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We report a similarity of fluctuations in equilibrium critical phenomena and nonequilibrium systems, which
is based on the concept of natural time. The worldwide seismicity as well as that of the San Andreas fault
system and Japan are analyzed. An order parameter is chosen and its fluctuations relative to the standard
deviation of the distribution are studied. We find that the scaled distributions fall on the same curve, which
interestingly exhibits, over four orders of magnitude, features similar to those in several equilibrium critical
phenomena �e.g., two-dimensional Ising model� as well as in nonequilibrium systems �e.g., three-dimensional
turbulent flow�.
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I. INTRODUCTION

Recently, great interest has been focused on the fluctua-
tions of correlated systems in general and of critical systems
in particular �1–9�. Bramwell, Holdsworth, and Pinton
�BHP� �1�, in an experiment of a closed turbulent flow, found
that the �normalized� probability distribution function �PDF�
of the power fluctuations has the same functional form as
that of the magnetization �M� of the finite-size two-
dimensional �2D� XY equilibrium model in the critical region
below the Kosterlitz-Thouless transition temperature �mag-
netic ordering is then described by the order parameter M�.
The normalized PDF, denoted by P�m�, is defined by intro-
ducing the reduced magnetization �1� m= �M − �M�� /�,
where �M� denotes the mean and � the standard deviation.
For both systems, BHP found that while the high end �m
�0� of the distribution has �1� a Gaussian shape the asymp-
tote of which was later clarified �3� to have a double expo-
nential form, a distinctive exponential tail appears towards
the low end �m�0� of the distribution. The latter tail, which
will be hereafter simply called, for the sake of convenience,
“exponential tail,” provides the main region of interest �1�,
since it shows that the probability for a rare fluctuation, e.g.,
of greater than six standard deviations from the mean, is
almost five orders of magnitude higher than in the Gaussian
case. Subsequent independent simulations �2–4,8,9� showed
that a variety of highly correlated �nonequilibrium as well as
equilibrium� systems, under certain conditions, exhibit ap-
proximately the “exponential tail.”

Earthquakes do exhibit complex correlations in space,
time, and magnitude, e.g., �10–12�. It has been repeatedly
proposed �see Ref. �13� and references therein� that the oc-
currence of earthquakes �cf. mainshocks� can be considered
as a critical point �second-order phase change�, but alterna-
tive models based on first-order phase transitions have been
also forwarded which are probably more applicable, see Ref.
�14� and references therein. �Such a diversity also exists for

the brittle rupture which is a phenomenon closely related to
earthquakes. Buchel and Sethna �15� have associated brittle
rupture with a first-order transition and a similar view has
been also expressed in Refs. �16,17�. On the other hand,
Gluzman and Sornette �18� later suggested that it is analo-
gous to a critical point phenomenon.� Both approaches lead
to scaling laws or power-law distributions for the dynamical
variables �second-order transitions demonstrate scaling near
a critical point, whereas first-order transitions demonstrate
scaling when the range of interactions is large �mean-field
condition�, as is the case with elastic interactions �14��. How-
ever, the question on whether earthquakes exhibit an “expo-
nential tail” has not yet been clarified. This might be due to
the major difficulty of choosing an order parameter in the
case of earthquakes �EQs�. Following the wording of Ref.
�19�, we note that in general such a choice is an art, since
usually it is a new phase which we do not understand yet,
and guessing the order parameter is a piece of figuring out
what is going on. The scope of the present paper is twofold:
to propose an order parameter for the case of EQs and then
examine whether an “exponential tail” appears. We find that
our scope is achieved only if we analyze the series of earth-
quakes in the natural time domain �20–27�.

In order to serve the aforementioned scope, the present
paper is organized as follows: In Sec. II, we explain how the
power spectrum of the seismicity in natural time can be ob-
tained. An order parameter for EQs is proposed in Sec. III. In
the light of this proposal, and without using any adjustable
parameter, we show in Sec. IV that the normalized distribu-
tion of the long term seismicity for different seismic areas
fall on a universal curve. It consists of two segments the one
of which exhibits the “exponential tail.” Interestingly, a fur-
ther investigation of the latter segment in Sec. V reveals that
it is similar to that observed in several equilibrium critical
phenomena �e.g., 2D Ising, 3D Ising� and in nonequilibrium
systems �e.g., 3D turbulent flow�. A brief discussion follows
in Sec. VI, while Sec. VII summarizes our main conclusions.
Two appendixes provide clarifications on some points dis-
cussed in the main text.*Electronic address: pvaro@otenet.gr

PHYSICAL REVIEW E 72, 041103 �2005�

1539-3755/2005/72�4�/041103�8�/$23.00 ©2005 The American Physical Society041103-1

http://dx.doi.org/10.1103/PhysRevE.72.041103


II. THE SEISMICITY IN NATURAL TIME

In a time series consisting of N events, the natural time
�k=k /N serves as an index �20,21� for the occurrence of the
kth event. It is therefore smaller than, or equal to, unity. For
the analysis of seismicity, the evolution of the pair ��k ,Ek� is
considered �20,22,28,29�, where Ek denotes the seismic en-
ergy released during the kth event, see Fig. 1 �cf. this energy,
which is itself proportional to the seismic moment M0 and
hence we can use in the vertical axis of Fig. 1�b� either Ek or
�M0�k, is related �30� to the magnitude M through E�10cM,
where c is a constant around 1.5�. The following
continuous function F��� was introduced �20–22�:
F���=�k=1

N Ek exp�i� k
N

� where �=2�	, and 	 stands for the
natural frequency. We normalize F��� by dividing it by
F�0�,


��� =

�
k=1

N

Ek exp�i� k
N�

�
n=1

N

En

= �
k=1

N

pk exp�i�
k

N
	 , �1�

where pk=Ek /�n=1
N En. A kind of normalized power spectrum

���� can now be defined: ����= 

���
2.
For a seismic electric signals �SES� activity, which is a

sequence of low frequency ��1 Hz� electric pulses emitted
when the stress in the focal area approaches �31,32� a critical
value, we have shown �for details see Ref. �20�, see also
�21�� that the following relation holds �20–22�:

���� =
18

5�2 −
6 cos �

5�2 −
12 sin �

5�3 . �2�

We focus on the properties of ���� or ��	� for natural
frequencies 	 less than 0.5, since in this range of 	 , ���� or
��	� reduces �20–22,28� to a characteristic function for the

probability distribution pk in the context of probability
theory. According to the probability theory, the moments of a
distribution and hence the distribution itself can be approxi-
mately determined once the behavior of the characteristic
function of the distribution is known around zero. For �
→0, Eq. �2� leads to �20,21,28�

���� � 1 − 0.07�2, �3�

which reflects �see Appendix A� that the variance of � is
given by

1 = ��2� − ���2 = 0.07. �4�

In Sec. IV, we will investigate whether Eq. �2� holds for EQs.

III. THE ORDER PARAMETER PROPOSED

We now proceed to choose the order parameter, assuming
that a mainshock may be considered as the new phase. We
take advantage of the experimental fact �31� that several
hours to a few months before a mainshock an SES activity is
recorded, and focus our attention on the evolution of the
seismicity �in the candidate area� during the period from the
SES detection until the mainshock. If we set the natural time
for the seismicity zero at the initiation of the concerned SES
activity, we form time series of seismic events in natural time
�see Fig. 1� for various time windows as the number N of
consecutive �small� EQs increases. When computing ��	�
�as well as 1, see below� for each of the time windows, we
find that, in the range 0�	�0.5, it approaches, as N in-
creases from 6 to some value less than �or equal to� 40, to
that given by Eq. �2� �or the 1 value becomes equal to 0.07,
see Eq. �4��. The coincidence occurs only a few hours to a
few days before the mainshock. �In simple words, before a
mainshock a sequence of earthquakes occurs, which obeys
Eq. �2� and this process will be called single correlated pro-
cess.� When the mainshock occurs �the new phase�, ��	�
abruptly increases to approximately unity �for details see
Ref. �30�� and 1 becomes almost zero. This can be visual-
ized in the example depicted in Fig. 2, where we plot the 1

FIG. 1. How a series of seismic events in conventional time �a�
is read in the natural time �b�. This example refers to the first 11
small earthquakes �cf. the month/date is marked on the horizontal
axis in �a�� that occurred after the SES activity recorded on April
18, 1995 and preceded the mainshock �M =6.6� of May 13, 1995.

FIG. 2. How the variance 1 evolves event by event during the
following period: from the detection �31� of the SES activity on
April 18, 1995 until the occurrence of the M =6.6 mainshock �la-
beled 18� on May 13, 1995. All the EQs used in the calculation are
tabulated in Ref. �30� �cf. the first 11 EQs—out of 18—are those
depicted in Fig. 1�a��.
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value versus the number of EQs after the SES detection on
April 18, 1995 �see Refs. �21,31�� until the occurrence of the
M =6.6 mainshock on May 13, 1995 at 40.2 °N, 21.7 °E .
This figure shows that the 1 value becomes 1�0.07 after
the 11th EQ �see also Ref. �30��, while upon the mainshock
the 1 value abruptly decreases to 1�9�10−5. Such a be-
havior has been verified �20,22� for several major EQs and
points to the conclusion that ��	� for small 	, or 1, could
be considered as an order parameter.

IV. UNIVERSAL CURVE FOR SEISMICITY

The properties of the power spectrum for the long-term
seismicities in natural time can be studied by means of the
following procedure: First, calculation of ��	� was made for
an event taking time windows from 6 to 40 consecutive
events �for the reasons explained in Sec. III; the choice of the
precise value of the upper limit, up to 100 or so, is not found
decisive �20,22,29��. Second, this process was performed for
all the events by scanning the whole catalog. The following
data from two different areas, i.e., San Andreas fault system
and Japan, have been analyzed: First, the EQs that occurred
during the period 1973–2003 within the area N32

37W114
122 using

the Southern California Earthquake catalog �SCEC�. Second,
the EQs within N25

46E125
146 for the period 1967–2003 using the

Japan Meteorological Agency catalog �hereafter simply
called “Japan”�. The thresholds M �2.0 and M �3.5 have
been considered for SCEC and Japan, respectively, for the
sake of data completeness �30�. By plotting for a given value
of 	 the observed probability P���	�� versus ��	� �two
such examples are given in Figs. 3�a� and 3�b� for 	=0.05
and 	=0.4, respectively�, we find that a local maximum oc-
curs at a value of ��	� hereafter called �p�	� �see also
Appendix B�. This lies very close �see Fig. 3�c�� to the value
�th�	� obtained theoretically, i.e., estimated from Eq. �2�.
The validity of Eq. �2� for various 	 values, in the range 0
�	�0.5, can be now visualized in Fig. 3�d�, where we see
that �p�	� values versus 	 for both SCEC and Japan do not
differ by more than 1% from the �th�	� values �cf. this dif-
ference is more or less comparable to the estimation error of
�p�	�, for details see Appendix B�.

We now plot, in Fig. 4, the quantity �P�X� versus �X
− �X�� /� where X stands for ��	� and ���	�� and � refer to
the mean value and the standard deviation of ��	� �recall
that the calculations should be done for small 	 values, e.g.,
	=0.05, since we assume here 	→0, for the reasons ex-
plained in Sec. II�. One could alternatively plot �1

P�1�
versus ��1�−1� /�1

, where �1� and �1
now refer to the

mean value and the standard deviation of 1. The results in
Fig. 4, for both areas, fall on the same curve. This log-linear
plot clearly consists of two segments: The segment to the left
shows a decrease of P�X� almost by five orders of magni-
tude, while the upper right segment has an almost constant
P�X� �obviously, the latter segment deviates from the general
behavior of the BHP distribution—as it was summarized in
Sec. I—but from thereon we put emphasis on the left seg-
ment since our main interest here concerns the “exponential
tail”�. The feature of this plot is strikingly reminiscent of the

one obtained by Bak et al. �10� �see their Fig. 4� on different
grounds, using EQs in California only. More precisely, they
measured PS,l�T�, the distribution of waiting times T, be-
tween EQs occurring within range l whose magnitudes are
greater than M � log S. They then plotted T�PS,l�T� versus
TS−bld and found that, for a suitable choice of the exponent �
�i.e., �=1�, the Gutenberg-Richter law exponent b �i.e., b
=1�, and the spatial dimension d �i.e., fractal dimension d
=1.2� all the data collapse onto a single curve which is simi-
lar to that of Fig. 4. Recall, however, that Fig. 4 was obtained
here without considering at all the waiting time distribution
and without the suitable choice of any parameter. After a
further inspection of Fig. 4, the following points have been
clarified.

First, the rapidly decaying part �i.e., the left segment�,
which is consistent with an almost exponential decaying
function over almost four orders of magnitude, remains prac-
tically unchanged, upon randomizing the data �“shuffling”

FIG. 3. �Color online� Validity of Eq. �2� for SCEC and Japan.
We first determine �see also Appendix B� for SCEC �circles� and
Japan �crosses�, for each 	 value, the value �p�	� at which
P���	�� maximizes. Two such examples are shown in �a� and �b�
for 	=0.05 and 	=0.4, respectively. In �c�, we plot the resulting
�p�	� values vs 	 for SCEC �circles� and Japan �crosses�; the solid
line corresponds to Eq. �2�. The percentage difference between
�p�	� and �th�	� �obtained from Eq. �2�� is shown in �d�.
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�25��. �Some changes do occur in the right part, associated
with aftershocks, see also below.� This can be seen in the
inset of Fig. 4, where for the sake of clarity only the results
from the data of Japan �the original as well as the “shuffled”
ones� are depicted.

Second, the feature of the plot of Fig. 4 is not altered upon
changing either the seismic region or the time period �pro-
vided that the latter does not include aftershocks only, see
below�. As an example, Fig. 5�b� shows that three different
regions A, B, C in Japan �depicted in Fig. 5�a��, as well as
the whole Japan, result in almost identical plots.

Third, the “upturn branch” in the upper right part of Fig. 4
arises from the presence of aftershocks. It disappears �see the
crosses in Fig. 6� when, in Japan, for example, we delete the
EQs with M �5.7 �and hence drastically reduce the number

of aftershocks�, but it does not, when deleting EQs with
smaller threshold, i.e., M �4.0; the latter can be also visual-
ized in the SCEC example of Fig. 6, where we give the
results for M �4.0 �cf. this threshold still allows the presence
of a reasonable number of aftershocks�.

Fourth, if we consider the relevant results for the world-
wide seismicity �WWS� by taking a large magnitude thresh-
old, i.e., M �5.7 �so that for the data to be complete �30��,
we find �see Fig. 6 that will be further discussed below� that
they fall onto the same curve with the results of both Japan
and SCEC.

FIG. 4. �Color online� Universality of the probability density
function of ��	� for EQs in the natural time domain. The log-linear
plot of �P�X� vs �X− �X�� /�, where X stands for ��	� for 	�0.
Crosses and circles correspond to Japan �M �3.5� and SCEC �M
�2.0�, respectively. The inset depicts the corresponding results for
the “shuffled” data �black curve� and the original data �red crosses�
in Japan. The same graph is obtained for three different regions in
Japan �see Fig. 5�.

FIG. 5. �Color online� The same as Fig. 4, but for the regions A �red�, B �green�, and C �blue� in Japan �b�. A map of these regions is
shown in �a�.

FIG. 6. �Color online� The common feature of fluctuations in
different correlated systems. The log-linear plot of �P�X� vs �X
− �X�� /� for WWS �triangles�, Japan �crosses�, and SCEC �circles�.
The magnitude threshold M �5.7 for WWS and Japan �while M
�4.0 for SCEC� was used, see the text. Furthermore, the dotted
curve shows the results obtained for the 2D XY model �with �33�
inverse Kosterlitz-Thouless transition temperature KKT�1.2� �X
=Mx

2+My
2� ,K=2.0 for L=10 �N=100� which has been shown �1�

to describe the experimental results for 3D turbulent flow. The re-
sults of the 2D Ising model K=0.4707 �while Kc�0.4407�, either
for L=128 �dashed� or L=256 �solid line�, are also plotted.
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V. DOES A UNIVERSAL BEHAVIOR
EXIST FOR DIVERSE SYSTEMS?

We now compare in Fig. 6 the aforementioned results of
seismicity with those obtained in some equilibrium critical
systems �e.g., see Ref. �8��. We first recall that the PDF in the
critical regime depends on K=1/T and the length L through
a scaling variable s�L1/��K−Kc� /Kc, where Kc=1/Tc and Tc

denotes the critical temperature �the quantity s� provides the
ratio of the lattice size and the correlation length at K�. In
Fig. 6, we include numerical results of the 2D Ising model
for s=8.72�L=128,K=0.4707� and s=17.44�L=256,K
=0.4707�. Here, X stands for M. These s values were inten-
tionally selected because �8� for s�8.72 for the 2D Ising
model, the P�m ,s�’s of a number of critical models �i.e., 2D
XY, 2D Ising, 3D Ising, 2D three-state Potts� share the same
form �up to a constant factor of s�, which interestingly ex-
hibits an exponential-like left-tail �m�0�. An inspection of
Fig. 6 shows that our 2D Ising results almost coincide �cf.
this can be safely checked only for the left segment, i.e., m
�0� with those of seismicity, i.e., Japan, SCEC, and WWS
�cf. some disparity which appears in the upper right part of
SCEC only, might be attributed to the selection of the mag-
nitude threshold for seismicity, recall the third point men-
tioned in Sec. IV�. This coincidence �which seems to be bet-
ter for s=17.44� reveals that the seismicity, irrespective of
the seismic area we consider, exhibits—over four orders of
magnitude—fluctuations of the order parameter similar to
those in several critical systems as well as in 3D turbulent
flow.

VI. DISCUSSION

It is of interest to see what the scaled distributions look
like in the frame of the present analysis if one generates
surrogate data either by means of a simple Poisson model or
by the Gutenberg-Richter law and compare the results to
those deduced from actual seismicity data.

In Fig. 7, we present the linear-linear plot �Fig. 7�a�� as
well as the log-linear plot �Fig. 7�b�� of �P�X� versus �X
− �X�� /� where X stands for ��	� for 	�0, for surrogate
data of EQs for which their �M0�k obey a simple Poisson rule
for various mean values � lying between 5 and 200. In the
same figure we insert the results for Japan �M �3.5� and
SCEC �M �2.0� already discussed in Fig. 4. Although we
find that upon decreasing � the surrogate data move closer to
the real data, however, a satisfactory agreement between
them cannot be supported.

In Fig. 8 we repeat the procedure followed in Fig. 7, but
now the surrogate data are produced on the basis of the
Gutenberg-Richter law, i.e., that the �cumulative� number of
EQs with magnitude greater than M �occurring in a specified
region and time� is given by

N��M� � 10−bM . �5�

It is currently considered �14� that b is generally a constant
varying only slightly from region to region being approxi-
mately in the range 0.8�b�1.2. For Japan and SCEC we
find on the basis of Eq. �5� b�1.05. Note that in Fig. 8,

surrogate data are intentionally produced for a variety of b
values in the range b=0.5–2.0. An inspection of this figure
leads to the following conclusions: First, the curves of the
surrogate data marked with b=0.5–0.9 significantly differ
from that of the real data. Second, for b values larger than 1
and smaller than 1.4, the curves of the surrogate data have a
general feature more or less similar to the curve of the real
data. However, none of these b values in the surrogate data
can lead to a curve coinciding to the one obtained from the
real data.

In other words, the scaled distribution, deduced within the
frame of the present analysis, reveals for the real data an
extra complexity when compared to the surrogate data even
if the latter are produced with b values comparable to the
experimental ones.

VII. CONCLUSIONS

The main conclusions could be summarized as follows.

FIG. 7. �Color online� The linear-linear �a� and log-linear �b�
plots of �P�X� vs �X− �X�� /�, where X stands for ��	� for 	�0.
The results for Japan �M �3.5� and SCEC �M �2.0� are plotted
along with those deduced from a series of independent and identi-
cally distributed �M0�k samples from a Poisson distribution with
mean values 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 200:
from the bottom to the top in the maxima appearing in �a�, respec-
tively, and from the upper to the lower left branch in �b�,
respectively.
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�1� The analysis of the seismicity in the natural time do-
main reveals that ��	� �for small 	� or 1 may be consid-
ered as an order parameter.

�2� If we study the order parameter fluctuations relative to
the standard deviation of its distribution, the following two
facts emerge �without making use of any adjustable param-
eter�:

First, the scaled distributions of different seismic areas �as
well as that of the worldwide seismicity� fall on the same
curve �universal�.

Second, this curve exhibits an “exponential tail” form
similar to that observed in certain nonequilibrium systems
�e.g., 3D turbulent flow� as well as in several �e.g., 2D Ising,
3D Ising, 2D XY� equilibrium critical phenomena.

APPENDIX A: DERIVATION OF EQ. (4)

The Taylor expansion, around �=0, of the relation
����= 

���
2 using Eq. �1� reveals that �20�

���� = 1 − 1�2 + 2�4 + 3�6 + 4�8 + ¯ , �A1�

where

1 = �−
1

2

d2����
d�2 �

�=0
. �A2�

We now consider

d2����
d�2 = 
*���

d2
���
d�2 + 
���

d2
*���
d�2 + 2

d
���
d�

d
*���
d�

�A3�

and taking into account that 
�����kpk exp�i��k�, with

�0�=1, we find:

1 = −
1

2�− �
k

pk�k
2 − �

k

pk�k
2 + 2��

k

pk�k	2� = ��2� − ���2,

�A4�

where ��n�=�kpk�k
n.

FIG. 9. �Color online� Two examples of the procedure used in
the determination of �p�	�: �a� for SCEC at 	=0.03, and �b� for
Japan at 	=0.4. The �red� curves in each case show the cubic
polynomial fit which was used in the range �a ,b� around the maxi-
mum. The �red� arrow indicates the position of �p�	�.

FIG. 8. �Color online� The linear-linear �a� and log-linear �b�
plots of �P�X� vs �X− �X�� /�, where X stands for ��	� for 	�0.
The results for Japan �M �3.5� and SCEC �M �2.0� are plotted
along with those deduced from shuffled artificially generated EQ
data obeying the Gutenberg-Richter law for various values of the
exponent b=0.5, 0.7, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, and 2.0 from the
lower to the upper curve at the value �X− �X�� /��−0.5 in �a�, and
from the upper to the lower curve at the value �X− �X�� /��−4 in
�b�.
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Expanding Eq. �2�, around �=0, we have

���� = 1 − 0.07�2 + ¯ , �A5�

and hence

1 = ��2� − ���2 = 0.07 �A6�

which is just Eq. �4�.

APPENDIX B: THE PROCEDURE TO DETERMINE
THE MAXIMUM IN P†�„�…‡ VERSUS �„�…

The calculation of ��	� was made, as mentioned in Sec.
IV, for an event taking time windows from 6 to 40 consecu-
tive events and this process was performed for all the events
by scanning the whole catalog. This procedure resulted in the
calculation, for each 	 value and each catalog, of more than
106 ��	� values, whose probability density function �PDF�
was determined by using the computer code HISTOGRAM of
Ref. �34� with a number of bins proportional to N1/3, where
N is the number of ��	� values �cf. this point, i.e., that the
number of bins should be proportional to N1/3, is discussed in
Ref. �35��. This method resulted in the PDFs shown in Fig. 9
as well as in those depicted in Figs. 3�a�, 3�b�, 4, 5�b�, and 6.
Due to the intrinsic fluctuations of the values of the PDF
�because N is still finite�, a direct determination of the value

�p�	� where the PDF maximizes, just by simply taking the
maximum value of the calculated PDF, may lead to errone-
ous values of �p�	�. One should consider the general trend
of the PDF as a whole, which can definitely show a more
accurate and stable value of �p�	�. Thus the procedure we
applied for the determination of �p�	� was as follows: For
each 	 value, a region �a ,b� around the maximum was se-
lected �examples are shown in Figs. 9�a� and 9�b�� and then
a cubic polynomial, p�x�=a+bx+cx2+dx3, was used to fit
the PDF values in this region. �Close enough to the maxi-
mum, a parabolic fit could be also good since f�x�= fmax

− 
fmax� 
�x−xmax�2 /2, but in view of the PDF asymmetry the
cubic polynomial used provides a better approximation in the
whole region �a ,b�.� The value of �p�	� was determined
through the direct maximization of this cubic polynomial,
i.e., �p�	�= �−2c−4c2−12bd� /6d. The values of �p�	�
shown in Fig. 3�c� have been obtained by means of such a
procedure. Finally, we note that, due to the fitting procedure
involved and the relative arbitrariness in the definition of
�a ,b�, the estimation error of �p�	� is more or less compa-
rable to its percentage deviation from �th�	�, depicted in
Fig. 3�d�. Thus we can state that �p�	� and �th�	� are ex-
perimentally indistinguishable, which strengthens the state-
ment that Eq. �2�—which has been used for estimating
�th�	�—holds for EQs.
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