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The dispersion properties of rectangular metallic waveguides periodically loaded by uniaxial resonant scat-
terers are studied with help of an analytical theory based on the local field approach, the dipole approximation,
and the method of images. The cases of both magnetic and electric uniaxial scatterers with both longitudinal
and transverse orientations with respect to the waveguide axis are considered. It is shown that in all considered
cases waveguides support propagating modes below the cutoff of the hollow waveguide within some frequency
bands near the resonant frequency of the individual scatterers. The modes are forward ones except the case of
transversely oriented magnetic scatterers when the mode turns out to be backward. The described effects can
be applied for the miniaturization of the guiding structures.
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I. INTRODUCTION

Recently, a very unusual waveguide was proposed by
Marques et al. in �1� and then extensively studied by Hrabar
et al. in �2�. It is a rectangular metallic waveguide periodi-
cally loaded by resonant magnetic scatterers, so-called split-
ring resonators �SRR’s� �3,4�, which are also used as com-
ponents of a realization of the left-handed medium �LHM�
�5�, a composite with negative permittivity and permeability
�6,7�. The geometry of the Marques waveguide �MW� is pre-
sented in Fig. 1. The SRR’s in the MW are oriented so that
their magnetic moments are orthogonal to the waveguide
axis and to one of the walls.

The MW support a propagating mode within a frequency
band near the resonance of SRR’s even if it is located below
the cutoff frequency of the hollow waveguide �1,2�. The
transversal dimensions of the waveguide happen to be much
smaller than the wavelength in free space. Thus, loading by
SRR’s makes waveguide subwavelength and provides a
unique method for miniaturization of guiding structures. The
mode of the MW is a backward wave �the group velocity is
negative�. This effect was interpreted in �1� in terms of the
effective LHM to which such a loaded waveguide is appar-
ently equivalent. The empty waveguide was considered as an
artificial electric plasma with negative permittivity and the
array of magnetic scatterers as a magnetic material with
negative permeability. This interpretation is not completely
adequate because it cannot explain why the effect disappears
in the case of loading by an isotropic magnet with negative
permeability. Really, it is clear that the hollow waveguide
filled by the isotropic magnetic material with negative per-
meability does not support guiding modes. Meanwhile, the
doubly negative medium having isotropic negative permittiv-
ity and permeability would support propagating backward
waves �8�. Also, the LHM interpretation is not instructive in

our opinion since it does not allow one to notice possibilities
to obtain propagation below the cutoff frequency of a hollow
waveguide with help of the other loadings than SRR’s.

The goal of the present study is to give an adequate ex-
planation of the extraordinary propagation effect in the MW
and to suggest other loadings which would lead to similar
effects. In this paper it is shown that propagation below the
cutoff frequency of a hollow waveguide can be achieved
with magnetic scatterers oriented longitudinally with respect
to waveguide axis, as well as with electric scatterers oriented
either longitudinally or transversally. This demonstrates that
the miniaturization of the rectangular waveguide at a fixed
frequency using loading by the resonant scatterers is not re-
stricted by the case when the scatterers are magnetic and
transversally oriented. Miniaturization is possible with the
help of either magnetic or electric resonant scatterers with
either transversal or longitudinal orientation with respect to
the waveguide axis. Of course, miniaturization can be also
reached using periodically located capacitive posts; however,
the loading by resonant scatterers is a qualitatively different
effect. In �2� it was pointed out that the miniaturization ob-
tained in this way refers also to the longitudinal size of the
waveguide since the period of the loads is incomparably
smaller than the wavelength in free space, unlike propagation
in a capacitively loaded waveguide, where the period of the
posts is of the order of � /2.

The minipassband below the cutoff frequency of a rectan-
gular waveguide loaded by resonant scatterers is caused by
the properties of the periodical one-dimensional array �chain�
of resonant dipoles and has nothing to do with doubly nega-
tive media. The backward wave appears in a special case of
transverse orientation of magnetic scatterers and is not a nec-
essary attribute of such a miniband. It is known that a chain
of the resonant scatterers in a homogeneous matrix supports
guided modes. In the optical frequency range it refers to
chains of metallic nanoparticles �9–12�. At microwaves it
refers to so-called magnetoinductive waveguides �chains of
SRR’s� �13–16� or to chains of inductively loaded electric
dipoles �17�. The metallic walls of the loaded waveguide*Electronic address: belov@rain.ifmo.ru
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perturb the dispersion of the guided mode in a chain but do
not cancel the propagation. This is because the wavelength of
the guided mode in the chain of resonant scatterers is dra-
matically shortened compared to that in the matrix. As a
result, the energy of a guided mode is concentrated in a
narrow domain around the chain, and the interaction between
the chain and the waveguide walls turns out to be not critical
for the existence of the guided mode.

The paper is organized as follows. In Sec. II the disper-
sion properties of the chains of resonant scatterers located in
free space are considered. The known results, obtained in
�12� by numerical simulations, are reproduced with the help
of an analytical theory based on the local field method. This
is a necessary part of the work in the view of a comparison
with the case of the loaded waveguide. The coincidence with
known results can be considered as a validation of our ap-
proach. In Sec. III the dispersion properties of the chains
located inside of the rectangular waveguide are considered
using two approaches: an accurate method of local field �as
in Sec. II� and an effective medium filling approximation.
Section IV is devoted to a comparison between properties of
the chains and loaded waveguides. Section V contains the
concluding remarks. The details of the local field theory are
given in Appendixes.

In the present paper we consider both magnetic and elec-
tric resonant uniaxial scatterers. As an example of a magnetic
scatterer we have chosen the SRR’s �3,5,18� �see Fig. 2�a��.
The electric dipoles are represented in our work by the short
inductively loaded wires �ILW’s� �19� �see Fig. 2�b��. Any
individual scatterer can be characterized by polarizability re-
lating the dipole moment �magnetic or electric� with the local
field �magnetic or electric external field acting to the scat-
terer�. This polarizability is scalar since the only possible
direction of the induced dipole moment is possible for a
scatterer with a given orientation. The details concerning the

calculation of the polarizabilities for SRR’s and ILW’s are
presented in Appendix A.

The inverse values of the polarizabilities ���� and �e���
�see Appendix A, formulas �A1� and �A4�� of SRR’s and
ILW’s have the same dependences on frequency within the
resonant band:

Re��−1���� = A−1��0
2

�2 − 1� . �1�

Here A is the amplitude and �0 is the resonant frequency, the
parameters determined by the geometry of the scatterer. No-
tice that the result �1� is also valid for a silver nanosphere in
the vicinity of its plasmon resonance �12�. Thus, it is clear
that there is no principal difference between the dispersion
properties of the chain of SRR’s and ILW’s �at microwaves�
or silver nanospheres �in the optical range�.

II. CHAINS OF UNIAXIAL RESONANT SCATTERERS

Let us study the dispersion properties of linear chains
with period a formed by resonant scatterers. We will con-
sider only two typical orientations of scatterers: longitudinal
and transverse. The geometries of the structures are pre-
sented in Fig. 3. The case of longitudinal orientation was
analyzed in �17�, and the both longitudinal and transverse
orientations were studied in �12�. In the present section we
reproduce the main results of these works with help of the
local field approach.

A. Basic theory

Without loss of generality we can restrict consideration
by the case of the chain of magnetic scatterers �SRR’s�.
The chains of electric scatterers are dual structures to the
considered ones and have completely the same dispersion
properties.

The spatial distribution of dipole moments of SRR’s cor-
responding to an eigenmode of a chain is determined by a
propagation constant q: Mn=Me−jqan. Following the local
field approach the dipole moment M of a reference �zeroth�
scatterer can be expressed in terms of the magnetic field Hloc
acting on it: M =�Hloc

d , where Hloc
d = �Hloc ·d� is the projection

of the field on the direction of the scatterer �d=x0 for longi-
tudinal orientation of scatterers and d=y0 for the transverse
one�. This local field is a sum of partial magnetic fields Hm
produced at the coordinate origin by all other scatterers with
indices m�0: Hloc=	m�0Hm.

FIG. 1. Geometry of a subwavelength split-ring-resonator-
loaded metallic waveguide.

FIG. 2. Geometries of resonant scatterers: �a� split-ring-
resonator and �b� inductively loaded wire dipole.

FIG. 3. Chains of resonant scatterers. �a� Longitudinal orienta-
tion. �b� Transverse orientation.
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The magnetic field produced by a single scatterer with
dipole moment Mm at a point with radius vector R is given

by a dyadic Green’s function G� �R�:

Hm�R� = �0
−1G� �R�Mm, �2�

where

G� �R� = �k2I� + ���
e−jkR

4�R
. �3�

Since all dipole moments of the chain are oriented along
d, it is enough to use only the dd component of the dyadic
Green’s function. So we replace Eq. �2� by the scalar
expression

Hm
d �R� = �0

−1Gdd�R�Mm, �4�

where

Gdd�R� = �k2 +
�2

�d2� e−jkR

4�R
�5�

and d means x for the longitudinal case and y for the trans-
verse case.

Finally we obtain the expression for the field acting to the
reference scatterer in the form

Hloc/
d = 	

m�0
Gdd�amx0�e−jqamM . �6�

It allows one to get the dispersion equation for the chains
under consideration:

�0����−1 = Cd��,q,a� , �7�

where

Cd��,q,a� = 	
m�0

Gdd�amx0�e−jqam.

In Appendix B we provide expressions �B1� and �B2� which
we use for effective numerical calculations of the interaction
constants Cx and Cy, corresponding to transverse and longi-
tudinal orientations of scatterers, respectively.

B. Analysis of the dispersion properties

The dispersion diagram for guided modes can be obtained
solving the transcendental dispersion equation �7� with inter-
action constants given by expressions �B1� and �B2�. Geo-
metrically, dispersion curves correspond to the lines of the
level where the surface plot of function Re�Cx,y�� ,q�� is
crossed by �0Re��−1����. Note that only the solutions with
k�q�2� /a−k for k�� /a correspond to guided modes:
For 
q
�k, Im�Cx,y�� ,q�−�0�−1��0 and dispersion equa-
tion �7� has complex solutions corresponding to leaky modes
�see details in Appendix B�.

The dependences of Cx and Cy on normalized frequency
ka /� and propagation factor qa /� are shown in Figs. 4 and
5, respectively. The interaction constants vary in the �−1,1�
range except the case of Cy with q close to k, which has
logarithmic singularity at the light line q=k. The function
�0Re��−1���� decreases very rapidly within the �−1,1�

range of values near the resonant frequency �0. It means that
guided modes exist only within narrow bands near the reso-
nant frequency of scatterers. The behavior of dispersion
curves can be easily predicted from the plots in Figs. 4 and 5.
If at a fixed frequency the interaction constant decays when
the propagation factor increases, then the dispersion curve
grows and the eigenmode is a forward wave �the group ve-
locity vg=d� /dq is positive�, but if the interaction constant
grows, then the dispersion curve decays and the eigenmode
is a backward wave �the group velocity vg=d� /dq is nega-
tive�. From Fig. 4 it is clear that for any resonant frequencies
satisfying the evident condition �0�� / �a��0�0� �corre-
sponding to propagation below the cutoff of the hollow
waveguide� the longitudinal mode is a forward wave because
Cx decays versus q. In the case of transverse modes the situ-
ation is different. While k0a�0.5� �k0=�0

��0�0� a two-
mode regime holds. The interaction constant Cy decays while
q is close to k, but from a certain q it starts to grow. It means
that one of the transverse eigenmodes is forward �with q
�k� and the other one is backward. If the resonant frequency
is high enough �0.5��k0a���, the two-mode regime dis-
appears and only the forward wave remains.

A typical dispersion diagram for both longitudinal and
transverse modes is presented in Fig. 6 for the case of scat-

FIG. 4. Dependence of Re�Cxa
3� on normalized frequency ka /�

and propagation factor qa /�.

FIG. 5. Dependence of Re�Cya
3� on normalized frequency ka /�

and propagation factor qa /�.
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terers with A=0.1�0a3 and �0a=1/��0�0. A similar disper-
sion diagram was obtained in �12� �see Fig. 3 of this work�
by a numerical simulation. Though in �12� the electric scat-
terers in the optical range were considered, but we consider
the magnetic scatterers in the microwave range, the use of
the duality principle and normalized frequency ka /� and
wave vector qa /� eliminates this difference. The polarizabil-
ity of silver nanospheres, for which Fig. 3 from �12� was
obtained, obeys to expression �8� of �12� which is identical to
our formula �1��.

As was predicted, the longitudinal mode is a forward
wave and there is a two-mode regime for transverse modes.
The dispersion curve for transverse waves has the asymptote
q=k, and both leaky �q�k� and guided �q�k� modes exist
at very low frequencies where they have almost equal wave
vectors. This fact indicates the good matching between the
radiated wave and the guided mode. Within the band 0.995
�ka�1 there are two guiding modes at every frequency.
The solution corresponding to the backward wave is close to
Bragg’s mode �qa��� whose group velocity is close to
zero. The field of this mode is concentrated near the chain
within the spatial region r=�z2+y2�1/�q2−k2a. The
same concerns the longitudinal mode within the band
1.015�ka�1.020. If the period of the chain is much smaller
than wavelength in free space, the waveguide is subwave-
length �the field of the guided mode is concentrated within a
cylindrical domain whose diameter is much smaller than ��.
Thus, the chains of resonant scatterers �electric or magnetic,
it does not matter� form subwavelength waveguides which
can support either forward or backward waves �9–17�.

III. LOADED WAVEGUIDES

A. Basic theory

Let us study the eigenmodes of the rectangular metallic
waveguides periodically loaded by resonant uniaxial scatter-
ers. Such structures can be effectively considered as linear
chains located inside of the metallic waveguides. The geom-
etries of the four waveguides considered in the present paper

are shown in Fig. 1 �left sides of subplots�. The chains with
period c along the waveguide axis are located at the center of
rectangular metallic waveguides with dimensions a	b. The
structures in Figs. 1�a�–1�d� differ by the orientation of scat-
terers �longitudinal or transverse� and their type �electric or
magnetic�. The first structure �with transversely oriented
magnetic scatterers� is the subwavelength waveguide �see
Fig. 1� suggested by Marques et al. �1,2�. The other ones are
considered in order to show three other possible ways to
obtain miniaturization of rectangular waveguides.

Note that the chains of electric scatterers are no longer
dual to the chains of magnetic scatterers �in contrast to the
chains in free space� due to the different interactions of elec-
tric and magnetic dipoles with metallic walls.

The dispersion equation for the chains keeps the same
form as Eq. �7�, but the free-space dyadic Green’s function

G� �R�, Eq. �3�, should be replaced by the Green’s function of
the waveguide which takes into account the metallic walls.
This Green’s function can be determined with the help of the
image principle. This approach transforms the eigenmode
problem for the loaded waveguide to the problem of the
eigenwave propagation in a three-dimensional electromag-
netic lattice formed by the same scatterers. The details of the
transformation are illustrated by Fig. 7 �right parts of all
subplots�. The electromagnetic crystals obtained in such a
way have orthorhombic elementary cell a	b	c and their
dispersion properties were studied in �20� using a local field
approach. Thus, we can apply the theory of the electromag-
netic interaction in dipole crystals presented in �20� in order
to study the dispersion properties of the waveguides under
consideration.

In the coordinate system associated with the axes of the
crystal the center of a scatterer with indexes �m ,n , l� has
coordinates Rm,n,l= �am ,bn ,cl�T. From Fig. 7 it is clear that
the distribution of dipole moments in the lattice has the fol-
lowing form:

Mm,n,l = �− 1�mMe−jqclx0

for the case of transverse orientation of magnetic scatterers
�Fig. 7�a��,

Mm,n,l = Me−jqclz0

for the case of longitudinal orientation of magnetic scatterers
�Fig. 7�b��,

Pm,n,l = �− 1�nPe−jqclx0

for the case of transverse orientation of electric scatterers
�Fig. 7�c��, and

Pm,n,l = �− 1�m+nPe−jqclz0

for the case of longitudinal orientation of electric scatterers
�Fig. 7�d��.

Any of these distributions can be rewritten in terms of a
wave vector q as e−j�q·Rm,n,l�, where the wave vector q for the
four cases considered above has the form �� /a ,0 ,q�T,
�0,0 ,q�T, �0,� /b ,q�T, and �� /a ,� /b ,q�T, respectively. This
notation finally makes clear that the waveguide dispersion
problems reduce to those of three-dimensional lattices in the

FIG. 6. �Color online� Dispersion diagram for chains of resonant
scatterers: transverse �thick line� and longitudinal �thin line�
orientations.
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special cases of certain propagation directions.
The dispersion equation for a three-dimensional electro-

magnetic crystal formed by magnetic scatterers oriented
along x axis has the form �20�

�0�−1��� − C�k,q� = 0, �8�

where

C�k,q,a,b,c� = 	
�m,n,l���0,0,0�

G�Rm,n,l�e−j�qxam+qybn+qzcl�.

�9�

We call C�k ,q ,a ,b ,c� the dynamic interaction constant of
the lattice using an analogy with the classical interaction
constant from the theory of artificial dielectrics and magnet-
ics �21�. The explicit expression for C for the general case

was derived in �20�, and it is given in Appendix C by for-
mula �C1�.

The dispersion equation for waveguides with transverse
orientation of scatterers can be directly obtained from Eq. �8�
by substitution q= �� /a ,0 ,q�T and q= �0,� /b ,q�T for mag-
netic and electric scatterers, respectively. Also, in the case of
electric scatterers following the duality principle �0�−1���
should be replaced by �0�e

−1���. A similar operation for the
case of longitudinal orientation happens to be possible only
after rotation of the coordinate axes: z→x�, x→y�, and y
→z�, since Eq. �8� requires scatterers to be directed along
the x axis, but for longitudinal orientation they are directed
along the z axis. After such a manipulation substitution of
q= �q ,0 ,0�T and q= �q ,� /a ,� /b�T �in the new coordinate
axes �x� ,y� ,z��� into Eq. �8� provides the desired dispersion
equations for waveguides with transverse orientation of mag-
netic and electric scatterers, respectively.

This way we obtain the following dispersion equations for
all loaded waveguides under consideration:

�0�−1��� − C„k,��/a,0,q�T,a,b,c… = 0 �10�

for transverse orientation of magnetic scatterers,

�0�−1��� − C„k,�q,0,0�T,c,a,b… = 0 �11�

for longitudinal orientation of magnetic scatterers,

�0�e
−1��� − C„k,�0,�/b,q�T,a,b,c… = 0 �12�

for transverse orientation of electric scatterers, and

�0�e
−1��� − C„k,�q,�/a,�/b�T,c,a,b… = 0 �13�

for longitudinal orientation of electric scatterers.
The obtained dispersion equations are real-valued ones,

because the imaginary parts of their components cancel out.
It can be clearly seen from Sipe-Kronendonk condition �A2�
and the following expression proved in �20�:

Im�C� =
k3

6�
. �14�

B. Effective medium filling approximation

The chain of SRR’s with transverse orientation located in
the waveguide has been interpreted in the literature as a piece
of a uniaxial magnetic medium �1,2�. We call this approach
the effective medium filling approximation. It can be applied
practically to every waveguide considered in this paper ex-
cept the case of longitudinal orientation of magnetic scatter-
ers since the uniaxial magnetic model does not describe lon-
gitudinal modes. This approach provide qualitatively
acceptable results which are compared with exact ones in the
next subsection.

Let us start from the case of transversely oriented mag-
netic scatterers �Fig. 7�a�� and consider a chain of parallel
uniaxial magnetic scatterers as a piece of infinite resonant
uniaxial magnetic. The permeability of such a magnetic is a
tensor �dyadic� of the form

�� = �x0x0 + �0�y0y0 + z0z0� .

FIG. 7. Transformation of the waveguide problem to the lattice
one with the use of the image principle.
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The permeability � along the anisotropy axis x can be
calculated though the individual polarizability of a single
scatterer using the Clausius-Mossotti formula:

� = �0�1 +
����/��0V�

1 − Cs�a,b,c�����/�0
� , �15�

where V=abc is a volume of the elementary cell of an infi-
nite three-dimensional lattice and Cs�a ,b ,c� is the known
static interaction constant of the lattice �20,21�. In the case of
a simple cubic lattice a=b=c the interaction constant is
equal to the classical value Cs=1/ �3V�.

Notice that we should skip the radiation loss contribution
in expression �A3� while substituting into formula �15�. This
makes permeability purely a real number as it should be for
lossless material. This manipulation is based on the fact that
the far-field radiation of the single scatterer is compensated
for by the electromagnetic interaction in a regular three-
dimensional array, so that there were no radiation losses for
the wave propagating in the lattice �20,22�.

The dispersion equation for the uniaxial magnetic me-
dium has the following form �see e.g., �23��:

�0�qy
2 + qz

2� = ��k2 − qx
2� . �16�

To solve the waveguide dispersion problem is to solve the
dispersion problem �16� for a special case q= �� /a ,0 ,q�T.
The substitution of q= �� /a ,0 ,q�T into Eq. �16� gives

q2 =
�

�0
�k2 − ��

a
�2� . �17�

For the frequencies below the cutoff of the hollow wave-
guide the expression in the brackets of Eq. �17� is negative
and for positive � there is no propagation. However, if � is
negative �it happens in accordance with Eqs. �A1� and �15�
within a narrow frequency range near the resonance of the
scatterers, just above the resonant frequency of the media�, q
becomes real. This minipassband can be located much lower
than the cutoff frequency of the empty waveguide with help
of reduction of resonant frequency of the scatterers. It is easy
to see from Eq. �17� that the mode is a backward wave—i.e.,
dq /d��0. This follows from the basic inequality d� /d�
�0 �Foster’s theorem�.

So for transverse magnetic scatterers the effective me-
dium filling model gives �at least qualitatively� a correct re-
sult. Namely, it predicts a miniband within the resonance
band of SRR’s and the backward wave propagating within it.
However, this model is not accurate. The reason for this in-
accuracy is simple. In spite of the low frequency of operation
�the waveguide dimensions are small compared to the wave-
length in free space� the effective magnetic medium should
operate in the regime when its period is comparable with the
wavelength in the effective medium because qx=� /a. Such a
regime for an electromagnetic crystal cannot be described
with the help of homogenization and requires taking into
account spatial resonances of the lattice �20�.

In the case of transversely oriented electric scatterers �Fig.
7�c�� the effective medium filling model implies that the
wave propagates in a uniaxial dielectric with permittivity
tensor

�� = �x0x0 + �0�y0y0 + z0z0� .

The permittivity � along the anisotropy axis x is given by
the Clausius-Mossotti formula

� = �0�1 +
�e���/��0V�

1 − Cs�a,b,c��e���/�0
� . �18�

The dispersion equation for such uniaxial dielectric reads
�23�

�0�qy
2 + qz

2� = ��k2 − qx
2� . �19�

Solution of waveguide dispersion problem corresponds to the
case when q= �0,� /b ,q�T:

q2 =
�

�0
k2 − ��

b
�2

. �20�

This mode propagates only at frequencies when the permit-
tivity takes high positive values ���0�� / �kb��2. In our case
of a resonant dielectric it happens within a miniband just
below the resonance of the medium. It is clear from Eq. �20�
that the mode is a forward wave—i.e., dq /d��0. This fol-
lows from Foster’s theorem d� /d��0.

In the case of longitudinally oriented electric scatterers
�Fig. 7�d�� the solution of the waveguide dispersion problem
can be obtained from the dispersion equation �19� with q
= �q ,� /a ,� /b�T �the axis were transformed in order to have
the x axis along dipoles� in the next form:

q2 = k2 −
�0

�
���

a
�2

+ ��

b
�2� . �21�

The mode is propagating at frequencies when the permittiv-
ity is positive and rather high or negative and it is a forward
wave in the same manner as Eq. �20� since d� /d��0.

C. Analysis of the dispersion properties

For numerical calculation of the dispersion curves using
Eqs. �10�–�13� and �C1� we have chosen square waveguides
�a=b=c� loaded by scatterers with the same parameters
which were used for studies of chains: �0=1/ �a��0�0� and
A=0.1�0a3 for magnetic scatterers and Ae=0.1
0a3 for elec-
tric ones.

The dependence of the real part of the normalized inter-
action constant C�k ,q� with q= �� /a ,0 ,q�T on the normal-
ized frequency ka /� and on the propagation constant qa /�
is presented in Fig. 8. This interaction constant corresponds
to dispersion equation �10� for transverse orientation of mag-
netic scatterers. The value of Re�C�a3 varies within the
�−2,0.5� interval while the normalized frequency ka /� is
bounded by unity �which corresponds to the cutoff of a hol-
low waveguide�. If a value of the normalized frequency is
fixed, then the real part of the interaction constant is a mo-
notonously growing function of qa /�. The dependence of
the real part of the interaction constant on frequency is quite
weak as compared with rapidly decreasing �−1��� as follows
from Eq. �A3�. The function �0�−1��� takes values within
the �−2,0.5� interval at frequencies close to the resonant fre-
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quency �0. Therefore, dispersion equation �10� has a real
solution for qa /� within a miniband of frequencies near the
resonant frequency of the scatterers �0, and this solution is a
decaying function of frequency which corresponds to the
backward wave �the group velocity vg=d� /dq is negative�.
The obtained result, of course, confirms the existence of a
backward wave below the cutoff of the hollow waveguide
predicted and experimentally demonstrated in �1,2�.

In contrast to Fig. 8, the dependences of the normalized
interaction constants C�k ,q� with q= �q ,0 ,0�T, q
= �0,� /a ,q�T, and q= �q ,� /a ,� /a�T are decaying functions
of q for fixed values of k�� /a. It means that solutions of
dispersion equations �11�–�13� are forward waves for any
resonant frequency of the scatterer below � / �a��0�0�. Fig-
ure 9 shows the dependence of the real part of the normal-
ized interaction constant C�k ,q� with q= �q ,0 ,0�T on the
normalized frequency ka /� and propagation constant qa /�.
The dependences for the cases q= �0,� /a ,q�T and q
= �q ,� /a ,� /a�T are not shown in order to reduce the size of
the paper.

The dispersion curves for the case of magnetic scatterers
are presented in Fig. 10. The thick solid line represents the
dispersion curve for the transverse mode. It is obtained by
numerical solution of transcendental dispersion equation
�10�. The dashed line shows the result predicted by the
model of effective medium filling �17�. The significant fre-
quency shift between the exact and approximate solutions is
observed. Also, the effective medium model gives wittingly
the wrong results with q�� /a in the region ka�1.0055 and
incorrectly describes the group velocity for q�� / �2a� �for
example, it does not describe the Bragg mode with zero
group velocity at point qa=��. The dispersion curve for the
longitudinal mode obtained by numerical solution of Eq. �11�
is represented by the thin line in Fig. 10. As was mentioned
above, the effective medium filling model cannot be applied
for a description of this mode.

The dispersion curves for the case of electric scatterers
are presented in Fig. 11. The thick and thin solid lines show
dispersion curves for transverse and longitudinal modes, ob-
tained by numerical solution of dispersion equations �12� and
�13�, respectively. The dispersion curves provided by effec-
tive medium models for transverse and longitudinal modes
�formulas �20� and �21�� are plotted by thick and thin dashed
lines, respectively. The comparison of exact and approximate
solutions shows that the model of effective medium filling
gives qualitatively the right prediction of dispersion curve
behavior in the case of electric scatterers as well as in the
case of transverse magnetic scatterers. The drawbacks are
also the same: wrong group velocity q�� / �2a� and wit-
tingly wrong results with q�� /a at some frequencies.

Figures 10 and 11 demonstrate that waveguides loaded by
electric and magnetic resonant scatterers support modes
within minibands below the cutoff frequency of the hollow
waveguide. The modes are forward waves, except the case of
transverse magnetic scatterers when the mode is a forward
wave. The bandwidth in the case of transverse electric scat-
terers is of the same order with bandwidth for magnetic scat-

FIG. 8. Dependence of the real part of the normalized interac-
tion constant C�k ,q�a3 with q= �� /a ,0 ,q�T �corresponding to
transverse orientation of magnetic scatterers� on normalized fre-
quency ka /� and propagation constant qa /�.

FIG. 9. Dependence of the real part of the normalized interac-
tion constant C�k ,q�a3 with q= �q ,0 ,0�T �corresponding to longitu-
dinal orientation of magnetic scatterers� on normalized frequency
ka /� and propagation constant qa /�.

FIG. 10. �Color online� Dispersion curves for metallic
waveguides loaded by magnetic scatterers: exact solution �thick
line� and effective medium filling approximation �dashed line� for
transverse orientation and exact solution �thin line� for longitudinal
orientation. The effective medium filling model for the longitudinal
case is not applicable.
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terers with the same parameters obtained with the help of the
duality principle, but the bandwidths for the longitudinal
modes are significantly narrower than for the transverse
ones.

IV. DISCUSSION

In �1,2� the term “subwavelength waveguide” was applied
to a rectangular waveguide with small transversal dimen-
sions as compared to a wavelength in free space. However,
there are a lot of other works �9–17� in which the term “sub-
wavelength waveguiding” means the propagation of a wave
along the chain of electrically small nearly resonant particles
below the diffraction limit. In this case the transversal size of
the spatial domain, in which the field of the guided mode is
concentrated, is much smaller than the wavelength in free
space. Therefore, this mechanism of wave transmission is
considered as prospective for subwavelength imaging.

Since the field of the mode guided along the chain of
resonant scatterers is concentrated within a subwavelength
cross section, the presence of metal walls even at a rather
small distance turns out to be not crucial for the existence of
the guided wave. Thus, any waveguide periodically loaded
by the scatterers can be considered as a subwavelength
waveguide formed by a chain of nearly resonant scatterers,
whose dispersive properties are perturbed by the metal walls.
These walls can be described in terms of the image chains
forming an infinite lattice. However, the wave propagates
along the same direction in every image chain, and the trans-
versal wave numbers qx=� /a or qy =� /b describe the trans-
versal phase distribution of the wave propagating along z but
not the energy transport across z. The main question is how
the image chains of scatterers interact with the real chain and
how this interaction influences its dispersive properties.

For that purpose let us compare Fig. 6 with Figs. 10 and
11. We can conclude that the presence of metal walls around
the chain of resonant scatterers produces the following
effects.

�i� It decreases the group velocity and the frequency band
of the guided mode which corresponds to the longitudinal
orientation of dipoles.

�ii� It cancels the two-mode regime for the transverse ori-
entation of dipoles, so that the dispersion branch becomes
backward for magnetic scatterers and forward for electric
ones.

Finally, we would like to emphasize that the width of the
passband for the waveguide loaded by transversal electric
scatterers has the same order as in the case of transversal
magnetic scatterers �Marques waveguide �1,2�� if the loading
scatterers have parameters obtained using the duality prin-
ciple from each other. So the loading by electric scatterers
could be an alternative and even more appropriate solution
for waveguide miniaturization than the design suggested in
�2� for this purpose.

V. CONCLUSION

The dispersion properties of rectangular waveguides
loaded by resonant scatterers �magnetic and electric ones�
have been studied. The waveguide problem has been trans-
formed using the image theory into the eigenmode problem
of an auxiliary three-dimensional electromagnetic crystal.
The dispersion properties of such an electromagnetic crystal
have been modeled using the local field approach. It has been
revealed that not only magnetic but also electric resonant
scatterers allow one to obtain a minipassband below the cut-
off frequency of the hollow waveguide. The corresponding
miniband turns out to be of the same order as for magnetic
scatterers with the same individual frequency dispersion. So
the electric scatterers �inductively loaded short wires� could
be also prospective for waveguide miniaturization as well as
split-ring resonators. It has been shown that the loading by
scatterers with longitudinal orientation of dipole moments
also allows one to obtain the miniband of propagation below
the cutoff frequency of the hollow waveguide, but the width
of this band is significantly narrower as compared to the case
of transverse orientation. The observed effects are explained
in terms of the subwavelength guiding properties of the
single chains of scatterers. This explanation is supported by a
comparison of the dispersion properties of the loaded
waveguides and the chains of the resonant scatterers in free
space. The results of our theory are in good agreement with
the known literature data. For chains of resonant dipoles the
results from �12� are reproduced. For the rectangular wave-
guide loaded by split-ring resonators the same result as in �1�
has been obtained.

APPENDIX A: POLARIZABILITIES OF
RESONANT SCATTERERS

1. Split-ring resonators

The SRR considered in �3,5,18� is a pair of two coplanar
broken metal rings �see Fig. 2�b��. Since the two loops of an
SRR are not identical, the analytical models of it are rather
cumbersome �4,24�. In fact, such a SRR cannot be described
as a purely magnetic scatterer, because it exhibits bianisotro-
pic properties and has resonant electric polarizability �4,24�

FIG. 11. �Color online� Dispersion curves for metallic
waveguides loaded by electric scatterers: exact solution �thick line�
and effective medium filling approximation �dashed line� for trans-
verse orientation and exact solution �thin line� and effective me-
dium filling approximation �thin dashed line� for longitudinal
orientation.
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�see also the discussion in �25��. However, the electric polar-
izability and bianisotropy of SRR’s is out of the scope of this
paper. We neglect these effects and consider an ordinary SRR
as a magnetic scatterer. The analytical expressions for the
magnetic polarizability ���� of SRR’s with geometry plotted
in Fig. 2�a� were derived and validated in �24�. The final
result reads as follows:

���� =
A�2

�0
2 − �2 + j��

, A =
�0

2�2r4

L + M
, �A1�

where �0 is the resonant frequency of magnetic polarizabil-
ity,

�0
2 =

1

�L + M�Cr
,

L is inductance of the ring �we assume that both rings have
the same inductance�,

L = �0r�ln�32R

w
� − 2� ,

M is mutual inductance of the two rings,

M = �0r��1 − ��ln�4

�
� − 2 + ��, � =

w + d

2r
,

Cr is the effective capacitance of the SRR,

Cr = �0
r

�
arccosh�2w

d
� ,

� is the radiation reaction factor,

� =
A�k3

6��0
,

r is the inner radius of the inner ring, w is the width of the
rings, d is distance between the edges of the rings �see Fig.
2�a��, �0 and �0 are the permittivity and permeability of the
host media, and k=���0�0 is the wave number of the host
medium. The formulas presented are valid within the frame
of the approximations w ,dr, and the splits of the rings are
large enough compared to d. Also, we assume that the SRR
is formed by ideally conducting rings �no dissipation losses�.

The magnetic polarizability �A1� takes into account the
radiation losses and satisfies the basic Sipe-Kranendonk con-
dition �22,26,27� which in the present case has the following
form:

Im��−1���� =
k3

6��0
. �A2�

In our analysis we operate with the inverse polarizability
�−1���; thus, we rewrite Eqs. �A1� in the following form:

�−1��� = A−1��0
2

�2 − 1� + j
k3

6��0
. �A3�

2. Inductively loaded short wires

An inductively loaded short wire �LSW� is shown in Fig.
2�b�. The electric polarizability �e of an inductively loaded

wire following the known model �19� has the form

�e
−1 =

3

l2Cwire
�1 − �2/�0

2

4 − �2/�0
2� + j

k3

6��0
, �A4�

where Cwire=�l�0 / ln�2l /r0� is the capacitance of the wire,
�0=�LCwire is the resonant frequency, L is the inductance of
the load, l is the half length of the wire, and r0 is the wire
radius.

It is clear that at frequencies near the resonance the po-
larizability of the LSW has the form

�e
−1��� � Ae

−1��0
2

�2 − 1� + j
k3

6��0
, �A5�

with Ae= l2Cwire, which is similar to Eq. �A3�. Moreover, if
Ae /�0=A /�0, then using the duality principle the magnetic
dipole with polarizability �, Eq. �A3�, can be transformed to
the electric dipole with polarizability �e, Eq. �A3�, and vice
versa. This means that it is enough to consider only one type
of resonant scatterers. In the present paper we have chosen
magnetic ones to be principal. The case of electric scatterers
was obtained using the duality principle with A=�0Ae /�0.

APPENDIX B: INTERACTION CONSTANTS
OF THE CHAINS

The initial expressions for the interaction constants Cx,y
entering Eq. �7� follow from Eqs. �4� and �5� and read as
follows:

Cx = 	
m�0

1 + jka
m

2�a3
m
3

e−j�k
m
+qm�a

=
1

�a3 	
m=1

+� � 1

m3 +
jka

m2 �e−jkam cos�qam� �B1�

for the longitudinal polarization and

Cy = 	
m�0

k2a2m2 − jka
m
 − 1

4�a3
m
3
e−j�k
m
+qm�a

=
1

2�a3 	
m=1

+� � k2a2

m
−

jka

m2 −
1

m3�e−jkam cos�qam�

�B2�

for the transverse one �see, e.g., �12��.
Note that Cx includes only near-field terms �of the order

of 1 /R2 and 1/R3�. In contrast to Cx, the transverse interac-
tion constant Cy includes also the wave terms �of the order of
1 /R� which corresponds to the slowly converging series. It
makes the direct numerical summation of Eq. �B2� not effi-
cient. The series in Eq. �B1� have better convergence, but it
is also not enough for rapid calculations.

The application of an acceleration technique done in �20�
offers a more cumbersome expression for Cx�k ,q ,a� than Eq.
�B1�, but it is better for numerical calculations since the se-
ries converges very rapidly:
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Cx =
1

4�a3�4	
m=1

+�
�2jka + 3�m + 2

m3�m + 1��m + 2�
e−jkam cos�qam�

− �jka + 1��t+
2 ln t+ + t−

2 ln t− + 2ejka cos�qa��

− 2jka�t+ ln t+ + t− ln t−� + �7jka + 3�� , �B3�

where

t+ = 1 − e−j�k+q�a, t− = 1 − e−j�k−q�a,

t+ = 1 − ej�k+q�a, t− = 1 − ej�k−q�a.

As to Cy, the series of the order 1 /m in Eq. �B2� can be
obtained in closed form using the tabulated formula �see
�21�, Appendix�:

	
m=1

+�
e−j�m

m
= − ln�1 − e−j�� = − �ln�2 sin

s

2
� + j

� − ��

2
� ,

�B4�

where ��=2��� / �2��� and we use the notation �x� for the
fractional part of the variable x. The remaining part of ex-
pression �B2� is simply proportional to Cx. Thus, Cy can be
evaluated as follows:

Cy�k,q,a� = −
k2

4�a
ln
2�cos ka − cos qa�


− j
k2

4a
�1 − � �k + q�a

2�
� − � �k − q�a

2�
��

− Cx�k,q,a�/2. �B5�

In �17,20� it was shown that

Im�Cx� =
k3

6�
+

1

4a
	


qm
�k

�qm
2 − k2� , �B6�

where

qm = q +
2�m

a
.

From formula �B2� using some algebra it follows that

Im�Cy� =
k3

6�
−

1

8a
	


qm
�k

�qm
2 + k2� . �B7�

Expressions �B6� and �B7� demonstrate energy transfor-
mations happening in the chains. A single scatterer radiates a
cylindrical wave and that is why its polarizability has radia-
tion losses which can be described by Sipe-Kronendonk con-
dition �A2�. Being arranged into regular chains the scatterers
acquire an effective polarizability �with respect to the exter-
nal field� of the form

�x,y = ��−1 − �0
−1Cx,y�−1, �B8�

where indices x and y correspond to longitudinal and trans-
verse orientations of scatterers in the chain, respectively. In
accordance to Eqs. �B6� and �B7� one can formulate the fol-

lowing analogs of the Sipe-Kronendonk condition for effec-
tive polarizabilities of the scatterers in chains:

Im��x
−1� =

1

4�0a
	


qm
�k

�k2 − qm
2 � , �B9�

Im��y
−1� =

1

8�0a
	


qm
�k

�qm
2 + k2� . �B10�

Note that terms k3 / �6�� are canceled. It is clear that if
there are no such index m that 
qm
�k �like happens, for
example, if k�q�2� /a−k for k�� /a�, then effective po-
larizabilities turn out to be purely real and the chain itself
does not radiate. This regime corresponds to the case of
guiding modes, and it makes dispersion equation �7� a real-
valued one. If there are some indices m such that 
qm
�k,
then the effective polarizabilites acquire a nonzero imaginary
part which gives evidence that the chain radiates cylindrical
waves. The number of such waves corresponds to the num-
ber of indices m fulfilling the relation 
qm
�k. If 
q
�k
�� /a, then the chain radiates only one cylindrical wave
which can be treated as the main diffraction lobe of this
periodical array. For higher frequencies the grating lobes ap-
pear and all of them make their contribution to expressions
�B9� and �B10�.

APPENDIX C: INTERACTION CONSTANT OF AN
ORTHORHOMBIC LATTICE

For effective numerical calculation of the interaction con-
stant C�k ,q ,a ,b ,c� defined by Eq. �9� we use the following
formula deduced in �20�:

C�k,q,a,b,c� = − 	
n=1

+�

	
Re�pm��0

pm
2

�a
K0�pmbn�cos�qybn�

+ 	
m=−�

+�

	
n=−�

+�
pm

2

2jabkz
�mn�

e−jkz
�mn�c − cos qzc

cos kz
�mn�c − cos qzc

− 	
Re�pm�=0

pm
2

2ab� 1

jkz
�m0� + 	

n=1

+� � 1

jkz
�m,n�

+
1

jkz
�m,−n� −

b

�n
−

lmb3

8�3n3� + 1.202
lmb3

8�3

+
b

�
�ln

b
pm

4�

+ �� + j
b

2� + Cx�k,qx,a� ,

�C1�

where Cx is given by Eq. �B3� and

kx
�m� = qx +

2�m

a
, ky

�n� = qy +
2�n

b
,

pm = ��kx
�m��2 − k2, lm = 2qy

2 − pm
2 ,

kz
�mn� = − j��kx

�m��2 + �ky
�n��2 − k2.
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