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The structure of spherical clusters composed of Yukawa particles is analyzed by molecular dynamics simu-
lations and theoretical approaches as a model for dust particles in dusty plasmas in the isotropic environment.
The latter condition is expected to be realized under microgravity or by active cancellation of the effect of
gravity on the ground. It is found that, at low temperatures, Yukawa particles form spherical shells and, when
scaled by the mean distance, the structure is almost independent of the strength of screening including the case
of the Coulomb interaction. The positions and populations of shells and the conditions for the change of the
number of shells are expressed by simple interpolation formulas. Shells have an approximately equal spacing
close to that of triangular lattice planes in the bulk close-packed structures. It is shown that, when the cohesive
energy in each shell is properly taken into account, the shell model reproduces the structure of spherical
Yukawa clusters to a good accuracy.
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I. INTRODUCTION

Systems of macroscopic �micron-sized� dust particles im-
mersed in plasmas have been serving as an important ex-
ample of strongly coupled systems since the discovery of
dust crystals �1�. The interaction between dust particles is
approximately described by the Yukawa potential and usual
experiments may be regarded as observing the behavior of
the Yukawa system under the influence of the gravity and
other effects such as the ion flow and the thermophoretic
force. Structures of dust particles are characterized by
almost-uniformly spaced horizontal layers indicating that the
gravity plays the main role in their formation �2,3�. It has
been shown that the number of layers is determined by a
competition between mutual repulsion of particles and the
one-dimensional confining potential related to the balance of
the gravity and the levitation �2,3�.

The intrinsic properties of the Yukawa system, however,
may appear when the system is free from the effect of grav-
ity and in the isotropic environment. Recent experiments un-
der microgravity �4,5� and those with active cancellation of
the effect of gravity �6� are expected to realize such an iso-
tropic Yukawa system. Some results of simulations on the
isotropic three-dimensional Yukawa system have been given
by the authors �7�. In this paper, we extensively analyze the
structure of the Yukawa system by numerical simulations and
theoretical methods assuming that the system is homoge-
neous and isotropic and free from the effect of ion flow and
other forces. The results will be useful as a reference when
we have to take the latter effects into account.

In Sec. II we obtain the Yukawa system in a confining
potential as representing dust particles immersed in ambient
plasmas. In Sec. III, the results of numerical simulations are
summarized in the form of simple interpolation formulas and

compared with the bulk close-packed structures. In Sec. IV,
the shell model is applied and results of simulations are re-
produced to a good accuracy. Conclusions are given in Sec.
V.

II. DUST PARTICLES IN DUSTY PLASMAS AS
CONFINED YUKAWA SYSTEM

Let us start from a system in a volume V, composed of Nd
dust particles, Ne electrons, and Ni ions, which satisfies the
condition of charge neutrality. When we denote the charges
of dust particles, electrons, and ions by −Qe, −e, and e, re-
spectively, the latter condition is expressed as

�− Qe�nd + �− e�ne + eni = 0, �2.1�

nd=Nd /V, ne=Ne /V, and ni=Ni /V being the densities of
components. We take a statistical average over degrees of
freedom related to electrons and ions in the adiabatic ap-
proximation and neglect the radius of dust particles and the
effect of electron-electron, electron-ion, or ion-ion correla-
tion. We then have a system of Nd dust particles where the
interacting energy �exactly the Helmholtz free energy� is
given by �8,9�

Ucoh + Usheath. �2.2�

Here

Ucoh =
1

2�
i�j

Nd

v�rij� − 2�Ndnd�3 �Qe�2

�
, �2.3�

v�r� =
�Qe�2

r
exp�− r/�� , �2.4�

Usheath = − Nd
1

2

�Qe�2

�
, �2.5�
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�2 =
4�nee

2

kBTe
+

4�nie
2

kBTi
. �2.6�

The interaction between dust particles is described by the
repulsive Yukawa potential �2.4� and the parameter � char-
acterizes the screening by electrons and ions with the tem-
peratures Te and Ti, respectively, which are usually different
from that of dust particles Td. The energy Usheath is related to
the formation of sheath around dust particles and is indepen-
dent of configuration of dust particles. In dusty plasmas, the
interaction between dust particles may be influenced by the
ion flow and other causes. Our analyses based on Eq. �2.2�
will serve as a reference in estimating those effects.

Let us note that, in Eq. �2.3�,

− 2�Ndnd�3 �Qe�2

�
= − Nd

nd

2
� drv�r� �2.7�

and define the charge density in the system of dust particles
��r� by

��r� = �
i=1

Nd

�− Qe���r − ri� + Qend. �2.8�

Here the second term on the right-hand side is the contribu-
tion of electrons and ions which serves as the effective back-
ground charge for dust particles. Then we can rewrite Ucoh
into the form

Ucoh =
1

2
� �

V

drdr�
exp�− �r − r��/��

�r − r��
��r���r��

− �
i=1

Nd �Qe�2

2
� �

V

drdr�
exp�− �r − r��/��

�r − r��
��r − ri�

���r� − ri� , �2.9�

where the subtracted term on the right-hand side is the self-
interactions formally included in the first term. This expres-
sion indicates that dust particles are mutually interacting via
the repulsive Yukawa potential and, at the same time, they
are confined in the potential field �ext exerted by the second
term of ��r�,

�ext�r� = − nd�Qe�2�
V

dr�
exp�− �r − r��/��

�r − r��
. �2.10�

The dusty plasma may expand and eventually fill a space
of some shape limited by the electrodes or the wall of the
experimental vessel. In what follows, we assume that our
system occupies the inside of a sphere of radius R. This
assumption may be appropriate for experiments under the
condition of microgravity where we are free from the major
source of anisotropy on earth, the gravity, and have a possi-
bility to achieve an isotropic environment for dusty plasmas.
We may also assume that the distribution of the background
charge is uniform, as in Eqs. �2.3�, �2.7�, and �2.10�, and
further that it constitutes a uniformly charged sphere of ra-
dius R. In this case, the potential �ext is calculated as �7�

�ext�r� = 4�nd�Qe�2�2�1 −
�

r
exp�− R/��	1 +

R

�



�sinh	 r

�

�, r � R , �2.11�

=4�nd�Qe�2�2�

r
exp�− r/���R

�
cosh	R

�



− sinh	 r

�

�, R � r . �2.12�

For dusty plasmas between parallel horizontal plates as is
usual in experiments on earth, the distribution of the back-
ground charge and therefore the potential � may have a one-
dimensional nature and may be expressed in the form �ext�z�
as a function of the coordinate along the direction of the
gravity. The symmetry of the distribution of the background
charge may be limited by the configuration of the electrodes
even in the case of microgravity. The case of isotropic dis-
tribution analyzed here, however, may serve as a solid refer-
ence for these cases.

III. STRUCTURE OF SPHERICAL YUKAWA CLUSTERS

On the basis of the above discussions, we analyze the
structure formation of dust particles in dusty plasmas by the
molecular dynamics simulation under the isotropic condition
which may be realized in the environment of microgravity
�4,5� or by active cancellation of the effect of gravity �6�.
Since Usheath does not depend on the configuration of par-
ticles, we follow the dynamics of particles interacting via the
Yukawa potential �2.4� in the external confining potential
�ext�r� given by Eqs. �2.11� and �2.12�.

A. Characteristic parameters

In our system of dust particles, we have three independent
dimensionless parameters, the system size Nd, the strength of
screening 	 defined by

	 = a/� , �3.1�

and the strength of coupling 
 defined by


 = �Qe�2/akBTd, �3.2�

where the mean distance a is defined by �4� /3��Nd /
�4�R3 /3��a3=1 or

a = R/Nd
1/3. �3.3�

B. Formation of shell structure at low temperatures

Some snapshots of dust particle distribution are shown in
Fig. 1. Here the positions of particles in the cylindrical co-
ordinates �r ,� ,z� are expressed by a projection onto the
rz-plane. When the temperature is high, dust particles form a
spherical cloud of approximate radius R with a diffuse
boundary. With the decrease of the temperature, the bound-
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ary of distribution becomes sharper and eventually some
shells are formed.

In Fig. 2, the amount of charge of dust particles within
given radius r is compared with that of the background
charge as functions of �r /a�3 in some cases including those
shown in Fig. 1: When the condition of the charge neutrality
is satisfied locally, these two would coincide with each other.
We observe that, with the increase of the temperature, dust
particles become distributed with increased uniformity and
the condition of charge neutrality is satisfied increasingly
more locally. With the decrease of the temperature, in con-
trast, we have sharper boundary of distribution and eventu-
ally some shells are formed.

C. Experimental formulas for shell structures

We here summarize some observations on low tempera-
ture shell structures obtained by molecular dynamics. Our

main interest will be in their dependency on Nd and 	 in the
domain of relatively large Nd.

With the increase of the number of dust particles Nd, the
positions of shells move outwards and a new shell appears at
the center one by one when Nd exceeds each critical value.
We number the shells as 1, 2,…, from outside to inside and
denote the radius of the mth shell by Rm. In Fig. 3 we plot the
values of Rm normalized by a, Rm� =Rm /a, for several values
of 	 as functions of Nd

1/3. We include also the result for the
pure Coulombic case of 	=0 �10,11� from �11�.

We observe that Rm� increases in proportion to Nd
1/3 and the

structure as a whole is almost independent of the strength of
screening 	. This indicates that the local configuration of
particles is characterized by a unique length, the mean dis-
tance a, throughout the sphere. These results are consistent
with and extend our previous observation that the critical
values of Nd for the transition of structure �increase of shell
number� have no systematic dependence on 	 �7�. Based on
this observation, we assume that the structure does not de-
pend on the value of 	 in what follows.

We further find that the constant of proportionality of the
increment of Rm� to that of Nd

1/3 is almost unity. We may thus
write with sufficient accuracy

Rm� �Nd� = Rm�Nd�/a = Nd
1/3 − Nd,m

1/3 �Nd � Nd,m� , �3.4�

where Nd,m is the critical value of Nd for the appearance of
the mth shell. We interpolate our data for Rm� by the formula
�3.4� as shown in Fig. 3 by solid lines and determine the
critical values Nd,m as given in Table I and plotted in Fig. 4.
We see that these critical values are approximately expressed
as Nd,m

1/3 =a1m+a2. When fitted to the above formula, the re-
sults in Table I give a1=1.474 and a2=−0.720. We thus have

TABLE I. Critical values of Nd
1/3, Nd,m

1/3 , for the appearance of the
shell m.

m 1 2 3 4 5 6

Nd,m
1/3 0.713 2.235 3.743 5.208 6.627 8.099

FIG. 1. Snapshots of particle distribution at high �a� and low �b�
temperatures. Dotted lines correspond to r=R.

FIG. 2. The amount of charge carried by particles within radius
r normalized by −Qe. Dotted lines are that of background charge
normalized by Qe.

FIG. 3. Positions of shells. Different symbols are the results for
different values of 	. Solid lines are values given by an
interpolation.
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Nd,m
1/3 = 1.474m − 0.720 �3.5�

or

Rm� �Nd� = Rm�Nd�/a

= Nd
1/3 − 1.474m + 0.720 �Nd � 1.474m − 0.720� .

�3.6�

It should be noted that the linear dependence of Nd,m
1/3 on m

corresponds to an equal spacing for shells.
The populations on shells Nm are plotted in Fig. 5. We

may expect that they are proportional to 4�mRm
2 where m

is the surface density on the shell m. In the light of Eq. �3.4�,
we interpolate the results given in Fig. 5 by the form

Nm = 4�ma2�Nd
1/3 − Nd,m

1/3 �2, �3.7�

where ma2 is the normalized surface number density on the
shell m. Interpolations are shown in Fig. 5 by solid lines and
the values of ma2 are given in Table II �values given in
Table I are used for Nd,m�. We see that ma2 are almost in-
dependent of m, giving

a2 � 0.356 �3.8�

for the surface density  �averaging over values in Table II
except for the innermost shell m=6�, and populations on
shells are expressed by the formula

Nm = 4� � 0.356�Nd
1/3 − Nd,m

1/3 �2 = 4.48�Nd
1/3 − Nd,m

1/3 �2,

�3.9�

to a good accuracy.

D. An interpretation based on close-packed structures

We here try to interpret the results of simulation based on
a simple consideration. We first note that the charge carried
by each shell is balanced by background charge which sur-
rounds the corresponding shell from both inside and outside.
The background charge between two shells of radii Rm and
Rm+1, for example, may thus be divided at the halfway into
the one responsible for the shell m and the one for the shell
m+1. Since the distribution of the background charge is a
sphere of radius R, the radius of the outermost shell R1 is
then smaller than R by approximately half of the shell spac-
ing. Assuming the equality of the shell spacing and denoting
the latter by d, we may have

R1�Nd� = R − 0.5d . �3.10�

Since R /a=Nd
1/3 due to Eq. �3.3�, this is rewritten as

R1�Nd�
a

= Nd
1/3 − 0.5

d

a
�3.11�

and for inner shells, we have

Rm�Nd�
a

= Nd
1/3 −

d

a
�m − 0.5� . �3.12�

Comparing the result �3.12� with the simulation �3.6�
which is rewritten as

Rm� �Nd� = Nd
1/3 − 1.474	m −

0.720

1.474



= Nd
1/3 − 1.474�m − 0.488� , �3.13�

we may have

d

a
� 1.47 �3.14�

with the accuracy indicated by a small difference 0.5
−0.488=0.012 which may justify our consideration leading
to Eq. �3.12�.

It is interesting to note that this spacing between shells is
close to the spacing of triangular lattice plane in the closest-
packed structure. In both the face-centered-cubic �fcc� and
the hexagonal-close-packed �hcp� structure, the spacing be-
tween stacked plane �ABCABC… for fcc and ABAB… for
hcp� is given by 1.477a. This spacing gives

TABLE II. Normalized surface densities on shells ma2.

m 1 2 3 4 5 6

ma2 0.361 0.352 0.356 0.352 0.361 0.342

FIG. 4. Critical values for the appearance of the shell m. Solid
line is an interpolation.

FIG. 5. Populations on shells. Solid lines are values given by an
interpolation.
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Rm�Nd�
a

= Nd
1/3 − 1.477�m − 0.5� . �3.15�

This may suggest that the local structure is close to these
close-packed structures even in finite clusters. In fact, when
plotted in Fig. 3, the expression �3.15� above is almost indis-
tinguishable from Eq. �3.6�. The surface density on these
lattice planes close is calculated to be

closea
2 =

31/6

�2��2/3 = 0.3527 �3.16�

which is close to the value in Eq. �3.8�, 0.356, given by
simulations.

In the case of Coulombic particles, the structure of the
bulk ground state takes over the shell structure as the ground
state of clusters when the number of particles exceeds the
critical size Nc��1.1–1.5��104 �12�. The critical value for
Yukawa clusters is not known and, as far as the system sizes
simulated here, the ground state is given by the shell struc-
ture.

IV. SHELL MODEL

In this section, we apply the shell model which has been
successful in reproducing the ordered structures in ion traps
with cylindrical symmetry �13� and in dust particles under
one-dimensional confinement due to gravity �2,3�.

A. Without cohesive energy

We start from the assumption that dust particles are orga-
nized into thin spherical shells and minimize the total energy
of the system with respect to parameters determining the
structure, the number of shells Nshell, shell radii
Rm �m=1,2 , . . . ,Nshell�, and the shell populations
Nm �m=1,2 , . . . ,Nshell�, under the condition

�
m=1

Nshell

Nm = Nd. �4.1�

We first note that the potential field of a shell of radius Ri
with a population Ni is given by

�i�r� =� dr�
exp�− �r − r��/��

�r − r��
Ni

4�Ri
2Qe��r� − Ri�

�4.2�

and calculated as

�i�r� =
1

2

�

r

Ni

Ri
Qeexp�− �r − Ri�/�� − exp�− �r + Ri�/��� .

�4.3�

The interaction between the shell i and the shell j is thus
given by

�Qe�Nj�i�Rj� =
1

2
�Qe�2�NiNj

RiRj
exp�− �Ri − Rj�/��

− exp�− �Ri + Rj�/��� �4.4�

and the total interaction energy per particle is written as

�int =
�Qe�
2Nd

�
i,j

Nshell

Nj�i�Rj� =
�Qe�2

4Nd
�
i,j

Nshell �NiNj

RiRj

�exp�− �Ri − Rj�/�� − exp�− �Ri + Rj�/��� .

�4.5�

Including the energy due to the confining potential

�ext =
1

Nd
�
i=1

Nshell

Ni�ext�Ri� , �4.6�

we have the total energy per particle �int+�ext.
When �int+�ext is minimized with respect to Nshell, Rm,

and Nm, we have the optimized structure given by infinite
number of shells or Nshell→� and Nm→0. As is shown in
previous analyses, it is thus essential in our shell model to
take the cohesive �interaction� energy within the shell into
account �2,13�.

B. With cohesive energy

Since particles are in an ordered state of a triangular lat-
tice with defects on each shell, they have lower energy com-
pared with the state of random configuration �uniform distri-
bution� on a sphere. We approximate this gain �cohesive
energy� per particle by that of a two-dimensional Yukawa
lattice which is expressed by a dimensionless function ecoh as
�Qe�2��ns�1/2ecoh�1/���ns�1/2�. Here ns is the surface density
and ecoh is interpolated as �3,14�

ecoh�x� = − 1.9605 + 0.8930x − 0.1959x2 + 0.01715x3.

�4.7�

The cohesive energy is then given by

�coh =
�Qe�2

Nd
�
i=1

Nshell

Ni��ni�1/2ecoh�1/���ni�1/2� , �4.8�

where ni=Ni /4�Ri
2 is the surface density on the shell i.

FIG. 6. Minimum of �int+�ext+�coh in the unit of �Qe�2 /a
optimized for Rm ,Nm�m=1,2,. . .,Nshell

for given values of Nshell. With
increasing Nd, the number of shells changes from one to two, from
two to three, and from three to four, when these lines cross.
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When �int+�ext+�coh is minimized with respect to
Rm ,Nm�m=1,2,. . .,Nshell

for given Nshell, we have the results as
typically shown in Fig. 6 where optimized values of �int
+�ext+�coh are plotted in the unit of �Qe�2 /a as functions of
Nd: When these lines cross, the number of shells correspond-
ing to the global minimum changes. We observe that, with
the increase of Nd, the optimum value of the total energy is
realized with increasing Nshell. We also note that the results
are almost independent of the value of 	 for 0�	�2.

We plot the resultant positions and populations of shells in
Figs. 7 and 8, respectively, in comparison with those of
simulations given by the interpolations �3.6� and �3.9�. As for
the positions of shells shown in Fig. 7, our model gives
somewhat smaller radii for inner shells. This may be due to
our applying the cohesive energy of the planar system to
spherical shells. The overall agreement with simulation is
satisfactory and we may conclude that our model reproduces
the number, positions, and populations of shells to a good
accuracy as in previous cases �2,13�.

V. CONCLUSIONS

We have analyzed the structure of spherical clusters of
Yukawa particles by numerical simulations and theoretical

approaches. Dust particles in dusty plasmas can be regarded
as interacting via Yukawa interaction and such spherical
structures appear in the isotropic environment realized under
microgravity �4,5� or by active cancellation of the effect of
gravity �6�.

We have first shown that the condition of the overall
charge neutrality in dusty plasmas leads to an effective ex-
ternal confining potential for Yukawa particles representing
dust particles. Assuming the isotropy of the system, we have
observed the appearance of spherical shells at low tempera-
tures. When scaled by the mean distance, the structure is
almost independent of the strength of screening and shells
have approximately equal spacing which corresponds to that
of lattice planes in close-packed structures. Extending the
shell model and including the cohesive energy within each
sphere, we have shown that the structure can be reproduced
to a good accuracy.

Since the Yukawa potential covers both the long-ranged
and short-ranged interactions, these results will be useful as
an example of three-dimensional finite systems of confined
particles with repulsive interaction. They may also serve as a
reference in the cases where the isotropy of environment is
not realized completely.
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