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A finite-difference time-domain �FDTD� numerical analysis is used to demonstrate that a toroidal solenoid,
coaxial with an electric dipole, is a remarkable nonradiating configuration. It can be used to measure the
dielectric permittivity of any ambient matter. It becomes a directional radiator at an interface between two
dielectric media, depositing energy in the material with the highest polarizability.
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I. INTRODUCTION

Toroidal and supertoroidal structures are widely present in
nature and a supertoroid was explicitly drawn by Leonardo
in 1490. The simplest examples of such objects would be
toroidal solenoids with currents in them. More generally,
fractal complications of the simple toroidal wiring known as
supertoroidal structures are discussed and toroidal arrange-
ments of electric and magnetic dipoles have been discussed
in the literature. Today the main biological journals feature
an increasing number of papers on proteins, viruses and ph-
ages possessing elements of toroidal and supertoroidal sym-
metry. At the same time we witness a growing stream of
theoretical papers on the electrodynamics and optics of tor-
oidal and supertoroidal currents, toroidal nanostructures, to-
roidal microscopic moments and interactions of electromag-
netic fields with toroidal configuration. Recent studies of
phase transitions in ferroelectric nanodisks and nanorods �1�
and toroidal arrangements of spins in magnetic structures �2�
show growing interest in studying toroidal structures from
the materials research community.

Here we report a rigorous finite-difference time-domain
numerical analysis proving that a toroidal solenoid with po-
loidal wiring coaxial with an electric dipole is a remarkable
nonradiating configuration. The property not to radiate elec-
tromagnetic energy is based on the destructive interference
between the fields created by each of its constituents. We
show that this configuration may be used as a sensor for the
dielectric permittivity of the ambient matter. It becomes a
directional radiator at an interface between two dielectric
media depositing energy in the material with highest polar-
izability.

Nonradiating configurations are such oscillating charge-
current distributions that do not produce electromagnetic
fields in the radiation zone. An early work �3� shows that the
orbital motion of a uniformly charged spherical shell of ra-

dius R will not produce any radiation if the radius R of the
shell is equal to lcT /2 where c is the speed of light, T is the
period of the orbit, and l is an integer number. The general
problem for absence of radiation from an arbitrary localized
charge distribution, exhibiting periodic motion with period
T=2� /�0, has been addressed �4� and it has been shown that
such a system does not generate electromagnetic potentials
in the radiation zone if the Fourier components

J̃�l�0r /cr , l�0� are not present in the spectrum of the current
density J�r , t�. This criterion also explains the behavior of an
orbiting uniformly charged sphere. It has been pointed out in
�4� that this condition may not be necessary. It indeed en-
sures the disappearance of the electromagnetic potentials in
the radiation zone; however, calculations of the power emit-
ted by the system show that its value is zero provided that

J̃�l�0r /cr , l�0��r, which is a weaker sufficient condition.
Indeed, the latter condition only requires the absence of the
components transverse to the wave vector. It has been proved
rigorously �5� that the absence of the transverse components
of the Fourier spectrum of the current density is a necessary
and sufficient condition for absence of radiation. Interest-
ingly, such a condition has appeared in an earlier study, �6�,
in connection with electromagnetic self-force action and self-
oscillations of a nonrelativistic particle.

The important conclusion that can be drawn from the ear-
lier results is that two types of nonradiating configurations
can exist in principle. For the first type the Fourier compo-

nents J̃��r /cr ,�� of the current density are zero. Numerous
examples of systems pertaining to this sort of nonradiating
configurations exist �3,4,7�. A characteristic feature of these
systems is that both the electromagnetic fields and the elec-
tromagnetic potentials are zero. For the second type of non-
radiating configurations the Fourier spectrum is purely lon-

gitudinal, i.e., J̃��r /cr ,���r. Here the electromagnetic
fields are zero but as we show the electromagnetic potentials
may be finite.

Interestingly, it is pointed out �4� that the case of

J̃��r /cr ,���r corresponds to trivial spherically symmetric
radial oscillations of the charge density. Nevertheless non-
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trivial examples can be created using toroidal structures. Re-
cent papers �7,8� show that a non-radiating configuration can
be constructed by combining an infinitesimal toroidal sole-
noid with poloidal current flowing in its windings �i.e., along
the meridians of the toroid� with an electric dipole placed in
the center of the toroid. The explicit calculations of �7 and 8�
show that while the electromagnetic fields disappear outside
such a composite object, the electromagnetic potentials sur-
vive. As we show here this particular structure belongs to the
second type of nonradiating systems and that it is the longi-
tudinal part of the Fourier spectrum of the current density
which is responsible for the residual electromagnetic poten-
tials in the radiation zone.

The results of �7,8� suggest that the nonradiating configu-
rations involving toroidal solenoids may have a number of
interesting electromagnetic properties. These properties how-
ever have never been studied in proper detail. This is the aim
of the present study.

The physical nature of the problem is extremely well
suited to numerical modeling using the FDTD method �9�
which will be used in our analysis. It gives the possibility to
address the electromagnetic properties of this specific struc-
ture consisting of a toroid coupled to a dipole in full numeri-
cal detail. In addition, an assessment of what possible appli-
cations such structures might have is given.

Exact compensation between the fields generated by a to-
roidal solenoid and an electrical dipole takes place for infini-
tesimal objects only. It therefore seems plausible that assess-
ment of the extent to which the properties of the infinitesimal
nonradiating configurations are preserved by finite-
dimensional counterparts should precede possible experi-
mental designs. It is important also to determine what is the
behavior of these structures under certain �nontrivial� pertur-
bations.

II. INFINITESIMAL TOROIDAL SOLENOIDS
AND NONRADIATING CONFIGURATIONS

The electromagnetic properties of toroidal solenoids and
toroidal helix antennas are studied in detail in Refs. �10–16�.
Here only the results that will be used in our exposition are
briefly summarized.

The current flowing along the meridians of a toroidal so-
lenoid �known also as poloidal current, Fig. 1� can be pre-
sented in the form �see, e.g. �14��

jp = � � M , �1�

since � · jp=0. In Eq. �1� jp is the current density vector and
M= �0,M� ,0� is the azimuthal magnetization vector, given
by

M� =
NI�t�
2��

�2�

if ��−d�2+z2�R2 and zero otherwise. In Eq. �2� N is the
total number of windings and I�A� is the magnitude of the
current. Pursuing this idea a step further the magnetization M
can in turn be expressed as

M = � � T , �3�

where T= �0,0 ,Tz� is called toroidization vector. The general
problem is difficult to perform analytically �10–13� and any
limit that preserves the correct properties while at the same
time giving valuable mathematical simplification is a step
worth taking. Such a step is d→0. This is a useful step
because it gives the toroidization vector in the following
form �see, e.g. �7,14��:

Tz =
�NIdR2

2
�3�r� . �4�

Assuming monochromatic time dependence, �exp�−i�t�,
and using �4� the magnetic field created by the toroidal sole-
noid can be obtained in the form

Hp =
NIdR2

8

k2

r2�ik −
1

r
��r � n�exp�ikr� , �5�

where n is a vector of unit length pointing along the z axis
and k is the wave vector.

A dipole can be introduced at the center of the toroid. If
this dipole is modeled as a piece of wire of length Ld with the
current strength being equal to Id the dipole moment ampli-
tude, p0, can be expressed through iLdId=�p0, where p0
= p0n. The magnetic field of the dipole is �17�

Hd =
�k

4�
�1 −

1

ikr
��r � p0�

exp�ikr�
r2 . �6�

The time-averaged power P emitted by the composite object
�an infinitesimal toroidal solenoid coupled to an electrical
dipole� is given by

P =
	0ck2

12��

�IdLd + k2T�2, �7�

where T=�NIdR2 /2 and 
 is the relative dielectric permit-
tivity of the ambient matter.

This expression can be generalized to include higher-
order multipole moments �15�.

Equation �7� can be rewritten in the form

P =
	0ck2�IdLd�2

12��

�1 −





̃
�2

, �8�

where


̃ = −
IdLdc2

�2T
�9�

is the effective relative dielectric permittivity of the medium
in which electromagnetic fields of the toroid and the electric
dipole can compensate each other. This suggests that it

FIG. 1. Toroidal surface �a� and its cross section with the z−y
plane �b�. The triangles show the direction of the surface current jp.
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should be possible to measure the relative dielectric permit-
tivities of media �e.g., liquids� by adjusting experimentally
the ratio of the currents Id and I until a minimum of the
emitted power is detected. Then the relative dielectric con-
stant of the material under investigation can be obtained
from �9�.

It has been pointed out in �8� that while the electromag-
netic fields disappear when the compensation condition �9� is
satisfied the electromagnetic potentials survive. However,
there are examples of non-radiating configurations �see, e.g.
�4,7�� for which both the electromagnetic fields and the elec-
tromagnetic potentials are zero. The question is then what is
the physical reason for that and what is the difference be-
tween both types of electromagnetic systems. Following
�4,5� it can be shown that the difference is in the current-
density spectra. To see this consider the vector potential

A =
	0

4�
� j�r�,t −

	r−r�	
c �

	r − r�	
d3r�. �10�

In the radiation zone the standard approximation �17� can be
used and �10� reduces to

A =
	0

4�r
� j�r�,t − r/c + r · r�/cr�d3r�. �11�

Now if the current density j�r , t� is expressed through its
Fourier-transform

j�r,t� =� j̃�k,��e−i��t−k·r�d3k d� , �12�

Eq. �11� becomes

A =
	0�2��3

4�r
� j̃��r0

c
,��e−i��t−r/c�d� , �13�

where r0=r /r. As Eq. �13� shows only those components of
the current density spectrum that correspond to 	k	=� /c con-
tribute to radiation �5�. It is immediately clear that if the
condition

j̃��r0

c
,�� = 0 �14�

is satisfied then the vector potential vanishes. Using the con-
tinuity equation, the Fourier-components of the charge den-
sity can be expressed from the Fourier-components of the
current density according to ��k ,��=k · j̃�k ,�� /� and by fol-
lowing a procedure similar to deriving Eq. �13� but this time
for the scalar potential it can be shown that the scalar poten-
tial is also zero if �14� is satisfied. Therefore �14� ensures that
the electromagnetic system considered is a nonradiating con-
figuration. This general statement is a sufficient condition
�4�.

The results of �5� imply however that the condition �14� is
not necessary. With the assumption of a monochromatic time
dependence �13� reduces to

A =
	0�2��3

4�r
j̃��r0

c
,��e−i��t−r/c�. �15�

The electromagnetic fields can then be obtained using H
=��A /	0 and E= i� �H /�
0. Beacause �15� is valid in
the radiation zone only, r0 and 1/r must be treated as con-
stants in deriving the fields from the vector potential. The
result is

E = i�	0


0

��2��3

4�cr
r0 � �j̃ � r0�e−i��t−r/c� �16�

and

H = i
��2��3

4�cr
�r0 � j̃�e−i��t−r/c�. �17�

From �16� and �17� it is clear that the time-averaged Poyn-
ting vector, 
S�= �1 � 2 �E�H*, can be presented in the form


S� � 	r0 � �j̃ � r0�	2r0. �18�

The quantity r0� �j̃�r0� is the radiation pattern of the sys-
tem. As can be seen from �18� a charge-current distribution
will not emit electromagnetic energy if

j̃� � r0 � �j̃ � r0� = 0 �19�

which is a weaker sufficient condition compared to �14�. The
fact that �19� is also a necessary condition for the absence of
radiation can be seen by setting E and H to zero in �16� and
�17� and this was established in �5�. However �19� has ap-
peared in the earlier studies �4,6�.

The identity j̃=r0� �j̃�r0�+r0�r0 · j̃�= j̃�+ j̃
 and the com-
parison of �19� with �14� show that systems satisfying �14�
will emit no electromagnetic energy and will not produce
electromagnetic potentials. On the other hand, for systems
satisfying the weaker condition �19� the electromagnetic po-
tentials are not necessarily zero, since the longitudinal �par-
allel to r0� part of the current-density spectrum j̃
 will con-
tribute to the vector potential according to Eq. �15�.

It is easy to show that the nonradiating configuration con-
sisting of a toroidal solenoid coaxial with an electric dipole
is an example of the second type of nonradiating
configurations—systems satisfying �19� and not �14�. The
current density associated with this system is j�r�=T�
� ���n�3�r��+ IdLdn�3�r� and its Fourier spectrum is given
by

�2��3j̃�k� = − Tk�k · n� + �k2T + IdLd�n . �20�

For values of k=��
r0 /c and using the compensation con-
dition �9�, Eq. �20� reduces to

�2��3j̃��r0

c
� = − T

�2


c2 r0�r0 · n� . �21�

As �21� shows the current density spectrum is purely parallel
to r0 for wave number values 	k	=��
 /c. It can be con-
cluded that it is the survival of the longitudinal part of the
current density spectrum that gives the possibility to create
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nonzero electromagnetic potentials in the radiation zone in
the absence of electromagnetic fields.

III. NUMERICAL MODELING OF THE INTERACTION
OF A NON-RADIATING CONFIGURATION WITH
THE INTERFACE BETWEEN TWO MATERIALS

As can be seen from Sec. II the composite emitter—toroid
and dipole—becomes a nonradiating configuration �note that
the compensation condition �9� is satisfied� due to the de-
structive interference between the electromagnetic fields cre-
ated by the toroid and by the electric dipole. This interfer-
ence occurs in all possible directions in a homogeneous
medium. In an inhomogeneous material however as would be
encountered for an interface between two dielectrics with
relative permittivity constants 
1, and 
2 this does not hap-
pen. To appreciate this consider the situation shown in Fig. 2,
in which an emitter consisting of an electric dipole and a
toroidal solenoid is placed in a medium with dielectric per-
mittivity equal to 
1. This medium is separated from a sec-
ond one by a planar interface located at a distance D from
the equatorial plane of the toroid. In the absence of the in-
terface the system is nonradiative and the effective permit-
tivity is 
̃=
1. In order to assess the consequences flowing
from the presence of the interface between the two dielec-
trics and also the finite size of both the toroid and the dipole
it is necessary to solve the Maxwell’s equation exactly. This
can be achieved numerically using the FDTD method �9�.
The latter can be considerably simplified since the toroid is a
body of revolution �BOR�. Taking advantage of the axial
symmetry reduces the problem to a two-dimensional one.
Cylindrical coordinates can be used and there is no depen-
dence on the azimuthal variable angle � �Fig. 2�. This imple-
mentation of the FDTD method is known as BOR-FDTD �9�.
The computational domain is terminated by a standard per-
fectly matched layer �PML� �9,18�. The radiation of both the
toroid and the dipole is categorized by the field components
�E� ,Ez ,H�� that are not identically zero and hence it is of
E-type �TM� �14�. The applicability of the FDTD method to

radiating structures �antenna problems� is well established
and this technique has been successfully applied to various
designs �19–21�. In the model the poloidal current jp, is ex-
pressed through the azimuthal component of the magnetiza-
tion which is consistent with the assumption that all the parts
of the toroid respond simultaneously �or with negligible de-
lay� to the driving voltage. This is expected to occur when
the size of the toroid is much smaller than the wavelength.
To evaluate the directional properties of the emitting struc-
ture studied, the quantities P1 and P2 are introduced and
defined as

Pi = �
�i


S� · d�i, i = 1,2. �22�

In �22� 
S� is the time-averaged Poynting vector and �1 ,�2

�see Fig. 2� are cylindrical surfaces placed away from the
source �close to the PML region� in order to ensure that the
near-field contributions have negligible effect on the power
values calculated according to �22�.

IV. RESULTS AND DISCUSSION

In order to model the behavior of the nonradiating con-
figuration the following parameter values are selected. The
larger and the smaller radii of the toroidal solenoid are fixed
to d=1 cm and R=0.5 cm, respectively, the dipole length is
Ld=0.9 cm and the excitation frequency is � /2�=1 GHz.
The FDTD-grid resolution is 
�=
z=� /300, where � is the
free-space wavelength. Since Eq. �8� is strictly valid for in-
finitesimal objects only, it is necessary to make sure that for
the selected values of the parameters the contributions from
the higher-order multipoles are negligible. To verify this Eq.
�8� has been compared with results obtained from FDTD
simulations in a homogeneous material �this pertains to the
case of 
1=
2=
 in Fig. 2� and the result is presented in Fig.
3. The simulations are in good agreement with Eq. �8�. This
means that for the selected values of the parameters the con-
tributions of the toroidal dipole moment and the electrical
dipole moment are dominant.

Figure 4 compares the directional properties of a per-

FIG. 2. Nonradiating configuration consisting of a toroidal so-
lenoid and an electric dipole near the interface between two mate-
rials. Cylindrical symmetry is assumed. PML: perfectly matched
layer; d: dipole; T: toroid; �1 ,�2: cylindrical surfaces used to cal-
culate the power emitted in each of the materials with 
=
1 and 

=
2, respectively.

FIG. 3. Normalized emitted power Pn=12P�c / �	0�IdLd��2�
versus the relative dielectric permittivity 
 of the ambient dielectric
material. The value of 
̃ �Eq. �9�� is 
̃=1.5. The solid curve and the
solid squares are the analytical result �Eq. �8�� and the numerical
result, respectively.
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turbed nonradiating configuration with that of an electric di-
pole. The ratio between the power values P1 and P2 emitted
in the materials with dielectric constants 
1 and 
2, is com-
puted for several values of the distance D using either a
nonradiating configuration or an electric dipole. The pres-
ence of the interface affects both types of emitters. However,
Fig. 4 shows that a larger fraction of the total emitted power
can be directed in the material with 
=
2 for the case in
which the emitter is a nonradiating configuration. Comparing
the performance of the nonradiating configuration with that
of the dipole acting along shows that the nonradiating con-
figurations has a clear advantage in the ability to direct a
larger fraction of the total emitted power in a material with
higher value of the dielectric constant. This advantage disap-
pears in the proportion of the increase of the distance to the
interface. It has been verified that the dependence of the ratio
P2 / P1 on the distance D for both the emitters stems mainly
from the dependence of the quantity P2 on D. The value of
P1 appears to be less susceptible to the variations of D for
this range of parameter values. For some applications it
might be desirable to direct electromagnetic energy within a
certain material while little or no energy is emitted to the
surrounding space. It seems that a non-radiating configura-
tion with 
̃=
1 may be suitable for this purpose. Relatively
far from the interface it does not radiate at all, or radiates a
small amount of power. Bringing the nonradiating configu-
ration into contact with the interface will lead to an increase
of the total emitted power P1+ P2, �keeping the values of the
currents Id and I fixed� with the contribution P2 predominat-
ing strongly.

To study this property further, Fig. 5 and Fig. 6 show the
dependence of the ratio P2 / P1 on the dielectric constant of
the substrate for two fixed values of the distance D between
the emitters and the interface and 
̃=
1. The directional prop-
erties of the non-radiating composite object are compared
with those of its constituents—the electrical dipole and the
toroidal solenoid. As Fig. 5 and Fig. 6 show, the ratio P2 / P1
for the toroidal solenoid and for the electrical dipole shows
little dependence on the dielectric constant of the substrate

2. At same time, when nonradiating configuration is used as

an emitter, not only the ratio P2 / P1 is higher, but it increases
strongly with the increase of 
2. This shows that in the region
of parameter values studied the directional properties of the
nonradiating configuration improve with the increase of the
contrast between the relative dielectric permittivities of the
two materials. A comparison between Fig. 5 and Fig. 6
shows that as the nonradiating configuration approaches the
interface its performance improves. Indeed, it can be con-
cluded that the optimum performance is achieved when the
nonradiating configuration is in direct contact with the inter-
face. This feature is in agreement with Fig. 4. The depen-
dence of the emission properties of the nonradiating configu-
ration upon the values of the dielectric constant of the
substrate is suitable for sensor applications.

The results presented in Fig. 6 are visually presented in
Fig. 7 and Fig. 8 where the spatial distribution of the time-
averaged Poynting vector around two of the studied
emitters—nonradiating configuration and a toroidal
solenoid—is shown. The Poynting vector values are normal-
ized to the value of the total emitted power to allow a com-
parison at identical total emitted powers to be made. As can
be seen the electromagnetic field created by the nonradiating

FIG. 4. The ratio between the powers P1 and P2 emitted in the
materials with dielectric constant 
1 and 
2, respectively, by a non-
radiating configuration �NRC, solid squares� and an electric dipole
�electric dipole, solid triangles� as a function of the distance D
between the emitter and the interface. The parameter 
̃ of the non-
radiating configuration is 
̃=
1.

FIG. 5. The ratio between the powers P1 and P2 emitted in the
materials with dielectric constant 
1 and 
2, respectively, by a non-
radiating configuration �NRC, solid squares�, electrical dipole �di-
pole, solid circles� and the toroidal solenoid �toroid, solid triangles�
as a function of the dielectric constant 
2. The parameter 
̃ of the
nonradiating configuration is 
̃=
=1 and the distance between the
emitters and the interface is D=14.95 mm.

FIG. 6. The same as in Fig. 5 but for D=5.98 mm.
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configuration in free space �
=1� is weak compared to that
emitted by the toroidal solenoid. This shows that a larger
fraction of the total emitted power is deposited in the sub-
strate material.

V. CONCLUSIONS

In conclusion, we studied a remarkable nonradiating con-
figuration consisting of a toroidal solenoid coupled to an
electrical dipole. The property not to radiate electromagnetic

energy is based on the destructive interference between the
fields created by each of its constituents. We show that the
interference effect depends on the dielectric characteristics of
the ambient matter and the configuration may be used in
dielectric permittivity measurements. It becomes a direc-
tional radiator at an interface between two dielectric media
depositing energy in the material with the highest polariz-
ability.
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FIG. 7. �Color online� Spatial distribution of the time-averaged
and normalized Poynting vector modulus 
�S�

2+Sz
2� / �P1+ P2� for a

nonradiating configuration. The distance between the emitter and
the interface is D=5.98 mm. Note that logarithmic scale is used for
the values of the Poynting vector. The values of the other param-
eters are 
̃=
1=1 and 
2=8.

FIG. 8. �Color online� The same as in Fig. 7 but the emitter here
is a toroid.
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