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Large amplitude, multiphase solutions of periodic discrete nonlinear Schrödinger �NLS� systems are excited
and controlled by starting from zero and using a small perturbation. The approach involves successive forma-
tion of phases in the solution by driving the system with small amplitude plane wavelike perturbations �drives�
with chirped frequencies, slowly passing through a system’s resonant frequency. The system is captured into
resonance and enters a continuing phase-locking �autoresonance� stage, if the drive’s amplitude surpasses a
certain sharp threshold value. This phase-locked solution is efficiently controlled by variation of an external
parameter �driving frequency�. Numerical examples of excitation of multiphase waves and periodic discrete
breathers by using this approach for integrable �Ablowitz-Ladik� and nonintegrable NLS discretizations are
presented. The excited multiphase waveforms are analyzed via the spectral theory of the inverse scattering
method applied to both the integrable and nonintegrable systems. A theory of autoresonant excitation of 0- and
1-phase solutions by passage through resonances is developed. The threshold phenomenon in these cases is
analyzed.
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I. INTRODUCTION

The nonlinear Schrödinger �NLS� equation

i�t = �xx + 2����2�, � = ± 1, �1�

where �=��x , t� is one of the most important equations of
nonlinear physics and describes a wide variety of physical
phenomena, ranging from light pulse propagation in optical
fibers, through nonlinear modulations of plasma waves to
Bose-Einstein condensations �1�. Its discrete forms �DNLS�,

i
dqn

dt
=

1

�2 �qn+1 + qn−1 − 2qn� + Nn, �2�

where qn=qn�t�, Nn=��qn�2��1−���qn+1+qn−1�+2�qn�, and
0���1 also draw much attention both as mere discretiza-
tions of the continuous NLS �used in numerical simulations�
and also independently, as models for discrete lattices. There
is a growing interest in these lattices due to their relevance in
various fields of physics. One such field is nonlinear optics,
where DNLS models coupled waveguide arrays. Initially
proposed by Christodulides and Joseph �2� there are many
studies of the properties of waveguide arrays, with the goal
of designing optical switching devices and, ultimately, of all-
optical signal processing devices �3–5�. In biophysics DNLS
was studied by Davydov �6� describing the propagation of
excitations in molecular chains. In solid-state physics it de-
scribes the dynamics of Bose-Einstein condensates in an op-
tical lattice �7,8�. There are also many further applications in
undriven �1,9,10� and driven �11,12� DNLS systems. The
present work is devoted to the study of the periodic,
qn+M�t�=qn�t�, most common discretizations, which are those
with �=0,1 and are known as the integrable discrete NLS
�IDNLS�:

i
dqn

dt
=

1

�2 �qn+1 + qn−1 − 2qn� + ��qn�2�qn+1 + qn−1� �3�

and the diagonal discrete NLS �DDNLS�,

i
dqn

dt
=

1

�2 �qn+1 + qn−1 − 2qn� + 2��qn�2qn, �4�

respectively. These two discretizations seem alike, since they
are both Hamiltonian and tend to �1� as �→0, M→� and
M�→const. Yet they are profoundly different; while IDNLS
is integrable, DDNLS is not and may exhibit chaotic behav-
ior �13�. Nevertheless, it is the DDNLS equation, which has
a large number of important physical applications.

The most general tool of analysis available for IDNLS �3�
is the inverse scattering transform �IST� which is a method of
solving certain classes of nonlinear differential equations.
First introduced by Gardner et al. in 1967 �14� as a method
for solving the Korteweg–de Vries �KdV� equation, it was
later generalized to include many different nonlinear evolu-
tion equations. In 1972 Zhakharov and Shabat extended the
method to NLS �15�, and further on Ablowitz and Ladik
extended it to discrete systems including IDNLS Eq. �3�
�also known as Ablowitz-Ladik model� �16,17�. For details
on the application of IST to IDNLS see Ref. �1�. Using IST
analysis we learn a great deal on the types and structure of
the multitude of solutions admitted by �3�, among such solu-
tions are the plane wave solution �qn=aei��n−�t� ; ∀n�, soli-
tons �1�, and discrete breathers �DB�, or rather intrinsic lo-
calized modes �18�. The most general solution admitted by
periodic IDNLS Eq. �3� is a nontrivial function of many
phases �19�, i.e., of the form qn= f�	0 ,	1 , . . . �, where 	i are
phase variables of form 	i=�in−�it, �i ,�i are constant, and
n is the lattice site number. For example, periodic IDNLS
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breathers are characterized by three phases �see Sec. II C
below�. The practical realization of these multiphase IDNLS
solutions is not easily accomplished since it requires calcu-
lating and realizing specific initial conditions, neither of
which is always feasible.

Our goal in this paper is to propose a simple scheme
which allows excitations of muiltiphase solutions from zero
initial conditions �qn=0 ∀n�. This goal will be achieved by
replacing �3� with a perturbed problem,

i
dqn

dt
=

1

�2 �qn+1 + qn−1 − 2qn� + ��qn�2�qn+1 + qn−1� + f�n,t� ,

�5�

where �f�n , t��
1 and we propose a simple drive function
f�n , t� which will excite and control the aforementioned mul-
tiphase solutions. The spectral theory of the IST method for
IDNLS will be used as the main diagnostic tool for charac-
terizing the excited waveforms. A similar scheme for con-
tinuous NLS systems has recently been studied in Ref. �20�.
As for DDNLS �4�, being nonintegrable, we do not have an
analytical tool such as IST, so we shall apply a more numeri-
cal approach. We shall still use the same excitation recipe
and examine the range of its validity numerically by testing
the number of phases in the excited solution directly in the
simplest, one- and two-phase excitations. In more complex
situations, we shall continue multiphase DDNLS solutions
numerically to those of the IDNLS equation, where one can
apply the IST approach for diagnostics. Thus, we shall de-
velop an indirect IST diagnostics for studying multiphase
solutions of important in applications, but nonintegrable,
DDNLS equation.

Our excitation and control scheme is based on the concept
of autoresonance. Autoresonance is a phenomenon of nonlin-
ear physics in which a driven nonlinear system remains
phase locked to a driving oscillation despite adiabatic varia-
tions of the drive’s frequency. The autoresonance idea origi-
nated 60 years ago in applications to relativistic particle ac-
celerators �21–23�. Much later similar ideas were applied to
other dynamical �24–31� and extended �32–42� systems. For
exciting multiphase waves, we proceed in stages from a �m
−1�-phase solution, drive the system with a simple drive
function f�n , t� �a plane wave� with a specific frequency and
slowly change �chirp� that frequency, passing through the
system’s resonance with a new, mth frequency. The objective
is to resonantly form and control the desired m phase in the
system. We shall show that under certain conditions, the pas-
sage through the resonance yields an efficient capture into
resonance followed by a persistent adiabatic phase locking
between the new, mth, phase and the drive despite variation
of the driving frequency. In this terminology, the driven sys-
tem is said to be in autoresonance. In this state, the newly
formed mth wave frequency self-adjusts to that of the drive
and, as the result, the perturbed systems travel through the
space of m-phase solutions of the unperturbed system. Then,
at a desired time, one replaces the driving term by a similar
one, but with a different frequency and frequency chirp, try-
ing to autoresonantly form another �m+1�st phase in the so-
lution and so on. Such successive autoresonant excitation

allows us to form the desired number of phases in the solu-
tion, by starting from zero, as well as control the solution by
autoresonance at each excitation stage. A similar approach
was recently applied to several other integrable systems pos-
sessing multiphase solutions, such as the Korteweg–de Vries
�KdV� equation �43�, Toda lattice �31�, and NLS equation
�20�. Here, we focus on excitation and control of multiphase
solutions of both integrable and nonintegrable periodic
DNLS systems.

The paper is organized as follows: In Sec. II we present
our excitation scheme in numerical simulations. We shall
demonstrate emergence of 0-phase solutions �plane waves,
qn=a exp�i	0�, see below�, as well as, one-, two-, and three-
phase waves for the integrable and nonintegrable cases. We
shall encounter and numerically illustrate the threshold for
synchronization, which is a universal phenomenon of many
driven nonlinear systems �30,39� that dictates a minimum
drive’s amplitude for capturing the system in autoresonance
by passage through resonances. In Sec. III we shall present a
theoretical analysis of the 0-phase autoresonant excitation
and study stability of that solution. In the same section we
shall analyze the corresponding threshold phenomenon. Sec-
tion IV will describe the theory of excitation of 1-phase so-
lutions according to our scheme, i.e., by successively excit-
ing a 0-phase solution and then a 1-phase solution, and
considering the threshold phenomenon in the second excita-
tion stage. In Sec. V we shall discuss excitation of multi-
phase solutions of the DDNLS equation in more detail, its
chaotic behavior, and give a numerical criterion for the eva-
sion thereof. In the same section, we shall analyze multi-
phase solutions of DDNLS by continuation to the associated
IDNLS problem allowing the IST diagnostics. Finally, Sec.
VI will present our conclusions.

II. MULTIPHASE EXCITATIONS IN NUMERICAL
SIMULATIONS

In this section we present results of numerical simulations
demonstrating our approach to excitation and control of mul-
tiphase solutions in discrete, periodic �qi+M =qi� NLS sys-
tems.

A. Driven multiphase IDNLS waves

We shall proceed from an example for periodic IDNLS
equation �3�. Multiphase periodic IDNLS solutions have the
form �see Appendix A�

qn�t� = W�	1, . . . ,	m�ei	0, �6�

where W=W�	� is a complex function of m phases 	i

=�in−�it, i=1, . . . ,m, m�M �internal phases�, 	0=�0n
−�0t referred to as the external phase, and the wave numbers
�i and frequencies �i are constants. Because of periodicity,
�i=mi�0, where �mi� is a set of different integers, 0�mi

�M, and �0=2� /M.
Our example focuses on the case of periodicity M =5, and

�=0.6 �here and in the following, without loss of generality,
we use dimensionless dependent and independent variables
and parameters�. The goal is to excite a 3-phase solution of
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form �6� with m=3. We proceed by numerically solving the
perturbed problem �5� with initial conditions qi=0 and set
the drive function f to be a plane wave f0=
0 exp�i�m0�0
−��d0�t�dt��, where m0=0, the frequency is chirped accord-
ing to �d0�t�=�r0+�0t, �0 is a constant chirp rate �where we
set sign �=�� and �r0 is a constant, such that at t=0, �d0 is
in resonance with one of the linear frequencies of the unper-
turbed system ��r0=0, in this example�. At t�0 a slightly
perturbed plane wave of growing amplitude will be excited.
In autoresonance, the frequency of this plane wave is phase
locked with that of the drive �0�t�	�d0�t�. A general discus-
sion of this stage of excitation will be given in Sec. III. At a
given time t= t1, we proceed by exciting another phase, this
is done by turning f0 off and applying a drive, f1
=
1 exp�i�m1�0−��d1�t�dt��, when this time m1=1, �d1�t�
=�r1+�1t, �r1�0. A correct choice of �r1 will ensure that at
a given time, say tr1 the drive’s frequency will slowly pass
through the resonance frequency associated with the sum of
the external phase and that having �1=�0 �m1=1�, meaning
�d1�tr1�=�0�tr1�+�1�tr1�. This passage through resonance
excites the desired phase and the solution becomes a slightly
perturbed 1-phase solution. The system is again trapped in
resonance with the drive, so as long as the drive is applied
the amplitude of the 1-phase solution will grow and the ex-
cited phase’s frequency will be locked with the drive’s fre-
quency ��d1	�0+�1�, and, therefore, is completely con-
trolled by the drive. We shall analyze this stage of excitation
in more detail in Sec. IV. Next, we proceed to excite two
more phases, at time t= t2, f1 is turned off and a new chirped
frequency drive f2 with m2=2 is applied, passing and trap-
ping another phase in resonance at t= tr2, and so on for the
m3=3 mode. At the end of the process we have a solution
with exactly three phases. The whole excitation procedure in
our example is illustrated in Fig. 1 presenting the evolution
of �q1� and its envelope. For this simulation we used �i
= �0.02,0.01,0.01,0.005�, 
i= �0.02,0.06,0.005,0.03�, �ri

= �0,11.64,0.455,13.10�, and the drives were changed at
times ti= �−100,100,350,520�. The letters �a�, �c�, �d�, �e�,
and �f� in Fig. 1 mark the beginnings and ends of time win-
dows where a particular drive has been present in simula-
tions. In addition, the actual waveform in a small time win-

dow t� �600,610� is illustrated in Fig. 2, showing Re�qn�
after the excitation of two internal phases, where we applied
the same drive as before but stopped the drive completely at
t=520 and allowed an unperturbed IDNLS solution evolve.
Note that the solution seems highly irregular, but through
IST analysis we know that it is composed of exactly three
phases �two internal and one external�, see Fig. 4�e� below.

An important phenomenon encountered in our simulations
was that of the aforementioned synchronization threshold.
One finds at each excitation stage that there is a sharp thresh-
old value for 
i beneath which autoresonance does not occur
�the system is excited slightly via passage through resonance,
but, as the amplitude grows, it falls out of resonance with the
drive� and above which autoresonance does occur. This ef-
fect is demonstrated in Fig. 3. Shown is the upper envelopes
of �q1� as a function of time for five similar simulations, one
�the solid line� is the same as shown in Figs. 1 and 4 others
are the same but in each one, at a different excitation stage,
we set the driving amplitude to a value lower by a few per-
cent than the threshold, 
i

th= �0.016,0.055,0.006,0.03�. One
can see in Fig. 3 that below the threshold the amplitude’s
growth is stopped at the stage where the drive amplitude is
not large enough.

Up to this point two statements still need to be proven.
First, that the number of excited phases at each stage in Fig.
1 is exactly 0 �a plane wave�, 1, 2, and 3. Second, that the
system is phased locked, i.e., at every excitation stage

FIG. 1. Time evolution of �q1�. The letters indicate significant
time stamps, �a� start of application of the first plane wave drive, �b�
intermediate point of autoresonant excitation of a flat solution, �c�–
�f� ends of application of the first, second, third, and fourth drives.
A developed three-phase solution is formed at point �f�.

FIG. 2. Evolution of Re�qn� in a two phase �plus 1 external
phase� solution in a time window t� �600,610�.

FIG. 3. Threshold phenomenon. The thick solid line shows the
envelope of a solution with all drives above the thresholds for syn-
chronization, the dashed lines are envelopes of solutions where at
different stages of excitation the drive amplitude is slightly below
the threshold value and the system falls out of resonance.
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i , �di�t�	�0�t�+�i�t�. For testing both these statements, we
use the spectral IST analysis �see Ref. �19� and Appendix A
for details�. The IST theory shows that an unperturbed peri-
odic IDNLS lattice with M sites has 2M conserved quanti-
ties, denoted �i �for definition, see Appendix A� and referred
to as the main spectrum in the following. In the case of the
focusing IDNLS, the main spectrum � j comprises M pairs of
complex conjugated parameters �i

�1�=�i
�2�*, i=1, . . . ,M. In

the defocusing case all � j are real. A degenerate pair of spec-
tral values indicates an unexcited degree of freedom �phase�
and a nondegenerate pair of complex conjugated spectral
points �in the focusing case�, denoted � j

�1�=� j
�2�* represents

an excited phase. If the driving perturbation is small, the
system is close to some solution of the unperturbed system
�dual solution in the following� at any given time t. For ex-
ample, one can use the solution of the perturbed system at
time t as initial data for generating a dual solution of the
unperturbed system. By analyzing the main spectrum of this
unperturbed solution one can examine how many of the pos-
sible phases in the perturbed problem are excited and how
many are dormant at time t. This diagnostics is demonstrated
in Fig. 4 showing a snapshot evolution of the spectrum in
time. The times of the snapshots are shown in the figure
together with letters �a�,�b�,…,�f� at each time corresponding
to the same letters in Fig. 1. We begin �Fig. 4�a�� from a zero
solution �q=0�, whereby all spectral points pairs are degen-
erate. As the 0th phase solution is excited �see Fig. 4�b�� the
degeneracy of one pair is removed. As long as the drive is
applied, and hence the plane wave amplitude grows, the dis-
tance �or gap� between the pair grows �Fig. 4�b��. As further
phases are excited, other gaps are opened �Figs. 4�c�–4�f��.

An alternative way of presenting the main spectrum’s
time evolution is to show the quantity �i=C Re��i�
+ 1

2 Im��i� where C is some constant �chosen for presentabil-
ity reasons� as a function of time. Remembering that the
spectrum is comprised of complex conjugate pairs, we can
deduce that the average �denoted a� of any pair of �’s �say
�1,2� is simply C times the real value of both �1 and �2, and

the gap between them �say d� is simply the imaginary part of
one of the pair �i.e. �1=a /C+ id, �2=a /C− id�. This is a
roundabout way of showing the spectrum, but it allows to
show the entire time evolution of the spectrum. Figure 5
represents the main spectrum of the example in Fig. 1 in this
way with C=3 to avoid line intersections. The vertical dotted
lines denoted by letters �a�– �f� in the figure indicate the time
moments corresponding to the same letters in Figs. 1 and 4.
One can clearly see the openings of four different gaps in the
spectrum due to passage through resonances, indicating suc-
cessive formation of the external phase and three additional
�internal� phases in the excited solution.

Given the main spectrum, using the IST theory �see Ap-
pendix A�, we can calculate the internal frequencies
�1¯�M−1 at any given time. However, for the external fre-
quency �0 we must deploy a different numerical strategy.
Every given time interval we stopped the simulation and
used the result at that time, say qn�t*� as the initial conditions
of an unperturbed IDNLS system and ran such a simulation
for a long time period T�max�2� /� j�. For finding �0, we
defined the average, Q�t�=
n=1

M qn�t�, and wrote it as Q�t�
=U exp�i��+V��, where both U and V are real and quasiperi-
odic in time. Then, we calculated d�ln Q� /dt=d�ln U� /dt
+ i�dV /dt−�0�, yielding Im�d�ln Q� /dt�=dV /dt−�0. Since
the long time average of dV /dt vanishes, the averaging of
Im�d�ln Q� /dt� over T yielded the desired value of �0 at any
given t*. Armed with methods to calculate all frequencies in
the solution, we could ascertain that the system was truly
phase locked at each stage. This test is presented in Fig. 6
showing the computed value of �0�t� and the set �0�t�
+�i�t� for the example shown in Fig. 1. The straight seg-
ments in the figure show the driving frequencies in the cor-
responding time intervals. We see how different system’s fre-
quencies adjust themselves to the drive frequencies at each
stage of excitation and, consequently, the corresponding dif-
ferent phases are locked to the drive.

B. Multiphase DDNLS waves

In this example we use our excitation procedure to form
multiphase periodic DDNLS waves. The solutions of this

FIG. 4. The main spectrum at different times. The letters corre-
spond with the notation in Fig. 1, namely at the beginning �a�
through the evolution of the 0th phase �b�, �c� in which the initially
degenerate pair is constantly further excited and the gap between
them grows, at the end of the excitation of the first �d�, second �e�,
and third �f� phases. In the end there are three nondegenerate com-
plex conjugated pairs, and one degenerate pair, or rather unexcited
phase.

FIG. 5. An alternative representation of the main spectrum’s
time evolution. Shown is the quantity �i=3 Re��i�+0.5 Im��i� as a
function of time. The average of any open pair of spectral points is
3 times the real value of that pair and the size of the gap between
them is the �absolute value of the� imaginary part of the pair. The
dashed lines and letters correspond the notations in Figs. 1 and 4.
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globally nonintegrable equation are not bound to be of the
form of �6�, still we seek solutions of that form. For this
example we wish to excite a two-phase solution. We
set, M =7, �=0.2, and the following parameters were
used: �i= �0.04,0.01,0.01,0�, 
i= �0.04,0.04,0.2,0�, �ri

= �0,16.8032,58.0223,2.7781�, with drives changing at
times ti= �−100,100,250,500�. Note that at t=500 we
stopped the drive and let the unperturbed solution evolve.
Figure 7 shows the time evolution of the absolute value of
one of the lattice sites. The phenomenon of synchronization
threshold is present here as well, in Fig. 7 the dashed line
shows the result of simulation, where the drive amplitude for
excitation of the plane wave is below the threshold value
�
th=0.039� and autoresonance does not occur. Similar re-
sults of falling out of resonance are observed in all stages of
excitation.

In order to show that the numerical solution is a one-
phase solution at the end of the second excitation stage �t
=250� we examined its Fourier spectrum �not shown�. In
order to show that the excited solution is approximately a
two-phase solution after the second excitation stage �t
�500�, we examined the Fourier spectrum of the solution,
extracted from there one of the base frequencies, say �1, and

examined the solution at discrete times Ti=T0+ �2� /�1�i, i
=0,1 , . . . for some arbitrary T0. If the solution’s absolute
value An�t���qn�t�� is truly composed of only two frequen-
cies and their harmonics, then An�Ti� will be a periodic dis-
crete time series, and its phase space trajectories should be
closed contours, with borders’ thickness tending to zero. Fig-
ure 8 shows the result of this analysis. The arising trajectory
is clearly closed, implying that the solution is approximately
of two phases, but it does have a finite thickness �not related
to the graphical implementation�, indicating the existence of
other, though much less significant, phases in the solution.

C. Synchronized discrete breathers

In this example we excite a specific type of a two-phase
solution, the periodic discrete breather, which is a solution of
form �6� with two phases �m=2�, such that the time depen-
dencies in W cancel out and the solution receives the form

qn�t� = Anei�0t,

i.e., all the time dependence is in 	0=�0t. Emergence of
similar standing waves in a continuous NLS system by syn-
chronization was studied previously �38� and contributed the
idea of excitation of periodic breathers in discrete systems in
this example. The excitation scheme for breathers is concep-
tually similar to that of the previous examples, yet somewhat
different. In this scheme we use the driving term of the form
fn�t�= �
0+
1 cos�k0n��exp�−i��d�t�dt�, �d�t�=�t, i.e., a
combination of three chirped frequency plane waves,

0e−i��d�t�dt and �
1 /2�e±k0n−i��d�t�dt. We do not analyze this
scheme and the emerging solution in this work and it is a
subject for further research.

We present the case of the integrable equation IDNLS
��=0�. The following parameters were used in the simula-
tion: M =7, �=0.5, 
0=0.02, 
1=0.01, and �=0.01, the
simulation was run in the time span �−200 1200�, where at
t=1000 the drive was switched off. The results of the simu-
lations are presented in Fig. 9 showing the time evolution of
�qn�, n=1, . . . ,7. One sees that at time, t�0 a growing am-
plitude plane wave solution is excited. At time, t�200,

FIG. 6. The continuing phase locking in the system. The straight
line segments are the drive’s frequency at different stages. It is seen
that at each stage the appropriate frequencies adhere to the drive’s
frequency, �di	�0+�i.

FIG. 7. Excitation of a two-phase solution in the nonintegrable
case. Shown is the time evolution of �q1�. The letters indicate sig-
nificant time stamps, �a� application of plane wave drive, applica-
tion of first �b� and second �c� phases’ drives, termination of drive
�d� and in the end �e�. The dashed line shows the same simulation
with the first drive amplitude below threshold.

FIG. 8. Verification of the two-phase solution. The solution ex-
hibits periodic behavior in ��q3� , �q5��-space at discrete times Ti

=T0+ �2� /�1�i, �1 being one of the basic frequencies. The closed
curve �q5� versus �q3� indicates a two-phase solution. The curve’s
thickness is not zero because the solution is only approximately a
two-phase solution.
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where the plane wave’s amplitude grows to a value in which
this solution ceases to be stable to linear modulation �see
below�, a new type of solution starts to develop. This solu-
tion, the periodic discrete breather, is characterized by an
absolute value which is independent of time if the driving
function is turned off �see the final form of �qn� at t=1200 in
the inner plot of Fig. 9�. One sees that in the presence of the
drive, the solution’s absolute value slowly varies in time
moving through the solutions space, as the driving perturba-
tion causes the breather to be “steeper,” or rather more local-
ized. Once the drive is dropped, the solution is truly a dis-
crete breather, with a constant absolute value and a real part
oscillating with a constant frequency.

Further information on the excited solution is obtained by
finding the evolution of the external frequency �0 and its
main IST spectrum. The results of these computations are
presented in Fig. 10. One observes a perfect phase locking in
the system, as the driven solution frequency follows that of
the drive continuously. The inner plot in Fig. 10 shows the
main spectrum at the initial stage of excitation of the
breather �t=250�. We observe that the excited breather is a
two-phase solution, since it has three pairs of nondegenerate
complex conjugate spectrum components, which, in contrast
to the case shown in Fig. 4�e�, all lie on the imaginary axis of

the spectral plane. As the breather solution develops and be-
comes more localized, the three pairs of nondegenerate spec-
tral points remain on the imaginary axis, while the maximal
�Im �i� increases in time, the next in �Im �i� spectral point
approaching the maximal point, while the minimal �Im �i� on
the imaginary axis approaches zero.

The DDNLS is physically more relevant than IDNLS.
Hence, of great interest are discrete breathers for the nonin-
tegrable lattice. Whereas IDNLS has at least one well-known
family of breather solutions, less is known of such solutions
for periodic DDNLS and the excitation of such solutions is
difficult at best �44�. Using the same excitation scheme as
described above, one can excite similar periodic DDNLS
breathers as well.

After illustrating our ideas in simulations, we proceed to
the theory of simplest 0- and 1-phase autoresonant excita-
tions in discrete periodic NLS systems.

III. ANALYSIS OF EXCITATION OF FLAT SOLUTIONS

In this section we study our approach to excitation of the
simplest plane wave, i.e., the flat solution. Let us consider
the IDNLS equation �3� first. The unperturbed equation �3�
has a flat solution, qn�t�=a exp�−2i�a2t� for any amplitude
a. We examine now the driven equation �5�, where we set
f�x , t�=
 exp�i�d�, proceed from slightly perturbed zero ini-
tial conditions, and seek solutions close to the flat solution.
First, we write qn=an exp�i�n�, where both an=an�t� and
�n=�n�t� are real functions, which we substitute into �5� and
separate real and imaginary parts, yielding

ȧn =
1

�2 �an+1 sin �n+1 − an−1 sin �n�

+ �an
2�an+1 sin �n+1 − an−1 sin �n� + 
 sin�	d − �n� ,

�7a�

− an�̇n =
1

�2 �an+1 cos �n+1 + an−1 cos �n − 2an�

+ �an
2�an+1 cos �n+1 + an−1 cos �n�

+ 
 cos�	d − �n� , �7b�

where �n��n−�n−1 and the overdot denotes a time deriva-
tive. Next, we set an=a+�an and �n=�+��n, where a and �
are the averages over n of the amplitudes and phases, while
���n�
1, ��an�
a. We also observe that all �n=��n
−��n−1 are small and define the phase mismatch ���d−�.
Substituting this into Eq. �7� and linearizing yields

ȧ + �ȧn = 
 a

�2 + �a3���n+1 − �n� + 
 sin � + 
 cos ���n,

�8a�

− a�̇ − a��̇n − �an�̇ =
1

�2 ��an+1 + �an−1 − 2�an�

+ �a2�4�an + �an+1 + �an−1� + 2�a3

+ 
 cos � − 
 sin ���n. �8b�

FIG. 9. The excitation of a discrete breather. The outer plot
shows the time evolution of the absolute value of the solution. The
inner plot depicts the absolute value of the different lattice sites in
the chain in the end of the excitation process. The letters indicate
which lattice site corresponds to which line.

FIG. 10. Phase locking in case of a discrete breather excitation.
As long as the drive is applied, �0 follows the drive’s frequency.
Once the drive is turned off �0 stays constant. The inner plot shows
the IST spectrum of the solution at the initial stage of excitation of
the breather �t=250�.
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By averaging Eq. �8� over n, we can separate the
n-dependent and independent parts, yielding for the
n-independent variables

ȧ = 
 sin � , �9a�

�̇ = − �t + 2�a2 −



a
cos � , �9b�

where we have set �̇d=−�t. For the n-dependent variables
we have

�ȧn = 
 a

�2 + �a3����n+1 + ��n−1�

+ 
− 2
a

�2 − 2�a3 + 
 cos ����n, �10a�

− a��̇n =
1

�2 ��an+1 + �an−1 − 2�an�

+ �a2��an+1 + �an−1 + 2�an�

+



a
cos ��an − 
 sin ���n. �10b�

The last four equations describe evolution and stability of the
autoresonant flat solutions in our driven problem. First, we
discuss the evolution of the n-independent variables a and �.

A. Autoresonant evolution of flat solutions

The evolution of the variables a and � is governed by
Eqs. �9�, which are also valid for the driven nonintegrable
�DDNLS� case. Passage through resonance described by this
pair of equations has been studied previously �34,39�, and we
give a short analysis here, for completeness.

1. Linear stage: Initial phase locking

Here we discuss the behavior of the solution of �9� in the
initial linear excitation stage, as the solution is far enough
from resonance. We define z�aei� and rewrite �9� as a
single complex equation

iż + ��t − 2��z�2�z = 
 . �11�

We focus on passage through resonance, i.e., study solutions
of Eq. �11� subject to zero initial conditions as the time
passes the resonance at t=0. We shall also assume that the
direction of frequency chirp is given by the sign of nonlin-
earity, i.e., sign �=sign �. If the nonlinear term is neglected,
the solution can be written as

z = − i
�
t0

t

e−�i�/2��t2−�2�d� .

This can be integrated using Fresnel integrals, from which
one can show �34� that for the linear regime, prior to the
resonance ��t���� /2���, t�0�, z	
 / ��t�, i.e., a	
 / ��t�
and �	� ��=1� or 0 ��=−1�. This indicates that the phase
mismatch is trapped towards � �0�. As a grows we can no

longer neglect the nonlinear term and turn to examine the
weakly nonlinear regime. We consider only the �=1 ��
�0� case in the following.

2. Weakly nonlinear stage: Synchronization threshold

Entering this stage, �	� and we are interested in exam-
ining solutions where the phase mismatch stays around �
and consequently replace cos �	−1 in Eq. �9b�. We also
write a=a0+a1 where a0 is defined as the solution of the

exact phase locking equation �̇=0, or equivalently,

− �t + 2a0
2 −




a0
= 0. �12�

We presume approximate phase locking, consider �a1�
 �a0�,
and expand Eq. �9� to first order in a1 yielding

ȧ1 = 
 sin � −
�

S
, �13a�

�̇ = Sa1, �13b�

where we have defined S�4a0+a0
−2
 and used �from Eq.

�12�� ȧ0=� /S. This pair of equations forms a Hamiltonian
system with Hamiltonian

H�a1,�� = S
a1

2

2
+ V��� , �14a�

V��� = 
 cos � +
�

S
� . �14b�

This system describes a pseudoparticle having momentum a1
and slowly varying mass S−1 moving in a pseudopotential
V���. Entering the weakly nonlinear stage, the particle is
trapped in a well with a local minimum at �	�. As long as
this stays the minimum, and variation of S is adiabatic
enough �see below� the particle will continue to be trapped
with the phase mismatch performing small oscillations
around �, i.e., autoresonance will occur. The pseudopotential
V is a tilted cosine potential, hence the condition for it to
have local minima is that the tilt is smaller than the wells’
depths, i.e., 
�� /S. We recall our approximation of cos �
	−1 or, equivalently, as an estimate, �sin ���1/2. Since the
quasiequilibrium position is given by sin �0=� / �
S� �see
Eq. �13a��, we must satisfy 
�2� /S for the validity of our
approximation. From the definition of S we find the mini-
mum value Smin=22/33
1/3, which substituted back into the
last inequality yields the necessary condition for continuing
synchronization in the weakly nonlinear regime, 

��2�� /3�3/4=0.62�3/4. As far as the adiabaticity is con-
cerned, we observe that the frequency of phase mismatch
oscillations around the quasiequilibrium value �0 in the
weakly nonlinear regime is �osc= �
S�1/2. The adiabaticity
condition �osc

−2 ��̇osc�
1 then becomes
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�Ṡ�
2
1/2S3/2 = � �S�

2
1/2S5/2� 
 1,

where S�=4−2
 /a0
3 denotes derivative of S with respect to

a0. The left-hand side in the last inequality as a function of
a0 has a maximum value of 0.078�
−4/3, which is indeed
significantly less than unity for 
�0.62�3/4, justifying the
derivation of our necessary condition for capture into reso-
nance. On the other hand, numerical solutions of Eq. �11�
show that the transition to the phase locked regime by pas-
sage through resonance takes place at somewhat lower 

with a very sharp threshold, i.e., for


 � 
th = 0.291�3/4. �15�

This sufficient condition for phase locking is just a few per-
cent lower than the condition 
�� /Smin=0.31�3/4 for exis-
tence of potential wells in V���. The threshold formula was
verified in full lattice simulations shown in Figs. 1 and 7.

3. Strongly nonlinear stage

Next, we consider the strongly nonlinear regime, where

one assumes a�
. For convenience we use the variable �̃

��−�, so �̃�0. Equation �9� in this limit can be approxi-
mated as

ȧ = − 
 sin �̃ , �16a�

�̃
˙

= − �t + 2a2. �16b�

We separate a=a0+a1, �̃=�̃0+�̃1, where a0 and �̃0 are

slowly varying time averages, whereas a1 and �̃1 are rapidly
oscillating, but small. Substituting these definitions into �16�
and dividing into oscillating and nonoscillating parts yields

ȧ0 = − 
�̃0, �̃
˙

0 = − �t + 2a0
2, �17a�

ȧ1 = − 
�̃1, �̃
˙

1 = 4a0a1. �17b�

We seek a quasisteady state �̃
˙

0=0 in �17a�, which leads to

a0 =�1

2
�t, �̃0 = −

�

4a0

.

By differentiating �17b� again we can extract the frequency
of oscillations of a1 around the average a0 and get �osc
=�4
a0. These autoresonant oscillations are clearly seen in
Figs. 1 and 7 in the first stage of excitation �flat solution�.

Combining Eqs. �16� and �17� leads to

ȧ1 = − 
 sin �̃ −
�

4a0
,

�̃
˙

= 4a0a1, �18�

which is a Hamiltonian system,

H�a1,�̃� = 2a0a1
2 + V��̃� ,

V��̃� = − 
 cos �̃ +
�

4a0
�̃ . �19�

Again, the necessary condition for trapping a1 in a potential

well with ��̃��1/2 is


 �
�

2a0
= ��/2t�1/2,

meaning that the drive’s amplitude can be reduced in time as
the amplitude grows. One also finds that the adiabaticity con-
dition, �osc

−2 ��̇osc�
1, necessary for continuing phase locking
in the system improves in the strongly nonlinear regime as
the amplitude grows.

B. Stability analysis

We are now interested in finding the modulational stabil-
ity region of the autoresonantly driven flat solution. For the
solution to be stable we demand that �an and ��n stay
small and oscillating at all times. Assuming, ��n
=Re��� exp�i��mn−�t��� and �an=Re��a exp�i��mn−�t���,
setting cos �	−�, sin �	0, and defining, for convenience,
�m

± �cos��m�±1, Eqs. �10� become

− i��an = �2�a�−2 + �a3��m
− + �
���n, �20a�

i�a��n = 
2�−2�m
− + 2�a2�m

+ + �



a
��an. �20b�

This leads to the dispersion relation

�2 =
1

a
�2�a�−2 + �a3��m

− + �
�
2�−2�m
− + 2�a2�m

+ + �



a
� ,

�21�

yielding, in 
=0 case, stability conditions, a��1 for the
defocusing case ��=−1� and a��minm=1,. . .,M−1

�−�m
− /�m

+

=tan�� /M� for the focusing case. For small 
�0, a� may
be slightly above unity in the defocusing case for stability
and must lie slightly below tan�� /M� in the focusing case.
Similar calculations for the nonintegrable DDNLS system
show that the defocusing case is always modulationally
stable, while the focusing state requires a��sin�� /M�
+O�
� for stability. We note here that unlike the continuous
defocusing NLS, where the flat solution is stable for all am-
plitudes, in the discrete case there is a critical value acr above
which the solution is unstable, though in the continuous limit
acr→�. We illustrate loss of stability of autoresonant plane
waves in simulations in Fig. 11. The figure shows evolution
of the absolute values �qn� in two simulations differing only
by a small random modulation added to the zero initial con-
dition. In both simulations the parameters are M =5, �
=3/5, �=0.05, 
=0.05. One sees that the flat solutions grow
up in autoresonance to their critical amplitude �acr=1.21�
beyond which the plane waves are destroyed and a different
type of solution evolves. These emerging solutions are en-
tirely different from each other though they are determined
only by a small, random initial perturbation. It is interesting
to view the breakdown of the flat wave in the IST spectrum
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space �inner plots in Fig. 11�. We find that once the critical
amplitude is passed there is a “collision” of two initially
degenerate pairs of spectral points and two gaps are opened,
yielding a two-phase solution. Hence however “chaotic” the
solution may seem, it is not. Interesting to note that applica-
tion of addition drives with the same frequency �as for ex-
ample in Sec. II C� allows us to form a stable periodic dis-
crete breather �also a two-phase solution� beyond the
modulational instability point and autoresonantly control its
shape. A similar phenomenon in the continuous NLS case
was studied in Ref. �38�.

IV. EXCITATION OF ONE-PHASE SOLUTIONS

A. Governing equations

In this section we seek solutions of form

qn�t� = W���ei�, �22�

where �=�n−��dt, �=2�m /M =mk0 �m being an integer�,
�=−��dt, and ��t�,��t� are slow functions of time. The driv-
ing term needed to excite this one-phase solution is

f1�t� = 
1 exp�i
�n −� �ddt�� = 
1 exp�i�d� .

Substituting �22� into �5� yields

iẆn + �Wn =
1

�2 �Wn+1 + Wn−1 − 2Wn� + ��Wn�2�Wn+1 + Wn−1�

+ 
1 exp�i��d − ��� . �23�

Next, we expand W in a Fourier series,

W��� = A0 + A1ei� + B1e−i� + A2e2i� + B2e−2i� + ¯ .

We consider small amplitude deviations from a plane wave
solution, i.e., assume that An and Bn are of O��n� for some
small parameter � and neglect terms of order �4 and higher in

the evolution equation for W. We further assume that 
 and
the time derivatives of An, Bn are of O��3�. Now, we wish to
treat ��t� as a constant and project its time dependence onto
the Fourier expansion coefficients, i.e., we define ��t�=�0

+�1�t�, an�An exp�−in��1�t�dt�, bn�Bn exp�+in��1�t�dt�
and rewrite

W��� = a0 + a1ei�0 + b1e−i�0 + a2e2i�0 + b2e−2i�0 + ¯ ,

where �0=�n−��0dt, and −�̇0=�0 is a constant. Without
loss of generality �by simply redefining phase � in Eq. �22��
one can view a0 in the last equation as real and we shall
adopt this convention in the following. Next, we substitute
W’s Fourier expansion into �23� and compare harmonics to
produce the governing equations for the variables ai�t�, bi�t�,
and ��t�. We shall form our one-phase excitation by starting
from a flat solution, so we may define a0=a00+a01, �=�0
+�1, where a00 is the amplitude of the plane wave from
which the one-phase excitation stage begins, �0=2�a00

2 ,
while a01 and �1 are assumed to be of O��2� �to be seen
later�. Also, we use the notations, �1=−4 sin2�� /2�, �2

=−4 sin2 �, �3=2 cos �, �4=2 cos�2��, and �5

=2 cos2�� /2� in the following.

1. First harmonic, O„�1
…

The equations arising from comparing the exp�±i�0�
terms in �23� up to O��� are

�0b1 + a1
*
�1

�2 +
1

2
�0�3 − �0� = 0, �24a�

�0a1 + b1
*
�1

�2 +
1

2
�0�3 + �0� = 0. �24b�

This leads to the linear dispersion relation,

�0 = �x1
2 − 4a00

4 , x1 � − �1�−2 − �a00
2 �3, �25�

and the relation,

b1 = c1a1
*, c1 �

x1 + �0

2�a00
2 . �26�

2. Zeroth harmonic and conservation law

The zeroth harmonic equation from �23� is

a0�− � + 2��a0
2 + �5��a1�2 + �b1�2��� + 2��3a0

*a1b1 = 0.

�27�

In order to proceed from here we need another equation, a
conservation law. One can show �see Appendix B� that the
quantity a0

2 /cos �+2�b1�2 is conserved even with the driving
term, and using the initial conditions we get

a0
2

cos �
+ 2�b1�2 =

a00
2

cos �
. �28�

Combining �26�–�28� we find the corrections for a00 and �0,

a0 = a00 + ā�a1�2, � = 2�a00
2 + �̄�a1�2. �29�

�see Appendix B for expressions for constants ā and �̄�.

FIG. 11. Breakdown of the plane wave solution. Once the criti-
cal amplitude acr=1.21 is reached, the plane wave solution breaks
down and a two-phase solution emerges. The shape of the two-
phase solution is determined solely from a random initial perturba-
tion. The numbers 1 through 5 indicate which line corresponds to
which lattice site �some lines are double�, accentuating the differ-
ence between the two emerging solutions. The inner plots show the
spectra at time t=130 indicating that these are two-phase solutions.
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3. Second harmonic, O„�2
…

Equating exp�±2i�� terms in �23� and retaining terms up
to O��2� yields

2�a00
2 b2

* + �a00��3a1
2 + 2�5a1b1

*�

+ a2��2�−2 − � + �a00
2 �3

2 − 2�0� = 0, �30a�

2�a00
2 a2

* + �a00��3b1
2 + 2�5a1

*b1�

+ b2��2�−2 − � + �a00
2 �3

2 + 2�0� = 0, �30b�

which, using the previous equations, become

b2 = c2a1
*2, a2 = c3a1

2, �31�

where constants c2,3 are given in Appendix B.

4. First harmonic, O„�3
…

Now, we examine the first harmonic up to the third order
in �. Here we must retain the time derivatives and the driving
term, but only in the exp�+i�� terms’ equation. Indeed, since
we are examining the situation where the driving term’s
phase, �d−�, passes through �, yielding slow phase mis-
match �d−�−� when these two phases are locked �the de-
sired autoresonant state�. In contrast, the exp�−i�� terms’
equation yields driving term with rapidly varying phase �d
−�+�, which we neglect in the following. This comprises the
single resonance approximation in our theory. The resulting
equations, after some algebra can be written as

iȧ1 + �x1 + �0�a1 = c4�a1�2a1 + 2�a00
2 b1

*

+ 
1 exp�i��d − � − ��� , �32a�

− iḃ1
* + �x1 − �0�b1

* = c5�b1�2b1
* + 2�a00

2 a1, �32b�

where constants c4,5 are given in Appendix B.
This pair of equations concludes the set of governing

equations in the problem. We note that Eqs. �32� govern the
behavior of the variables a1 and b1 and Eqs. �29� and �31�
give a0 ,� ,a2 ,b2 as functions of a1 and b1, so understanding
the behavior Eq. �32� is what is necessary to understand the
entire system at this stage.

B. Analysis of governing equations

First, we rewrite Eqs. �32� in vector form

iĨ · V̇ + M · V + H + � = 0 , �33�

where Ĩ�� 1 0
0 −1

� and other vectors and matrices are defined as

V � 
a1

b1
* �, M � 
 x1 + �0 − 2�a00

2

− 2�a00
2 x1 − �0

� ,

H � − 
c4�a1�2a1

c5�b1�2b1
* �, � � − 

1

0
�ei��d−�−��.

We wish to analyze this equation perturbatively. To do so we
introduce the parameter �
1, describing the slowness of

evolution of V and view both the driving and the nonlinear
terms as O���. We expand V in powers of parameter �, V
=V0+V1+¯. Next, we observe that M’s eigenvalues are
�1,2=0 ,2x1. The eigenvector corresponding to �1=0 is

e1 =
1

�2x1

�x1 − �0

�x1 + �0
� � 
��−

��+
� .

M’s symmetry allows us to write, M=�1e1e1
T+�2e2e2

T

=�2e2e2
T. To zeroth order M ·V0=0, hence V0 is an eigen-

vector and we may rewrite, V0=�1e1+�2e2. Since its eigen-
value is 0, we deduce �2=0, �1�0. Returning to �33� and
expanding to order � yields

iĨ · V̇0 + M · V1 + H0 + � = 0 ,

where H0=−�c4�a10�2a10,c5�b10�2b10
* �T. Multiplying this from

the left by e1
T and rewriting explicitly leads to

i�̇1 = c6��1�2�1 + 
̃ exp�i��d − � − ��� , �34�

where 
̃= �x1 /�0���−
1, and constant c6 is given in Appendix
B. Writing �1=Aei for real A and  , substituting into �34�
and separating real and imaginary parts yields

Ȧ = 
̃ sin � , �35a�

�̇ = − ����t + c7A2 +

̃

A
cos � , �35b�

where c7 is given in Appendix B, we have defined phase
mismatch ���d−�−�− , considered the driving frequency

of form �d=−�̇d=�r+�t, and set �=����. This pair of equa-
tions is similar to Eqs. �9�, hence we can draw the conclusion
that the phenomenon of autoresonance does occur in this
system and that the threshold for autoresonance is


1
th = c8���3/4 = 0.411

�0

x1

1
���−c7

���3/4. �36�

Yet, what does autoresonance mean in terms of the original
phase variables? We note that in a weakly excited stage
e1

TV0��1, meaning �1	��−a1+��+b1
*, hence �1’s phase  

is none other than −��1dt. Therefore, the phase locking con-
dition �	� becomes �d−�−���0+�1�dt=�d−�−�	�, and
the original variable’s �W’s� phase is locked to the difference
between the driving and the external phases. As for the evo-
lution of the amplitude of W, only qualitative insights are
possible. The expected autoresonant growth of �1’s ampli-
tude indicates a growth in the amplitude of a1 and b1. This,
in turn, implies �using Eq. �31�� a growth also in a2 and b2.
The behavior of the last variable, a0, is determined from the
conservation law �28�, which implies that for an excitation of
a mode �m such that cos �m�0, a0 will also grow and so also
the wave’s average amplitude. If, however, we excite a phase
with �m such that cos �m�0, a0 will decrease, bringing
about a wave with a decreasing lower envelope of �W�.

To sum up, while starting from a situation where W is a
constant, after passage through resonance W becomes a func-
tion W=W��� where phase �+� is locked to that of the drive.
In short, application of a driving force like f1 with an ampli-

GOPHER, FRIEDLAND, AND SHAGALOV PHYSICAL REVIEW E 72, 036604 �2005�

036604-10



tude greater than 
1
th will autoresonantly excite a one-phase

solution. We note here that for the nonintegrable case, similar
calculations may be carried out leading to a result the same
as this result, where we set �3→2, �4→2, �5→2 in all the
constants.

A verification of the threshold theory is illustrated in Fig.
12, which shows the numerically found drive amplitude
threshold 
th as a function of the chirp rate �, versus a the-
oretical prediction. For this example we used M =4, �=0.5
for �=0 �integrable case�, M =7, �=2/7 for �=1, and exam-
ined the theoretical prediction versus numerical results for a
range of chirp rates between 10−3 and 10−1. We repeated this
procedure for three different amplitudes a00 of the initial
plane wave. The scaling of 
th��3/4 does not depend on a00,
but the proportion constant does. The numerical derivation of
the threshold amplitude was done by a simple binary search
procedure, where the initial guess used was the theoretical
prediction. The determination whether a solution is in au-
toresonance was done by checking the phase locking be-
tween the drive and the solution. This, in turn, was done by
the following method. For every solution we checked the
quantity S�
��d− ��+����t	�0

tf��d− ��+���dt, where �t
is the discrete time step and tf is the time the simulation was
stopped. If the solution is phase locked with the drive, �S� is
bounded for arbitrary choice of tf. If, however, the solution is
not phase locked and the frequency sum �+� ceases to grow
from a certain time �near t=0�, then S	�� /2�tf

2 �the area of
the triangle trapped between the curves �d and �+��. The
difference between these quantities �for any time span that is
not very small� is usually of at least two orders of magnitude.
So the evaluation of S and checking if S�C�tf

2 for some
small C is a good numerical method to check for phase lock-
ing. We add here that the validity of this theory for the non-
integrable case requires working with sufficiently small ex-
citations �see Sec. V�, so for this case we are bounded to
examine only smaller chirp rates.

V. EXCITATION OF MULTIPHASE SOLUTIONS
IN NONINTEGRABLE CASE

In the preceding sections we presented an excitation pro-
cedure and developed a theory to analyze and explain the
emerging results for the IDNLS. We also applied the same
numerical excitation scheme to DDNLS, ignoring its nonin-
tegrability. This approach proved quite successful. We were
able to excite multiphase solutions and received predictions
for the threshold phenomenon which were quite accurate. In
this section we wish to focus on DDNLS, describe a diag-
nostics tool for the DDNLS based on IST ideas, and discuss
the validity of application of autoresonant control of solu-
tions of this globally nonintegrable system.

First, we wish to analyze a given autoresonant DDNLS
solution and show that it is approximately an n-phase solu-
tion, which is phase locked with the driver. To do so we note
that autoresonance is a phenomenon in which the phase lock-
ing is persistent to adiabatic changes not only in the external
drive’s frequency but also to adiabatic changes in the sys-
tem’s parameters. Consequently, a sufficiently slow change
of parameter � �see Eq. �2�� from 1 to 0 which leads from a
�nonintegrable� DDNLS system to an integrable IDNLS
equation �where we have IST analysis at our disposal�, does
not destroy the phase locking property of the system. There-
fore, given a driven solution of DDNLS at a given time and
adiabatically changing � to 0 �while keeping a constant driv-
ing frequency�, analyzing the solution in the end of this pro-
cess and receiving an IDNLS solution that is phase locked
with the drive and has say, n, excited phases, means that the
original system was approximately an n-phase DDNLS solu-
tion phased locked with the drive. In practical terms this
approach to analyzing autoresonant DDNLS excitations
works as follows. We take a driven DDNLS solution �re-
ferred to as the original solution�, and at a specific set of
�equally spaced� times, ti i=1,2 , . . . use this solution as ini-
tial conditions for simulations, where the drive’s frequency
remains constant and � is slowly varied from 1 to 0. At the
end of these multiple adiabatic transitions to IDNLS we cal-
culate the IST spectra of the resulting IDNLS solutions. We
refer to this set of spectra as the DDNLS solution’s associ-
ated spectra ���ti��. Figure 13 shows the associated spectra

FIG. 12. Numerically determined threshold drive amplitude for
excitation of a one-phase solution from a plane wave as a function
of the chirp rate, versus theoretical predictions. The solid lines
�theory� represent the integrable case, M =4, �=0.5 for different
plane wave amplitudes a00=0.8,1.3,1.8, �!, �, and " in simula-
tions�, the dashed lines �theory� represent the nonintegrable case for
M =7, �=2/7 and amplitudes a00=0.8,1.0,1.2, �·, �, and � in
simulations�. In all cases the scaling 
th��3/4 is the same, but with
different proportion constants.

FIG. 13. The time evolution of the associated DDNLS spectra.
Derived by adiabatically changing the discretization parameter �
from 1 to 0 and calculating the main spectrum of the emerging
IDNLS solution.
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for an example with M =7, �=0.2, where we attempted to
excite a two-phase DDNLS solution. We use the �=Re �
+0.5 Im � representation of the spectrum in the figure for
better exposition of the time evolution �similar to that in Fig.
5�. We observe that the associated spectrum shows succes-
sive opening of three gaps indicating that there are 0, 1, and
2 excited phases in the original autoresonant DDNLS solu-
tion at the appropriate times.

Next, we discuss the integrability of DDNLS system. Our
ability to excite a variety of autoresonant solutions �as in the
examples in Sec. II and above� in this system indicates inte-
grability in certain parameter range, but does not mean glo-
bal integrability in this system. Indeed, under certain condi-
tions, DDNLS exhibits chaotic behavior �13�, but exhibits
integrability under other conditions. For example, for the
case �qn�
1 DDNLS is nearly linear and is integrable. Fur-
thermore, we have found numerically that given the average
I2= �1/M�
n�qn�2, as long as I2� Ic

2 for some Ic, DDNLS ex-
hibits regular behavior. This is illustrated in Fig. 14. We
choose initial conditions of the form qn=
mcm exp�i�mn�,
with some choice of cm and allowed an unperturbed DDNLS
solution to evolve. Then we analyzed the Fourier spectrum of
the solution. We calculated the area S��0

��q̂1�2���d� trapped
under the Fourier spectrum curve on the first lattice cite,
where the largest peak was normalized to unity. For an inte-
grable system S→0 as the spectrum exhibits sharp peaks
corresponding to the discrete frequencies, whereas for a cha-
otic system, there are continuum bands in the spectrum, the
area trapped underneath which does not tend to zero. We
have repeated this calculation for many �103� random sets of
cm and show the resulting values of S in Fig. 14 as a function
of I for the example M =7, �=3/7 and m=1,2 �first two
lowest order modes� in the initial conditions. There is a clear
critical value above which chaotic behavior is observed and
under which there is no chaotic behavior. Since multiphase
autoresonance requires existence of well-defined frequencies
in the driven system, we interpret the existence of integrabil-
ity regime for I� Ic as being the main reason for successful
formation of multiphase autoresonant DDNLS excitations
satisfying this condition.

VI. CONCLUSIONS

In conclusion, �a� we presented an autoresonant excitation
scheme of multiphase solutions in discrete nonlinear
Schrödinger systems by starting from zero initial conditions.
This scheme involves successive application of simple small
amplitude plane-wave-type driving terms with slowly vary-
ing frequency. The multiphase solution is achieved by suc-
cessive formation of phases in the driven solution.

�b� The excitation of each phase is based on pattern for-
mation by synchronization �autoresonance� approach,
whereby a chirped frequency drive slowly passes through the
particular phase’s resonant frequency. The system is reso-
nantly excited by the drive initially and then continuously
adjusts itself to the drive’s frequency, keeping it always in
resonance with the drive, and thus is completely controlled
by the externally applied perturbation.

�c� We demonstrated the application of the above-
mentioned scheme in both integrable and nonintegrable
cases. We showed a stable autoresonant growth of nonlinear
waves in those systems and established the phase locking
property using IST analysis. We also illustrated the applica-
bility of our scheme for excitation and control of a specific
type of two-phase solutions, the periodic discrete breathers.

�d� We developed a theory for the excitation of 0- and
one-phase solutions.

�e� Our theory predicts a threshold phenomenon, whereby
given a chirp rate � there is a sharp threshold for the drive’s
amplitude for autoresonance to occur. The scaling of this
threshold phenomenon is 
����3/4. We received excellent
agreement between our theory’s prediction and numerical re-
sults.

�f� Our theory predicts a scaling �osc��
 of the fre-
quency �osc of oscillating modulations of the locked fre-
quency �or sum of frequencies� around the drive’s frequency.
This is numerically observed.

�g� Our analytic theory is limited to 0- and 1-phase exci-
tations and is mainly based on the weakly nonlinear stage of
excitation. However, numerically, we have shown that the
waves’ evolution continues into a strongly nonlinear regime
as well. We have also successfully applied our excitation
scheme to a larger number of excited phases in the solution
and proved autoresonant phase locking by either the spectral
IST analysis for the integrable case or via Fourier analysis.

�h� We developed an indirect tool for the analysis of au-
toresonant DDNLS solutions, using the IST approach, by
exploiting the persistence of autoresonance to adiabatic
change in the system’s parameters. We have, furthermore,
studied a numerical criterion for the evasion of chaotic be-
havior in this nonintegrable system.

�i� Finally, it is important to develop a general theory
�probably within the IST approach� of multiphase autoreso-
nance in IDNLS system in the future. The extension of mul-
tiphase autoresonant excitation and control ideas to other dis-
crete integrable and nonintegrable systems also seems to be
an important goal for future research.
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APPENDIX A: SPECTRAL THEORY OF IDNLS

In this section, we give a precise of the spectral theory of
the inverse scattering transform for IDNLS �3�, for a full
description see Refs. �1,17,19�. The linear scattering problem
associated with IDNLS is

#n+1 = Fn#n,
�#n

�t
= Gn#n, �A1�

where #n is a two-component vector and, for the focusing
equation case ��= +1�

Fn = 
 z qn�

− qn
*� z̄

� ,

Gn =
i

�2
− 1
2 �z − z̄�2 − �2qnqn−1

* − ��zqn − z̄qn−1�

− ��z̄qn
* − zqn−1

* � 1
2 �z − z̄�2 + �2qn

*qn−1
� ,

where z is a parameter and z̄=1/z. With these definitions for
the compatibility condition

�Fn

�t
= Gn+1Fn − FnGn, �A2�

to be satisfied, qn�t� must satisfy IDNLS.
From here, one defines the monodromy matrix �the arrow

shows the order of the increase of the indices in the product�,

Hn = �
j=0

N
←

Fn+j , �A3�

where we have introduced the notation N=M −1.
Writing Hn as,

Hn =
1

zM
�n + fn − gn

hn �n − fn
� , �A4�

one may define, P�z2�� fn
2−gnhn, which is a polynomial in

z2, and show that P is independent of both n and t, i.e., its
roots are absolute constants. We rewrite,

P�z2� = P̃�
j=0

2M

�z2 − Ej� ,

so that Ej are constants. The set �Ej�1
2M is referred to as the

main spectrum in the following. In the focusing case ��
=1�, the symmetry of Hn implies that if z2 is a root of P then
so is 1 /z*2 and so the set of 2M parameters Ej may be re-
garded as M pairs of spectral values, each consisting of two
values, denoted E1

�1� and E1
�2�, satisfying

E1
�1� = R1ei�1, E1

�2� = R2ei�2,

�1 = �2, R1R2 = 1. �A5�

For diagnostic purposes in the body of the paper we use a
different set of conserved parameters �� j�1

2M defined as � j

�2i ln�Ej� ∀j. Obviously, � j comprise a set of M pairs of
complex conjugate numbers.

Next, we seek a polynomial form for fn, gn, and hn. Of
particular importance are the roots of gn and we write

gn = zg̃�
j=1

N

�z2 − $ j�n,t�� . �A6�

From here one may conduct calculations leading to the re-
cursion relation �19�

qn−1�t� = qn�t�
�− 1�N�
j=1

N

$ j�n,t�� . �A7�

Further calculations �19� yield algebraically complicated
equations, which, for our purpose, can simply be written as

d�ln qn�/dt = F��� , �A8�

where ���$1 ,$2 , . . . ,$N�, and F are some functions of �.
The set � will be referred to as the auxiliary spectrum, and
its motion is governed by the dynamical equations,

�$ j

�t
= −

i

�2

�P�$ j��1 − �− 1�N�l�j
$l�

fn
�N+1��l�j

�$ j − $l�
, �A9�

where fn
�N+1� is the coefficient of the largest power of z2 in the

polynomial fn. This is a complicated system of equations, but
qualitative insights into the behavior of the auxiliary spec-
trum can be made following the technique described in Ref.
�19�.

We define the Riemann surface R2�E�=� j=1
2M�E−Ej� and N

Abelian differentials

du� =
c�1EN−1 + ¯ + c�N

R�E�
dE .

Here coefficients c$� are defined via normalization condi-
tions �ak

du�=��k, where ak are closed contours in the com-
plex E-plane with cuts as shown in Fig. 15. We also define
functionals,

FIG. 15. Integration contours in the E space.
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lj��� � − 

k=1

N �$k

duj = − 

l=1

N

cjl

k=1

N �$k El−1

R�E�
dE ,

�A10�

which have a very simple t and n dependence �19�,

	 j � 2�lj��� =
2�i

�2 �cj1 + cjN�t + � jn + const. �A11�

The variable 	 j is the jth phase of our multiphase solution,
while � j =−2�i�−2�cj1+cjN� are the frequencies. The solu-
tion is obtained by using Jacobi inversion of �A10� which
leads to the relation �=����, meaning that � is a multi-
phase function which is 2�-periodic with respect to all its
arguments 	 j. But, according to Eq. �A8�, d�ln qn� /dt is a
function of � only and, therefore, by substituting qn
= �qn�ei�n,

d ln�qn�/dt = d ln�qn�/dt + id�n/dt = F������ .

This gives �qn�=F1��� and d�n /dt=Im�F����=F2���, so
that �n=�0n+�0t+F3���, where Fi denote some functions
of the phases. From here we deduce the general form of the
solution,

qn�t� = F1���ei��0n+�0t+F3���� = W���ei��0n+�0t�.

APPENDIX B: DEFINITION OF CONSTANTS
AND CONSERVATION LAW

In this Appendix we summarize and explicitly write all
constants used in the body of the work. We introduce the
notations �1=−4 sin2�� /2�, �2=−4 sin2 �, �3=2 cos �, �4

=2 cos�2��, and �5=2 cos2�� /2�. The constants used in the
body of the paper are defined as follows:

�1� x1=−�−2�1−��3a00
2 ,

�2� �0=�x1
2−4a00

4 ,
�3� c1=x1+�0 /2�a00

2 ,
�4� �̄=��2�5+ �2−�3�c1

2+2�3c1�,
�5� ā=−�3c1

2 /2a00,
�6� c2

n=�a00�2�a00
2 ��3+2c1�5�−c1�2�5+c1�3���2�−2

+�a00
2 �4−2�0��,

�7� c2
d=�2

2�−4+a00
4 ��4

2−4�+2�2�−2a00
2 �4�−4�0

2,
�8� c2=c2

n /c2
d,

�9� c3
n=�a00�2�a00

2 �c1
2�3+2c1�5�− �2�5c1+�3���2�−2

+�a00
2 �4+2�0��,

�10� c3
d=c2

d,
�11� c3=c3

n /c3
d,

�12� c4=−�̄+��3+�2c1
2�3+�a00�2ā�2�5+2c1�+c3�3

2

+c1�2c2�5+c3��3+�4���,
�13� c5=��3+�a00/c1

3�4ā+2c3�5+c2��3+�4��+c1
−2�−�̄

+��2�3+a00�4ā�5+c2�3
2���,

�14� �±=x1±�0 /2x1,
�15� c6=−x1 /�0�c4�−

2 +c5�+
2�,

�16� c7=c6+�−�̄,

�17� c8=0.411�0 /x1�c7��−�−1/2,
�18� 
̃=x1 /�0

��−
.
The conservation law is derived as follows. Revisiting Eq.

�24�, this time retaining the driving term for the resonant
equation �24a� and the time derivatives yields

iȧ1 = �− x1 − �0�a1 + 2�a0
2b1

* + 
 exp�i�� , �B1a�

iḃ1 = �− x1 + �0�b1 + 2�a0
2a1

*. �B1b�

By multiplying �B1a� by a1
* and then subtracting the complex

conjugate of �B1a� multiplied by a1 and doing the same with
�B1b� and b1, one finds

i
d�a1�2

dt
= 2�a0

2�a1
*b1

* − a1b1� + 2i
A sin ��, �B2a�

i
d�b1�2

dt
= 2�a0

2�a1
*b1

* − a1b1� , �B2b�

where A= �a1�, ��=�−arg a1, such that 2iA sin ��
=a1

* exp�i��−a1 exp�−i��. Adding and subtracting these two
equations leads to

d

dt
��a1�2 + �b1�2� = − 4i�a0

2�a1
*b1

* − a1b1� + 2
A sin ��,

�B3a�

d

dt
��a1�2 − �b1�2� = 2
A sin ��. �B3b�

Next, revisiting Eq. �27�, retaining the time derivative yields

iȧ0 = Ra0 + 4�a1b1a0 cos � , �B4�

where R= �−�+2��a0
2+2 cos2�� /2����a1�2+ �b1�2��, which

leads to

d

dt

 a0

2

cos �
� = 4i�a0

2�a1
*b1

* − a1b1� .

We replace the right-hand side of this equation by an expres-
sion from �B3a�, leading to

d

dt

 a0

2

cos �
+ �a1�2 + �b1�2� = 2
A sin ��.

Finally, using �B3b�, we obtain the conservation law,

d

dt

 a0

2

cos �
+ 2�b1�2� = 0. �B5�

We also note that Eqs. �B1� hold for the nonintegrable case
as well. Equation �B4�, however, must be slightly modified
in this case by setting cos �→1, yielding

d

dt
�a0

2 + 2�b1�2� = 0. �B6�
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