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Self-pulsing dynamics of ultrasound in a magnetoacoustic resonator

V. J. Sanchez-Morcillo, J. Redondo, J. Martinez-Mora, V. Espinosa, and F. Camarena
Departament de Fisica Aplicada, Universitat Politecnica de Valencia, Crta. Natzaret-Oliva s/n, 46730 Grau de Gandia, Spain
(Received 16 February 2005; published 15 September 2005)

A theoretical model of parametric magnetostrictive generation of ultrasound is considered, taking into
account magnetic and magnetoacoustic nonlinearities. The stability and temporal dynamics of the system is
analyzed with standard techniques revealing that, for a given set of parameters, the model presents a ho-
moclinic or saddle-loop bifurcation, which predicts that the ultrasound is emitted in the form of pulses or

spikes with arbitrarily low frequency.
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I. INTRODUCTION

Magnetostriction is essentally a nonlinear phenomenon,
which accounts for the change of dimension of a magnetic
material under applied magnetic fields. However, most of the
applications of this phenomenon consider small amplitude
fields and consequently exploit only their linear properties,
as is the case of electromagnetic-acoustic transducers. The
study of parametric generation of ultrasound by alternating
magnetic fields dates from several decades ago (see, e.g.,
Ref. [1] and references therein). More recently, the consider-
ation of nonlinearities in the description of this process lead
to the discovery of properties, such as the parametric wave
phase conjugation (WPC), a phenomena which is actually an
active field of research with promising applications into
acoustic microscopy [2] or harmonic imaging [3]. A review
on WPC theory and methods can be found in Ref. [4]. There
is also increasing interest in the development of magneto-
strictive transducers working at high powers, where nonlin-
ear effects are not negligible. The advances in this field come
in parallel with the search of magnetic materials with high
magnetostriction values.

On the other side, parametric phenomena in different
fields of nonlinear science share many common features,
such as bistability, self-pulsations, and chaos among others.
Is precisely this analogy that motivates our search for com-
plex dynamical phenomena in parametrically driven magne-
toacoustic systems.

Different models have been proposed for the description
of magnetoacoustic interaction in ferromagnetic materials.
Also, considerable experimental progress in this field has
been achieved, and the main parameters involved in the pro-
cess have been determined [5]. In this paper we analyze the
dynamical behavior of this system in the presence of mag-
netic nonlinearity. It is shown that a cubic magnetic nonlin-
earity is responsible for the appearance of effects not re-
ported before in this system, such as self-pulsing dynamics
and spiking behavior, related to the existence of homoclinic
bifurcations. Similar results have been predicted and experi-
mentally observed in the study of spin-wave instabilities
pumped by microwave fields [6].

II. THE MODEL

The physical system considered in this paper consists in a
electric RLC circuit, driven by an external ac source at fre-
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quency 2w and variable amplitude €. The inductance coil,
with density of turns n, transverse section S and length L,
contains a ferromagnetic ceramic material which acts as an
acoustical resonator and is the origin of nonlinearities in the
system when the driving & is high enough. A theoretical
model for this system has been derived in the resonant case
in Ref. [7]. We review here the details of the derivation for
convenience.

The equation for the circuit is ex+ec+e;=¢. Where
=€ cosQut), ex=IR, €-=q/C, and g; is the induced
electromotive force, which depends nonlinearly on the mag-
netic fields as discused below.

We consider two effects that introduce the nonlinearities
in the problem. The first source of nonlinearity results from
magnetoacoustic interaction, which appears via phonon-
magnon proccesses. In the case of parametric magnetostric-
tion ceramics, the generation of ultrasound takes place at
one-half the frequency of the driving. This process is repre-
sented, in general, by a Lagrangian density term in the form
Lin=aHujuy [7], where uy is the acoustic displacement
component in the direction k (k=x,y,z) and « has in general
tensor character.

The total magnetic induction H acting along the axis of
the material is the result of three contributions, a static field
H, produced, e.g., by a permanent magnet surrounding the
active ceramic material or a coil carrying a stationary cur-
rent, an alternating field H,(¢) induced by the ac in the cir-
cuit, and finally a field produced by material deformations
H;,, which results from the magnetoacoustic interaction.
From the Lagrangian density it follows that, in the case of
longitudinal waves propagating in the z axis (u,=u,=0), the
acoustoinduced magnetic field has the form

1
Hip = - a‘—,f u(r,1)%dv, (1)

where a=«,,, is the coefficient of coupling between the ac-
tive medium of volume V and the pump source. Thus, the
effective magnetic induction takes the form

H=Hy+H,(t) + Hy, (1), (2)

where we assume that the relation Hy> H,(t), H;,(t) holds.
Alternatively, H given by (2) can be considered as a nonlin-
ear pumping field [8]. Note that the appearance of the sub-
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harmonic field saturates the magnetic field value, and modi-
fies the effective pumping.

A second source of nonlinearity is typical of ferromag-
netic materials. We assume that, for weak saturation, the sca-
lar nonlinear relation between the magnetic field and the
magnetic induction, B=u(H)H, can be written, following
Ref. [9], as

B=puH+ é/.LOX(3)H3, (3)

where u is linear the permeability of the material and x® the
third order magnetic susceptibility, which in turn depends on
the frequency.

Applying the Faraday law under the previous assump-
tions, considering only resonant terms oscillating at the fre-
quency of the driving 2w, and neglecting terms higher than
quadratic in H, and H;,, we get

ddy d dl d
gg=N—=N— | Bds=L—+ uN— | H,,ds
dt dt dt dt
(3) d
+ ox N o HH H;nds, (4)

where I=dq/dt is the electrical current in the circuit, £ is the

inductance and H,=NI/L. In terms of the charge in the ca-

pacitor, and taking into account that V=SL and that n=N/L

is the density of turns, the circuit equation takes the form
Iq dg q

d
L— +R—+—~ =Ecos(Qwt) + una— f u*dv
dr da C dt

d|(dq
On’Hya—| =~ 2dV) 5
+ o)X N Oad[(dtJu ’ ( )

where the last two terms represent the nonlinearities related
magnetoelastic interaction and magnetic nonlinearity, respec-
tively.

Let us consider now the evolution of the acoustic wave.
Considering the current induced magnetic field H, as the
main source term, we find [8]

1 7

dg
e Viu= aH (u= anEu, (6)

where v is the propagation velocity of sound in the material.
Here the effect of the acoustoinduced magnetic field (qua-
dratic in the small coupling constant «) has been neglected.
However, we have checked that the consideration of this
small term does not imply qualitative changes in the results
reported below.

We consider solutions of Egs. (5) and (6) in the form of
quasiharmonic waves, i.e., whose amplitudes are slowly
varying in time. In this case we can write

q(t) = %[Q(t)exp(2iwt) +c.c.], (7a)

u(r,t) = %[U(t)exp(iwt) +c.c.]g(r)sin(kz), (7b)

where u(r,7) has the form of cavity modes of the acoustical
resonator, k=mm/L define the cavity resonances, 2w
=1/yLC is the pumping frequency resonant with the circuit,
and
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‘d_X
dt

with X=0Q or U, represents the slowly varying envelope ap-
proximation.

Under these assumptions, the slow amplitudes obey the
evolution equations

<|wX

: (8)

d

d—‘f = iE - 00+ § U2 +i&|UPQ, (%)
dUu "
dr YU+ &0U, (9b)

where E=E/4wL, and yp=R/2L and vy, represent the elec-
tric and acoustic losses, respectively. The last parameter is
introduced phenomenologically, and take into account the
losses due mainly to radiation from the boundaries. The co-
efficients of the nonlinear terms are defined as

pnal
&= 3L fg(rl)zdrb
(3),,2
oo n-aHyL
§2=%Jg(n)2drb
2
vna
&= (10)

Equations (9) are the model considered in Ref. [7]. This sys-
tem can be further simplified using the normalizations

(w _ Jww, (2w
= X, U= Y, E—( )'P, 11
¢ (53) bt g ) 0

which leads to the model

dX I,
—=P-X+Y*+iyY]X,
dr

(12)
dy ;
== ’Y(Y -XY )s
dr
where y=1,/ v, is the ratio between losses, 7=y, is a di-
mensionless time and
4wHyy X(S)
- % (13)
v,
remains as the single parameter of nonlinearity, with wu,
=u/ py. Due to the number of parameters involved in 7, it
can be varied over a wide range of values. Note that Egs.
(12) also possess the symmetry Y —-Y. In Egs. (12), the
variables X and Y refer to normalized values of the charge in
the capacitor and the amplitude of the ultrasonic field, re-
spectively, which relate to the physical variables through
Egs. (11).

II1. STATIONARY SOLUTIONS AND STABILITY

Equations (12) possess two kinds of stationary solutions.
For small pump values, the acoustic subharmonic field is
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absent, and the homogeneous trivial solution is readily found
as

IX|=P, |y|=0. (14)

For higher values of the pump, the trivial solution becomes
unstable and the acoustic subharmonic field is switched on.
The corresponding values of the amplitudes are given by

1= \PX(1+ ) -7
1+ ’

and the bifurcation occurs at a critical (threshold) pump
given by

Xl=1, [y]*=

(15)

Pthzl, (16)

which is independent of the value of the nonlinearity coeffi-
cient 7.

From (15) it also follows that the acoustic field shows
bistability, i.e., both solutions coexist for pump values be-
tween P, and Py,, where P;, corresponds to the turning point
of the solution and is given by

,'72
73,,=\/1+772. (17)

We consider next the stability of the homogeneous solu-
tions (15), by means of the well-known linear stability analy-
sis technique. Substituting in Eqs. (12) and their complex
conjugate a perturbed solution in the form x;(r)=Xx;+ dx,(),
where X; is a vector with the particular stationary values, and
linearizing the resulting equations around the small perturba-
tions, one obtains that dx;~ ¢, where \ are the eigenvalues
of the stability matrix that relates the vector of the perturba-
tions with their temporal derivatives. The instability of the
solution is determined by the existence of positive real parts
of the roots N\ of the fourth-order characteristic polynomial

PON) =M+ e N+ 6N+ 3\ + ¢y, (18)

where

c=2(1+7),
cy=d4y+ 1+ Y7 Y] - 4y),
c3=21-2|YP (1 +y- 7[YP)],

=47 P 1+ Y P+ )],

with |Y|?> given by Eq. (15). Since we are interested in the
existence of dynamical behavior, we search for a pair of
complex conjugate eigenvalues, which denote the occurrence
of a Hopf (oscillatory) instability. Following the Hurwitz cri-
terion (see, e.g., Ref. [10]), the condition for Hopf instability
A=+iw is given by c3(c,c,—c3)—cicy=0, or

0=47*(y= DY+ 277 (y+ DY+ 74y’ - 3y-3)|v}*
+2(y+ 1)?Qy+ DY = 2y+ 1) (19)

The frequency of the oscillations at the bifurcation point,
given by the imaginary part of the eigenvalue, is found by
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FIG. 1. Domain of existence of oscillatory solutions in the plane
(7,|Y|), for different loss parameters y=0.5 (a), 0.25 (b), 0.1 (c),
and 0.01 (d). Stationary solutions are unstable at the left of each
curve.

substituting A=iw in the polynomial. In terms of the acoustic
intensity given by the solutions of (19) the frequency reads

Y
wr=——[1+272Y* = 2|Y]A(y+ 1)]. (20)
v+ 1

In Fig. 1 the domain of existence of Hopf bifurcations
[the solutions of Eq. (19)] is represented in the plane (7, |Y]),
for different values of the relative loss parameter y=0.01,
0.1, 0.25, and 0.5. The stationary solutions are unstable at the
left of each curve, i.e., for small values of 7. From Fig. 1
also follows that, for a given value of the relative loss pa-
rameter y, a maximum value of # is required for the exis-
tence of dynamic solutions.

IV. SELF-PULSING DYNAMICS NEAR HOMOCLINIC
BIFURCATIONS

In this section the numerical integration of Egs. (12) is
performed in order to demonstrate the existence of dynami-
cal solutions. For typical experimental conditions, y,> vy,
and consequently y<<1. We take, according to Ref. [5], the
value y=0.1 for numerical integration, although we note that
similar results are obtained for a smaller loss ratio. For this
value, the analysis of the preceding section (see also Fig. 1,
line ¢) shows that the solutions display temporal dynamics
when the nonlinearity coefficient take values in the range 0
<7<0.82.

In Fig. 2 the bifurcation diagram as computed numerically
for y=0.1 and 7=0.7 is shown. Dashed lines correspond to
the analytical solutions given by Eq. (15), and the existence
of the backward (inverted) Hopf bifurcation of the upper
branch predicted by the theory of the preceding section is
observed at P~ 1.87. Dynamical states exist for pump values
below this critical point (see also Fig. 1). For higher pump
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FIG. 2. Bifurcation diagram of the ultrasonic field for y=0.1
and 7=0.7. Open circles represent maximum and minimum ampli-
tudes of oscillatory solutions.

values, the solution is stationary, and the dynamics decay to
a fixed point. The upper and lower branches with open
circles in Fig. 2 correspond to maximum and minimum val-
ues of ultrasonic amplitudes in the oscillating regime. Nu-
merics also show the switch off of the ultrasonic field when
pump is decreased down to a given critical value. This means
that, despite bistability, the trivial (zero) solution is a glo-
bally attracting solution, which have important consequences
on the dynamics of the system.

Similar diagrams are obtained for any value of 7 in the
range given above. For small values of the nonlinearity pa-
rameter 7, the solutions are quasiharmonic in time regardless
of the pump value. However, for larger values of 7 close to
the limiting value 0.82 required for the existence of dynami-
cal states, the solutions show a qualitatively different tempo-
ral behavior, not predicted by the linear stability analysis
which in fact is valid only near the bifurcation point. Next
we report the numerical results for the particular value 7
=0.7 corresponding to Fig. 2.

In Fig. 3(a) the amplitude of the ultrasonic field is plotted
as a funcion of time for a pump value of P=1.35 far from the
bifurcation point at Py, =1. The corresponding phase portrait
is shown in Fig. 3(b), where the existence of a stable limit
cycle is observed. However, when decreasing the pump, the
ultrasonic field is emmited in the form of periodic pulses or
spikes, whose temporal separation (period) depends on the
value of the pump amplitude, and increases with it. Close to
the emission threshold the time between pulses (interspike
period) tends to infinity. An example of the temporal profile
of the field amplitude in the spiking regime, and the corre-
sponding phase portraits for the pump value P=0.95 is
shown in Figs. 4(a) and 4(b), respectively.

This behavior denotes the existence of a global bifurac-
tion of the solutions for the parameters considered. As the
pump approaches the critical value P,.=0.904, the amplitude
of the lower branch of the oscillating solutions (open circles
in Fig. 2) approaches the lower branch of the stationary so-
lutions (short-dashed line in Fig. 2), which as follows from
the linear stability analysis corresponds to a saddle point.
The limit cycle at this point connects with the saddle point,
and becomes a homoclinic orbit, corresponding to a saddle-
loop or homoclinic bifurcation. For pump values below P.
the trajectory decays to a fixed point corresponding to the
trivial solution.
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FIG. 3. Dependence of the intensity of the ultrasonic field on the
normalized time for P=1.35 (a) and the corresponding phase por-
trait (b). The rest of the parameters are the same as in Fig. 2.

The period of the limit cycle near a saddle-loop bifurca-
tion is governed by a characteristic scaling law. Linearization
of the dynamics around the saddle leads to the following
expression for the period [11]:

1
TOC—Xln(PC—P),

where P.—P measures the distance to the homoclinic bifur-
cation (which is assumed small) and A is the eigenvalue in
the unstable direction of the saddle point.

Figure 5 shows the numerically evaluated period of the
self-pulsed solutions in the whole range where dynamical
states exists. Note the divergence in the period at P.
=0.904. In order to check the homoclinic character of the
bifurcation, the inset shows the linear fit of the period against
In(P.—P) for pump values close to P,. The slope of the
linear fit is found to be 51.4, in good agreement with the
linear stability result 1/\=54.2, demonstrating the existence
of the saddle-loop bifurcation.

Finally, when decreasing the pump below the saddle-loop
bifurcation point, the subharmonic field is switched off.
Trivial solution acts then as a globally attracting point.
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FIG. 4. Dependence of the intensity of the ultrasonic field on the
normalized for P=0.95 (a) and the corresponding phase portrait (b).
The rest of the parameters are the same as in Fig. 2. The homoclinic
point is represented by the open circle.

V. CONCLUSION

A model of parametric generation of ultrasound in a fer-
romagnetic material has been considered, and its stability
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FIG. 5. Normalized period of the oscillations as a function of
the pump. The inset shows the linear fit.

analyzed, revealing the existence of a Hopf bifurcation lead-
ing to self-pulsing dynamics. For selected values of the de-
cay rates and the nonlinearity parameter, the system also
shows a saddle-loop bifurcation which results in a spiking
regime in the emitted ultrasound, where the frequency can
take arbitrary low frequencies or firing rates. It has been
demonstrated [12] that dynamical systems where saddle-loop
bifurcations and stable fixed points coexist have also a prop-
erty called excitability, characterized by [13] (a) perturba-
tions of the rest state beyond a certain threshold induce a
large response before coming back to the rest state, and (b)
there exist a refractory time during which no further excita-
tion is possible. These properties, which are characteristic in
several biological problems (e.g., the behavior of action po-
tentials in neurons [14]) and some laser models [15], are
being investigated in the context of the acoustical system
proposed in this paper.
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