susceptibility, �
�S�0;� ,��� with the concentration of excitations. The inset
to Fig. 13�b� shows that this expectation is approximately
satisfied �18�.

VII. DISCUSSION

Despite their simplicity, the constrained lattice gas models
we have studied show the essential features of glass forming
liquids, such as a precipitous dynamical slowdown and dy-
namical heterogeneity. They are intermediate between the
fully coarse grained kinetically constrained spin models such
as the FA and East models, and atomistic models such as the

binary Lennard-Jones mixture. We find a broad distribution
of persistence times, especially in the �2�-TLG �Fig. 1�. From
the scaling of the structural relaxation time it follows that the
�2�-TLG is a fragile model and the �1�-TLG is a strong one,
consistent with the predicted scaling of the self-diffusion
constant in �5,10�. Fragile behavior versus nonfragile behav-
ior coincides with hierarchical versus diffusive propagation
of excitations �5,38�, and the former follows from directional
persistence �15� as evident from the patterns of dynamic het-
erogeneity seen in Figs. 10 and 11. Dynamic heterogeneity
produces length-time scaling and decoupling phenomena.
Dynamic heterogeneity is present in both strong and fragile
materials, not only in the latter. This is consistent with recent
molecular dynamics simulation on silica �39� and earlier the-
oretical predictions �15,16�.
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