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We consider a two-dimensional �2D� stationary stream of a collisionless plasma injected across an external
stationary magnetic field and a background stagnant plasma. The solution is found by solving the Vlasov
equation for each species �electrons and protons�, the Maxwell-Ampere equation for the magnetic vector
potential, and the equation of plasma quasineutrality for the electrostatic potential. The solution of the station-
ary Vlasov equation is given in terms of two constants of motion and one adiabatic invariant. The partial charge
and current densities are given by analytical expressions of the moments of the velocity distribution functions
for each particle species. The 2D distribution of the plasma bulk velocity, Vx�y ,z�, is roughly uniform inside
the jet. There is no plasma bulk flow in the direction of the magnetic field. Inside the boundary layer interfacing
the jet and the stagnant plasma, the bulk velocity has gradients �i.e., shears� in the direction parallel as well
perpendicular to the magnetic field. The parallel component of this gradient, ��V�, produces a nonzero electric
field component parallel to the magnetic field lines, E ·B�0. The parallel electric field within the transition
layer is a basic element allowing plasma elements to be transported across magnetic field lines in astrophysical
systems as well as in laboratory experiments where plasmoids are injected across magnetic fields.
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I. INTRODUCTION

Plasma motion across magnetic field lines is a key mecha-
nism for momentum and energy transport in astrophysical
observations �e.g., Ref. �1�� and models �2� as well as in
laboratory experiments �e.g., Refs. �3,4�� or fusion devices
�5�. In this paper we focus our attention on the problem of a
stationary, nonuniform collisionless plasma stream across
magnetic field lines. We determine the plasma variables and
fields inside the two-dimensional boundary layer forming at
the interface between the moving plasma and the adjacent
stagnant one.

One-dimensional solutions for tangential disconti nuities
�TDs� interfacing two stagnant plasma regions with different
temperatures and densities on both sides were studied previ-
ously by Sestero �6� for unidirectional magnetic field distri-
butions and by Lemaire and Burlaga �7� for one-dimensional
�1D� sheared magnetic field distributions. One-dimensional
TD equilibrium solutions interfacing two separate plasma re-
gions moving across unidirectional magnetic field distribu-
tions were investigated by Sestero �8� and Roth �9�. Vlasov
equilibrium solutions for one-dimensional TDs with shears
both of the magnetic field distribution and of the convection
velocity have been described by Roth et al. �10� and Lee and
Kan �11�. In these 1D kinetic models the plasma parameters
�density, temperature, bulk velocity� and fields �magnetic and
electric fields� vary only in the direction perpendicular to
both the direction of the magnetic field and of the plasma

bulk velocity. Echim �12� showed that the solutions proposed
for steady-state one-dimensional TDs can be extended to the
more general case of 2D kinetic solutions for a nonuniform
plasma streaming across magnetic field lines with a sheared
convection velocity. In the work of Echim �12� the plasma
and fields distributions are not uniform in the direction per-
pendicular and parallel to the magnetic field lines.

In the following we describe this 2D kinetic solution for
the sheared flow of collisionless plasma. The convection ve-
locity is parallel to the x direction; the background magnetic
field is parallel to the Oz direction, B0��0,0 ,B0�, as illus-
trated in Fig. 1. The plasma variables and field are functions
of y and z. Echim �12� has shown that internal plasma cur-
rents are then parallel to the x axis, producing thus diamag-
netic field perturbations which are parallel to the �y -z� plane.
These magnetic perturbations add to background or external
magnetic field, B0, to produce a total magnetic field
B= (0,By�y ,z� ,Bz�y ,z�)= (0,by�y ,z� ,B0+bz�y ,z�), where
by�y ,z� and bz�y ,z� denote the magnetic perturbations pro-
duced by the internal plasma currents.

The plasma jet in our model has a bulk velocity �or con-
vection velocity� whose only nonvanishing component is
parallel to the Ox direction: V= �Vx ,0 ,0� with �Vx /�y�0,
�Vx /�z�0, and �Vx /�x=0. Therefore this study is restricted
to the case when there is no bulk plasma transport in the
direction of the magnetic field, nor in the Oz or Oy direc-
tions. It is assumed that an external driver sustains the non-
uniform and stationary plasma flow across the external mag-
netic field B0. This driver can be an initial push imparted to
the particles by a plasma gun in laboratory experiments, the
inertia of solar and stellar winds, or the drag due to neutral*Electronic address: marius.echim@oma.be
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winds as in the topside ionosphere of the Earth. The problem
is stationary and � /�t=0 throughout this study. These ap-
proximations may appear as rather restrictive, but this work
is among the most complicated situations solved for 2D
sheared plasma flows. It is a step ahead toward the ultimate
goal of kinetic modeling 3D plasma flows.

The paper is organized as follows. Section II describes the
solution found for the Vlasov equation. Section III gives the
analytic expressions of the moments of the velocity distribu-
tion function �i.e., density, flux of particles�. The electron and
proton densities and fluxes are needed to compute the self-
consistent electromagnetic potentials, ��y ,z� and Ax�y ,z�.
Section IV outlines the numerical method used to solve the
equations for the electromagnetic potentials. It includes also
a cross checking of the method in the case of a 1D tangential
discontinuity. The results are compared to those already pub-
lished in the literature. Section V shows the numerical results
obtained for a 2D layer formed at the interface between a
moving cold plasma stream and a stagnant plasma both with
the same temperature and density at large distances. Finally,
Sec. VI includes a discussion on the aspects of our model
that are relevant to the problem of nonuniform plasma flows
across magnetospheric magnetic fields.

II. SOLUTION OF THE VLASOV EQUATION

The solution for the problem of a stationary 2D
flow across an external magnetic field is sought in the
framework of the kinetic theory of collisionless plasma.
Only two plasma species, electrons �charge: qe=−e
=−1.6022�10−19 C; mass: me=9.1094�10−31 kg� and pro-

tons �charge: qp= +e; mass: mp=1.6726�10−27 kg�, will be
considered. Each species �indexed with �� is characterized
by a velocity distribution function �VDF�, f��r ,v�, that sat-
isfies the stationary Vlasov equation:

v ·
� f�

�r
+

q�

m�

�E + v � B� ·
� f�

�v
= 0. �1�

It is known that the characteristic curves of Eq. �1� are the
trajectories of the particle with mass m� and charge q� in-
jected into the electromagnetic field distribution, E�r� and
B�r� �13�. Thus instead of solving the PDE �1� in the six-
dimensional space �r ,v� one can write the solution as any
positive, real function of the constants of motion of the par-
ticle in this steady state electromagnetic field. In the follow-
ing we describe the method to transform the VDF of each
species from the velocity space into the space of the con-
stants of motion.

A. Constants of motion

The plasma jet is described in a Cartesian coordinates
system. In the case of stationary E and B fields, H, the
Hamiltonian �or total energy� of the charged particles, is a
constant of motion:

H =
m�

2
�vx

2 + vy
2 + vz

2� + q���y,z� . �2�

Since the potentials � and A do not depend on x, the x
coordinate is ignorable. Thus the corresponding component
of the canonical momentum, px, is a second constant of
motion:

px = m�vx + q�Ax�y,z� . �3�

The VDF is a function of the three velocity components,
vx ,vy ,vz. To complete the transformation from the 3D space
of velocities into the space of constants of motion a third
constant of motion is needed. Note that in the one-
dimensional models of TDs, where the plasma parameters
and E and B fields components were independent of z and
did vary only with the y coordinate the third constant of
motion was given by pz=m�vz+q�Az�y�. Since in our 2D
problem we consider that � and A depend also on the z
coordinate, the invariance of pz is lost. The magnetic mo-
ment of the particle � ,��, which is an adiabatic invariant
under certain conditions, will be here used as the third con-
stant of motion. It will be in fact used to compute the Jaco-
bian of the transformation from the velocity space to the
space of the constants of motion.

The conditions under which the magnetic moment of the
particles is adiabatic invariant are the Alfven conditions
�14,15�. This implies that rL���B��B, where rL� is the Lar-
mor radius of the particle �. The zero order drift velocity UEx
has only one nonvanishing component, in the Ox direction.
The total magnetic field, B, is mainly parallel to the Oz di-
rection �By �Bz�, thus the magnetic moment is equal to

FIG. 1. Cross section of a sheared 2D plasma flow across an
external B field, B0, which is parallel to the Oz axis: V, the plasma
bulk velocity �vectors pointing out of the sheet of paper� is every-
where parallel to the positive x direction; Vx�y ,z� is a function of y
and z. It is represented by circles whose diameter is proportional to
Vx�y ,z�. Dotted lines illustrate the distribution of the external mag-
netic field B0. The diamagnetic field perturbations produced by the
small current density circulating in the boundary layer along the
surface of the plasma jet are not shown but are self-consistently
calculated in our model.
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�� =
m���vx − UE�2 + vy

2�
2B

. �4�

The adiabatic invariant � was used in the past to construct
one-dimensional kinetic solutions for the ionized gas flowing
out of the solar corona as well as out of the terrestrial topside
ionosphere �16–18�. In these earlier kinetic models the bulk
velocity was assumed to be parallel to the magnetic field
lines and has no component in the direction normal to the
given background magnetic field. We propose here a 2D ki-
netic solution that combines the kinetic solutions developed
for respectively the 1D kinetic models of TDs and the 1D
kinetic exospheric models of the solar and polar winds.

B. Boundary conditions for f�

Any real, positive function, f��H , px ,��� is a solution of
Eq. �1�. From the infinite number of choices one must select
those VDFs that satisfy the boundary conditions describing
the problem of interest. The solutions of the Vlasov and
Maxwell equations will be computed inside the rectangle �
defined by �−y� , +y��� �−z� , +z��. Here −y� , +y� ,−z� ,
+z� take finite values still large compared to the electron
Larmor radius. The boundary conditions that must be satis-
fied by f� are derived from the following constraints on the
plasma flow at the edges of the 2D domain:

�i� at the right hand side edge, y= +y�, the plasma is at
rest, V=0;

�ii� at the left hand side edge, y=−y�, the plasma is in
motion in the x direction, the only nonvanishing component
of the bulk velocity depends on the z coordinate,

lim
y→−y�

Vx = VL�z�;

�iii� at the bottom edge, z=−z�, the plasma is in motion
with a nonuniform velocity depending on the y coordinate,

lim
z→−z�

Vx = VB�y�;

the plasma velocity on the lower boundary has to satisfy the
additional conditions

lim
y→−y�

VB�y� = VL�− z��, lim
y→+y�

VB�y� = 0;

�iv� at the top edge, z= +z�, the plasma has also a non-
uniform velocity depending on the y coordinate,

lim
z→+z�

Vx = VT�y� ,

with the additional constraints

lim
y→−y�

VT�y� = VL�+ z��, lim
y→+y�

VT�y� = 0.

In addition to the above boundary conditions, we expect that
Eq. �1� gives a profile for the plasma bulk velocity Vx�y ,z�
such that the gradient ��Vx in the direction parallel to the
total magnetic field �external B0 field + the diamagnetic
b-field contribution due to the plasma currents� is different
from zero: B ·�Vx�0 unlike in ideal magnetohydrodynam-
ics �MHD� flows where E ·B=0 and therefore B ·�Vx=0.

We consider that the nonmoving plasma at the right hand
side edge, y= +y�, is in thermal equilibrium and the corre-
sponding boundary value of f� is equal to an isotropic Max-
wellian distribution defined by

f�1�vx,vy,vz� = N�1� m�

2	KT�1
	3/2

e−m��vx
2+vy

2+vz
2�/2KT�1. �5�

N�1 and T�1 are the density and temperature of the stagnant
populations. On the other three edges of the two-dimensional
domain � the VDF will give an average velocity in the x
direction that is nonuniform. Therefore we define a displaced
Maxwellian VDF with a constant velocity V0:

f�2�vx,vy,vz� = N�2� m�

2	KT�2
	3/2

e−m���vx − V0�2+vy
2+vz

2�/2KT�2

�6�

that is also a solution of the Vlasov equation �1�. The bound-
ary values of f� on the bottom, left, and top edges will then
be defined as a linear combination of the two functions �5�
and �6�.

The two VDFs, f�1 and f�2, can be transformed from the
velocity space �vx ,vy ,vz� into the space of the constants of
motion �H , px ,���:

f�1�H,px,��� = N�1� m�

2	KT�1
	3/2

e−H/KT�1, �7�

f�2�H,px,��� = N�2� m�

2	KT�2
	3/2

e−�H−pxV0+�1/2�m�V0
2�/KT�2.

�8�

Note that neither f�1 nor f�2 directly depend on ��, but the
Jacobian of the transformation does. The new expressions of
f�1 and f�2 depend implicitly on the spatial coordinates �y ,z�
via the electromagnetic potentials, ��y ,z� and Ax�y ,z�, that
enter in the definitions of the two constants of motion H and
px. Thus f�2 from Eq. �8� gives the expected boundary VDF
on the left edge of � when the following condition is satis-
fied:

lim
y→−y�

Ax�y,z� = AxL�z� ,

where AxL�z� is the boundary condition to be imposed on
the magnetic vector potential on the left boundary of the
domain �.

The VDF on the bottom �f�B� and top �f�T� edges of the
domain have to be determined in such a way that the follow-
ing conditions are satisfied:

lim
y→−y�

f�B = f�2, lim
y→+y�

f�B = f�1, �9�

lim
y→−y�

f�T = f�2, lim
y→+y�

f�T = f�1. �10�

A VDF that has this desired asymptotic behavior is precisely
the Vlasov solution proposed for the 1D kinetic models of
tangential discontinuities �8,10�. Following Sestero �8� the
boundary value on the bottom edge can be written as
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f�B�px,H� = 
�− b�

px


m�KT�1
	 f�1�px,H�

+ 
�b�

px − m�V0


m�KT�2
	 f�2�px,H� , �11�

where b�=sgn�q��,1 
 is the Heaviside step function,2 and
the functions f�1�px ,H� and f�2�px ,H� are defined by Eqs.
�7� and �8�. We will restrict this study to the case where the
VDF on the top edge takes the same boundary value as on
the bottom edge: f�T�px ,H�= f�B�px ,H�.

We also choose the reference frame such that at the bot-
tom and top edges the only nonvanishing component of the
magnetic field is positive and equal to the external magnetic
field �B0�0�. Thus the VDF defined in Eq. �11� satisfies the
conditions �9� and �10� since

lim
y→+y�


�±b�

px


m�KT�1
	 = 
��1� , �12�

lim
y→−y�


�±b�

px


m�KT�1
	 = 
�±1� .

A summary of the boundary values of f� is given in Table I.

C. 2D solution

Expanding previous one-dimensional tangential disconti-
nuities models with perpendicular drift velocities �8,10� we
seek here to extend them to two dimensions. We construct a
2D Vlasov equilibrium model based on the VDF determined
by Eqs. �7�, �8�, �11�.

Since f�B given in Eq. �11� is a function of the constants
of motion only, it is necessarily a solution of the Vlasov
equation �1� not only on the lower and upper boundaries but
also in the whole 2D domain �. Although its analytic expres-
sion is similar to the solution postulated for one-dimensional
TDs, the electromagnetic potentials in the definitions of the
constants of motion are now functions of y and z, not only on
y as in earlier TDs models. Thus an admissible solution of
the Vlasov equation that satisfies the boundary conditions
described above is

f��H,px,��� = f�B, �13�

where f�B is defined by Eq. �11�.

This solution is not unique. An infinite number of other
choices are possible. Our choice is dictated by convenience;
indeed it enables us to obtain analytical expressions for the
moments of the VDF, and the VDF itself is piecewise Max-
wellian. The Heaviside step functions in Eq. �11� were also
chosen on grounds of mathematical simplicity. Other,
smoother functions can be also used �as in Refs. �10,11��
without altering the relevance of the results outlined below.
Furthermore, the solution is valid for those E and B fields
that satisfy the Alfven conditions and the condition that B is
mainly aligned with the z direction, i.e., �b�� �B0�.

A first example of the VDF is illustrated in Fig. 2. In these
graphs the velocity distribution function of the protons is
transformed back into the velocity space �vx ,vy ,vz�. The four
panels of Fig. 2 illustrate 2D sections of the 3D velocity
space �vx ,vy ,vz� at four different points in the plasma jet
advancing parallel to the Ox axis. One can note the transition
of the VDF of the protons from the displaced Maxwellian fp2
�on the left hand side boundary, y=–200, z=50� to the iso-
tropic Maxwellian fp1 �on the right hand side boundary,
y=+288, z=50�.

III. ELECTROMAGNETIC POTENTIALS: MOMENTS
OF THE VDF

As consequence of the assumptions made on the flow
�� /�t=0, � /�x=0� the electromagnetic field components are

1sgn�q�
0�=−1, sgn�q��0�= +1.
2
�x
0�=0, 
�x�0�=1.

TABLE I. Boundary values of the velocity distribution function
f�, of the plasma bulk velocity Vx, and of the magnetic vector
potential Ax. The functions f�1 , f�2, and f�B are defined, respec-
tively, by Eq. �7�, �8�, and �11�.

Boundary y=−y� y= +y� z=−z� z= +z�

f� f�1 f�2 f�B f�B

Vx VL�z� 0 VB�y� VT�y�
Ax B0y�+��z� −B0y� −B0y −B0y

FIG. 2. Isocontours of the VDF of protons, fp�y ,z ,vx ,vy ,vz�, the
solution of the Vlasov equation given by Eqs. �11� and �13�. The
isocontours are plotted in the plane of the velocity space defined
by vy =0 for different positions �y ,z� in the plasma jet which is
parallel to the Ox axis. Note the transition of the VDF from the
displaced Maxwellian fp2 �at the left hand side edge—upper left
panel�, to the �stagnant� isotropic Maxwellian fp1 �at the right hand
side edge—lower right panel�. The electrostatic and magnetostatic
potentials used to determine spatial distribution of the VDF are
discussed in Sec. V.
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E � „E0,Ey�y,z�,Ez�y,z�…, B � „0,By�y,z�,Bz�y,z�… ,

�14�

where E0 is a constant equal to zero since the plasma flow is
everywhere aligned with the Ox direction and its bulk veloc-
ity is independent of x and of the time t. Without loss of
generality the magnetic field distribution �14� can be ob-
tained from a magnetic vector potential whose only nonvan-
ishing component is Ax. Thus the two electromagnetic poten-
tials are solutions of the Maxwell’s equations,

�2�

�y2 +
�2�

�z2 = −
1

�0
�
�

���y,z� , �15�

�2Ax

�y2 +
�2Ax

�z2 = − �0�
�

j�x�y,z� . �16�

The partial charge density �� and current density j� are
derived from the moments of the velocity distribution func-
tion of each species. The general expression for the moment
of rst order is given by the triple integration over velocity
space:

Q�
rst�r� =� � � vx

rvy
svz

t f��x,y,z,vx,vy,vz�d3v . �17�

Since we specified the VDF in terms of the constants of
motion, its moments are computed by a triple integration in
the space �H , px ,���:

Q�
rst�r� = 4�

−�

+� �
0

+� �
0

+� ��vx�px,H,����r�vy�px,H,����s

��vz�px,H,����t f��px,H,���
 D�vx,vy,vz�
D�px,H,���


	
�d��dHdpx, �18�

where �D�vx ,vy ,vz� /D�px ,H ,���� is the Jacobian of the
transformation from the �vx ,vy ,vz� space to the �px ,H ,���
space. The factor 4 in front of the integrals is due to the
summation of the integrals when both s and t are even. As a
consequence of the symmetry of the VDF whenever one of
the two exponents s or t is odd the corresponding moment is
equal to zero:

Q�
rst = 0 �for s or t odd� .

A detailed discussion on the integration over the four quad-
rants of the �vy ,vz� subspace mapped into the �H , px ,��
space, is given by Echim �12�.

In the expression �18� the three components of the veloc-
ity, vx ,vy ,vz, are replaced by the corresponding functions of
the constants of motion according to the definitions �2�–�4�
The Jacobian of the transformation from the variables
�H , px ,�� to �vx ,vy ,vz� is equal to

J = 
D�vx,vy,vz�
D�H,px,��


 =

B

2m�
2
� − �c�


H − Hc�

,

where the functions Hc� and �c� are defined by

Hc��px,�� = ��B + �px − q�Ax�UE + q�� −
m�UE

2

2
,

�19�

�c��px� =
m�

2B
� px − q�Ax

m�

− UE	2

�20�

with UE= �E�B� /B2. The conditions for the Jacobian to be
real and finite,

H � Hc�, �21�

�� � �c�, �22�

are equivalent to the conditions of accessibility of particles in
the velocity space. The accessibility conditions for various
profiles of the electric potential have been discussed in Refs.
�16,19,20�.

The charge density of each plasma species is found by
computing the zero order moment of the VDF:

�� = q�Q�
000. �23�

The current density is computed from the first order mo-
ments of the VDF. Only jx� is different from zero:

jx� = q�n�u� = q�Q�
100, �24�

where u� is the average velocity of species �. The plasma
bulk velocity is equal to the center of mass speed and is
computed from

Vx�y,z� =
mpQp

100��,Ax� + meQe
100��,Ax�

mpQp
000��,Ax� + meQe

000��,Ax�
. �25�

The analytical expressions of the charge and currents density
are given in Appendix A. As a consequence of the large mass
of the protons the second terms in the numerator and de-
nominator of Eq. �25� can be neglected and the bulk velocity
of plasma is almost equal to that of the protons. Note that in
this kinetic model the average velocity of the electrons is not
equal to that of the ions as assumed in single fluid MHD
approximation.

IV. NUMERICAL METHOD: VERIFICATION FOR THE 1D
CASE

The plasma has the tendency to remain electrically
quasineutral, i.e., a net electric charge is effectively screened
off by collective effects. The Coulomb electric field of a test
charge vanishes outside a sphere whose radius is of the order
of the Debye length, �D=
�0KT /2ne2. In this study the De-
bye length is of the order of meters therefore much smaller
than the characteristic scale length of density and field varia-
tions that are of the order of tens of kilometers in the colli-
sionless plasma jet considered here. Therefore it can be as-
sumed that the quasineutrality condition is very well satisfied
in each point of the whole domain �. There are no strong
double layers �or electrostatic shocks� nor contact disconti-
nuity in the domain of integration. Thus the electrostatic po-
tential is computed from the equation of quasineutrality, i.e.,
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the condition that the total number of electrons is equal to the
total number of positive charges:

�
�

��„��y,z�,Ax�y,z�… = 0, �26�

where the summation takes place over the number of species
�two in our case: electrons and protons�. The analytical ex-
pressions of the charge densities, ��(Ax�y ,z� ,��y ,z�), are
given by the expression �A2� in Appendix A. The nonlinear
algebraic equation �26� conveniently replace the partial de-
rivatives equation �15� in the system of equations that deter-
mines the distribution of the electromagnetic potentials. It is
checked a posteriori that the neglected second order deriva-
tives in Eq. �15� are indeed negligibly small �of the order of
10−3, in the case of the normalized potential� for all solutions
considered below.

Solution �13� of the Vlasov equation is a function of the
spatial coordinates y and z via the electromagnetic potentials
��y ,z� and Ax�y ,z�. The Dirichlet boundary conditions for
Ax�y ,z� �given in Table I� determine the spatial variation of
both potentials; this determines then the VDF and the spatial
distribution of all its moments, Q�

rst. The variation of Ax with
the z coordinate is controlled by the input boundary condi-
tion AxL�z�:

lim
y→−y�

Ax�y,z� = AxL�z� = B0y� + ��z� . �27�

As a result of this boundary condition at y=−y� the total
magnetic field is, there, equal to the sum of the external B0
and the small perturbation diamagnetic field: byL�z�=d� /dz.
On the other boundaries of the domain � we impose the
condition that the magnetic field is uniform and equal to the
external field, thus the magnetic vector potential is equal to
Ax=−B0y �see Table I�.

The solution of the coupled equations �16� and �26� is
computed numerically by an iterative method. First the equa-
tions are normalized such that all the quantities are nondi-
mensional. The scaling factors are specified in Appendix B.
Second the nondimensional equations are discretized on a
2D mesh with Ny �Nz points. Equation �26� is transformed
then into Ny �Nz nonlinear algebraic equations. Equation
�16� and its boundary conditions are transformed into a
sparse linear system by a standard five-point Poisson method
�see, e.g., Ref. �21��.

The initial guesses for Ax�y ,z� and ��y ,z� are introduced
into the expression of the charge density given in Eq. �A2�.
The latter is introduced into the discrete Ny �Nz nonlinear
algebraic equations corresponding to Eq. �26�. Each of the
Ny �Nz nonlinear equations is solved by a bisection method
giving the electric potential ��y ,z� in each point of the
mesh. This solution of the electric potential is then used to
recompute the charge and current densities �A2� and �A4�.
The latter are introduced into the discrete equation �16� that
is solved to find an updated solution for Ax�y ,z�. The sparse
linear system is solved with a pre-conditioned Gauss-Seidel
method that converged after a reasonable number of steps.
The electric charge and current densities given by Eqs. �A2�
and �A5� are recomputed for the updated Ax�y ,z�. The new
electron and proton densities are introduced into the

quasineutrality equation that is solved for an updated electric
potential ��y ,z�. The procedure is repeated iteratively until
the updating produces a change of each potential less than a
given threshold �. In the computations discussed in this and
next section �=10−6. The procedure converged in general in
less than 50 iterations.

The kinetic model and the numerical method described
above have first been tested for a 1D tangential discontinuity
which corresponds to the cases where the potentials and the
plasma parameters are functions of y but do not vary with the
z coordinate. The function ��z� is then equal to zero in the
boundary condition �27�. Figure 3 illustrates the iterated so-
lutions obtained for Ax�y� �left panel� and ��y� �right panel�.
The electromagnetic field does not depend on the z coordi-
nate: the isocontours of � are straight lines aligned with z;
furthermore, the diamagnetic perturbation of the B field has
only one nonvanishing component, b� (0,0 ,b�y�), thus the
magnetic field lines are everywhere parallel to the Oz axis as
illustrated in Fig. 3.

The normalized distribution of the electric potential
� /��, density n /N0, bulk velocity Vx /�V, and total electric
current density Jx /�Jx

vs y /�y are given in Fig. 4. The scal-
ing factors �N0 ,�V ,�Jx

,�y� and their values are specified in
Table II. The distributions of the electric potential, current,
density, and bulk velocity are similar to those obtained in the
1D-TD models by Sestero �8�. Indeed this trivial case corre-
sponds to a tangential discontinuity in the Ox direction with
a sheared convection whose velocity is V0 on the left hand
side of the TD, and equal to zero in the right hand side. There
is no variation of the bulk velocity in the direction of the
magnetic field in this trivial case which is used here as a test
of our numerical method. The component of the electric field
parallel to B �not shown� is everywhere equal to zero as in
ideal MHD. The plasma density has a peak in the middle of
the discontinuity.

Our results recover those obtained earlier by Sestero �8�.
The TD model illustrated in Fig. 4 corresponds to a sharply

FIG. 3. Isocontours of the normalized magnetic vector potential
Ax �left panel� and the normalized electrostatic potential ��y� �right
panel�. These results correspond to a one-dimensional tangential
discontinuity parallel to the xOz plane, centered in y=0. The mag-
netic field lines are then straight lines parallel to the z direction as in
the TD models of Sestero �6,8�; the arrows correspond to the mag-
netic field vectors B; the magnetic field is everywhere parallel to the
z axis and its magnitude has a small dip inside the discontinuity
�i.e., for y� �−50, +50�� where the diamagnetic current is en-
hanced, as can be seen from the upper left panel of Fig. 4.
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sheared convection velocity called by Sestero an “electron
rich” discontinuity. Our model reproduces also Sestero’s
smoother profiles �or “ion rich” discontinuities—not shown�
by changing the direction of the convection velocity from V0
to −V0 at the left hand side boundary. This confirms an im-
portant result already obtained by Sestero �8�.

V. NUMERICAL RESULTS FOR 2D SHEARED FLOW:
AN EXAMPLE

A number of numerical simulations based on the model
and method described above were performed for various
boundary conditions and plasma parameters. In the remain-
der of this paper we discuss only one example that, however,
shows key elements which are common to all our simula-
tions. Additional numerical solutions are discussed by Echim
�12�.

Let us recall that the solution discussed here have to sat-
isfy two conditions: �i� the variations of the fields are smooth
such that the magnetic moment is adiabatically conserved
and �ii� the Bz component of the total magnetic induction

�including diamagnetic perturbation� is significantly stronger
than By such that the definition �4� of �� holds true. There-
fore the results are confined in a region symmetric with re-
spect to the y=0 axis, where strong boundary effects are
negligible.

The input parameters used in this example are given in
Table II. They have values typical for the plasma flow at the
interface between the solar wind and the terrestrial magneto-
sphere. The plasma beta is very small, �=1.38�10−6. As a
matter of consequence the diamagnetic currents produce
relatively small magnetic perturbations compared to the ex-
ternal field, B0. This corresponds to the cold plasma approxi-
mation, with the electrons having greater temperature than
the protons, Te�Tp. In the example discussed here the ratio
between the average Larmor radii of the protons and elec-
trons is equal to rLp /rLe=13. All the results illustrated graphi-
cally below are given in nondimensional units, the scaling
factors are defined in the Appendix B and given in Table II.

The variation of Ax�z� imposed at the left hand side border
is determined here by the ad hoc function:

��z� = �1 erfc� z2 − zlim
2

zc
2 	 , �28�

where �1 , zc, and zlim
z� are three positive constants. Note
that this choice is not critical and can easily be changed to fit
for instance an observed magnetic field distribution in a
moving plasma jet or plasmoid. The parameter �1 corre-
sponds to the amplitude of the z dependent perturbation of
Ax�z�; zlim determines the limits of the region within which
the perturbation is largest; and zc determines the half width
of the transition region where By changes from 0 to d� /dz
�see Eq. �27��. The choice of the complementary error func-
tion �erfc� does not restrict in any way the generality of
the numerical solution. Indeed, any alternative function,
symmetric or not in z, can be adopted. The results discussed
below are obtained for �1= �B0 /2�y�, zlim=100rLe, and
zc=10rLe.

The left panel of Fig. 5 shows the final �iterated� solution
of Eq. �16� with boundary conditions specified in Table I.
The limits of the domain of integration � are equal to
±y�= ±z�= ±150rLe in our example: we have checked that
the results do not critically depend on this assumption. The
field distributions are only shown for y /rLe� �−70, +90�,
i.e., in the vicinity of the plane y=0. Ax�y ,z� is mainly de-
termined by the boundary conditions since the internal dia-
magnetic electric current density is small. In the 3D space,
the iso-contours of Ax correspond to curved surfaces parallel
to the Ox axis. They give a magnetic field whose main com-
ponent is Bz and has a small by mainly due to the perturba-
tion ��z� imposed at the left hand side edge and propagated

FIG. 4. Normalized plasma parameters and electrostatic poten-
tial across the tangential discontinuity illustrated in Fig. 3. Upper
left panel: electric potential; upper right panel: total electric current
density; lower left panel: proton density �equal to the electron den-
sity�; lower right panel: plasma bulk velocity. All the quantities are
normalized with the scaling factors defined in Appendix B.

TABLE II. Boundary values, scaling factors, and their physical units, used as input parameters in the numerical solutions discussed in
Sec. III and illustrated in Figs. 3–10 �Ne1=Ne2, Te1=Te2, Tp1=Tp2�.

B0 N0 Ne1 Np1 Np2 Tref Te1 Tp1 V0 �D rLe �B �� �V �E y� z�

�nT� �cm−3� �cm−3� �cm−3� �cm−3� �eV� �eV� �eV� �km/s� �m� �m� �nT� �V� �km/s� �mV/m� �km� �km�

75 1 15 15 1 1 15 1.5 700 7.4 180 103 1 500 5.5 35 35
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inside the domain �. The comparison of Figs. 3 and 5 illus-
trates how Ax changes when the boundary condition is
changed from ��z�=0 to the expression �28�.

The electrostatic potential ��y ,z�, computed from the
quasineutrality equation �26�, is given in the right panel of
Fig. 5. The equipotential surfaces are curved surfaces parallel
to the Ox axis; their intersection with the yOz plane is shown
in the right panel. � decreases smoothly from its maximum
value at the left hand side edge, y=−y�. It has an increased
gradient in the region centered at y=0, extending roughly
from y=−30 rLe to y= +50 rLe. This region of transition,
forming at the interface between the fast moving plasma jet
and the background stagnant plasma will be called the
boundary layer �BL�. The electric potential is equal to zero in
the region of stagnant plasma, i.e., for y�50rLe. The electric
field corresponding to the electrostatic potential is discussed
below. Note that a close inspection of the equipotentials of �
and the isocontours of Ax reveals the misalignment between
the two.

The isocontours of the magnetic field intensity are dis-
played in the left panel of Fig. 6; it shows the distribution of
�B� in any of the planes perpendicular to the Ox axis and to
the bulk velocity of the plasma jet. The intensity of B de-
creases smoothly from its maximum value imposed on the
left hand boundary, y=−150rLe, to the value of the back-
ground magnetic field, on the right hand side.

The isocontours in the right panel of Fig. 6 correspond to
constant values of the plasma jet bulk velocity, Vx�y ,z�. Note
that by definition Vy =Vz=0 in this first type model for a
sheared plasma flow. The jet plasma is indeed restricted to
drift parallel to the Ox axis, normal to the magnetic field
direction. However, its bulk velocity Vx changes along mag-
netic field lines as will be discussed below. The jet plasma
bulk velocity has a maximum value of 550 km/s at the left
hand side �at y=−y��. The bulk velocity is roughly constant
in the core of the plasma jet, i.e., for y
−30rLe. It decreases
inside the boundary layer from 550 km/s to roughly Vx=0
for y�50. Inside the boundary layer the plasma bulk veloc-
ity varies both with the y and z coordinates as sketched in
Fig. 1.

The isocontours of the bulk velocity do not coincide with
the isocontours of Ax�y ,z� nor with those of constant ��y ,z�.
This misalignment implies that the different points of the
same field line do not “convect” with the same velocity as
assumed in ideal MHD. There is also a misalignment be-
tween the lines of equal electric potential and the magnetic
field lines. This implies that the magnetic field lines are not
electric equipotentials as postulated in the ideal MHD ap-
proximation of plasma physics.

The left panel of Fig. 7 shows the lines of equal values of
�E��, the modulus of the perpendicular component of the
electric field. In the right hand side panel the isocontours of
E�, the parallel component, are displayed. The perpendicular
component of the electric field decreases slightly inside the
plasma jet �y
−40rLe�. Inside the boundary layer the per-

FIG. 5. Solution of the coupled system of Eq. �16� and �26�
obtained by the iterative procedure. The two panels show, respec-
tively, isocontours of the normalized magnetic vector potential
component Ax �left panel� and the normalized electric potential �
�right panel�. The arrows correspond to the projections of the mag-
netic field vectors in any plane perpendicular to the plasma stream
velocity, i.e., perpendicular to the Ox axis.

FIG. 6. Left hand side panel shows the distribution of the isoc-
ontours of the normalized magnetic field intensity B�y ,z�. Right
hand side panel shows the distribution of isocontours of the normal-
ized plasma bulk velocity field Vx�y ,z�. The maximum of the ve-
locity in physical units is equal to 550 km/s. The arrows corre-
spond to the projections of the magnetic field vectors in any plane
perpendicular to the plasma stream velocity, i.e., perpendicular to
the Ox axis.

FIG. 7. Left panel: isocontours of the perpendicular component
of the normalized electric field; the maximum value of E� �in
physical units� is equal to 1.54 mV/m. Right panel: isocontours of
E�, the parallel component of the normalized electric field. The solid
contours correspond to positive values while the dotted contours
correspond to negative values. The values �in physical units�
of parallel E field range from −3.67 �V/m to +3.87 �V/m with
steps of 0.04 �V/m. In the ideal MHD approximation of plasma
physics E� =0.
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pendicular E field decreases from 1.13 mV/m to
0.09 mV/m. The electric drift, UE�y ,z�=E��B /B2 is par-
allel to the x direction as is the plasma bulk velocity Vx. The
parallel component of the E field is equal to zero inside the
jet as well as in the background stagnant plasma. It takes,
however, finite values inside the boundary layer. The maxi-
mum of E� is of the order of several �V/m, i.e., orders of
magnitude smaller than the perpendicular component. Nev-
ertheless, parallel electric fields are extremely efficient in
generating field aligned currents, indeed the conductivity
along magnetic field is very high in collisionless plasmas.

The left hand side panel of Fig. 8 shows the isocontours
of the proton density. Since the quasineutrality is satisfied
�Eq. �26�� the same isocontour lines correspond to the den-
sity of electrons. The density is uniform inside the plasma jet
�y
−40rLe�. It increases inside the BL and then smoothly
decreases to its asymptotic values at large distances on both
sides of the BL. The right hand side panel shows the isocon-
tours of jx�y ,z�= jxp�y ,z�+ jxe�y ,z�, the total current density.
The electric current is vanishingly small near the center of
the plasma jet. Inside the BL the current is nonzero and
changes sign from negative values �with a maximum equal to
−6.4 �A/m2 to positive values �with a maximum equal to
+3.2 �A/m2�. The current density tends also to zero at large
distances outside the BL, in the region of stagnant plasma. It
is this small electric current density that is responsible for the
small diamagnetic effect observed in the distribution of the
magnetic induction, B�y ,z�.

The key new feature of our 2D boundary layer �BL� is the
nonvanishing parallel electric field, i.e., E ·B�0. The distri-
bution of E� indicates that the boundary layer of the plasma
jet, where the shear of the velocity is maximum, is precisely
the site of an electric potential gradient similar to that ob-
served for weak double layers �WDL� in laboratory and
space experiments �22–26�. Indeed the right hand side of Fig.
7 displays two adjacent pairs of WDL-like structures with
reversed polarities. The region of parallel electric field ex-
tends all along the boundary layer. Detailed plots of field

aligned electric field are shown in the lower left hand side
panel of Fig. 10 for four different values of y. The parallel
component of the electric field reaches a maximum value
equal to 4 �V/m at z /rLe� ±100.

The origin of this parallel electric field component can be
elucidated by a detailed analysis of the 2D distributions of
the electron density and plasma bulk velocity. Indeed, al-
though in Fig. 8 the lines of constant proton and electron
densities seem to parallel the direction of the magnetic field
vectors, a closer inspection indicates, however, that �n, the
gradient of the density, has a nonzero component parallel to
the magnetic field lines. The isocontours of ��n, illustrated in
the left hand side panel of Fig. 9, indicate the formation of
adjacent layers inside of BL where ��n is finite and changes
sign.

The right hand side panel of Fig. 9 displays isocontours of
��Vx, the gradient of the plasma bulk velocity in the direc-
tion of the magnetic field lines. This quantity corresponds to
the parallel component of the velocity shear; it is equal to
zero ���Vx=0� in ideal MHD. The distribution of ��Vx is
equal to zero in the central regions of the plasma jet as well
as in the stagnant plasma. Inside the BL two adjacent regions
with finite ��Vx are formed. Within these regions the bulk
velocity is significantly sheared and ��Vx reverses sign. The
sign of ��Vx correlates very well with the distribution of E�,
plotted in the right hand side panel of Fig. 7; it anticorrelates
with the sign of ��n. This effect is evident in the lower
panels of Fig. 10 showing the z profiles for a set of four
values of y. Note the similitude of the dotted lines in both
panels corresponding to y=−12.5rLe. A detailed study of the
relationship between E� ,��n, and ��Vx has been given in
Ref. �12�.

VI. SUMMARY AND CONCLUSIONS

Sestero’s one-dimensional model �8� of a tangential dis-
continuity with plasma velocity sheared in the direction per-

FIG. 9. Left hand side panel: isocontours of ��n, the normalized
parallel gradient of the proton and electron densities. The values of
��n �in physical units� range from −2.5 m−4 to +2.5 m−4 by steps of
0.5 m−4. Right hand side panel: isocontours of ��Vx, the normalized
parallel gradient of the plasma bulk velocity. The values of ��Vx

vary from −1.5 s−1 to +1.5 s−1 by steps of 0.25 s. In both panels the
solid contours correspond to positive values while the dotted con-
tours correspond to negative values.

FIG. 8. Left panel: isocontours of np, the normalized density of
protons; np is equal to ne �the electron density� since Eq. �26� is
satisfied in the system. The maximum of the particle density �in
physical units� is equal to 11.83 cm−3. Right panel: isocontours of
jx�y ,z�= jxp�y ,z�+ jxe�y ,z�, the normalized total electric current; the
current takes value between −6.4 �A/m2 and +3.2 �A/m2. In both
panels the arrows illustrate the local inclination and amplitude of
the total magnetic field.
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pendicular to the magnetic field lines has been extended to
take into account a shear parallel to the magnetic field lines:
��Vx�0 and ��Vx�0. A two dimensional, steady-state
model has been developed here by adding to Sestero’s 1D
model a gradient of the electric and magnetic fields, E�y ,z�
and B�y ,z�, and plasma variables, Vx�y ,z� and n�y ,z�, in the
direction parallel to the magnetic field direction. The velocity
distribution function of each plasma species �electrons and
protons� has been expressed in terms of two constants of
motion. A third constant of motion, needed to determine the
moments of the VDF, has been approximated by the mag-
netic moment, an adiabatic invariant. This approximation im-
poses certain constraints on the stationary model developed
here. The spatial variation of the VDF is introduced through
boundary conditions imposed on the magnetic vector poten-
tial, Ax�y ,z�, i.e., the function ��z� defined by Eq. �28�.

The electric field is determined by an electrostatic poten-
tial ��y ,z� which is obtained by solving the quasineutrality
equation �26�. The magnetic field distribution is determined
by a vector potential Ax�y ,z� by solving the Maxwell-
Ampere equation �16�. The example discussed in Sec. V il-
lustrates numerically the main features of our kinetic model
for 2D plasma jets whose convection velocity is sheared both
in the direction parallel and perpendicular to the magnetic
field. The transition between a fast plasma jet and a back-
ground stagnant plasma takes place within a 2D boundary
layer. As a result of small diamagnetic currents the magnetic
field lines are slightly curved. The plasma bulk velocity is
nearly uniform in the center of the jet; its value Vx is slightly
different from the MHD convection velocity, UE=E� /B. The
bulk velocity decreases within a boundary layer �BL� where
it changes from a maximum value, Vx=V0, in the inner jet to

Vx=0 at large distance on the right hand side, in the stagnant
plasma region. The bulk velocity within the boundary layer
can no more be approximated by the ideal MHD convection
velocity UE.

An interesting feature is the nonvanishing parallel �or
magnetic field aligned� component of the electric field. The
parallel E fields are localized inside the BL; they are almost
equal to zero near the center of the jet as well as in the
background stagnant plasma. The magnitude of the parallel
electric field is anticorrelated with the parallel gradient of the
electron density ���n� and correlated with the parallel gradi-
ent of the plasma bulk velocity ���Vx�. It is this non-MHD
parallel electric field that allows the plasma from different
parts of the magnetic field tubes to drift with different con-
vection velocities.

Parallel electric fields are neglected in ideal MHD where
E ·B=0. The contribution of ��Vx in producing a parallel
electric field has been determined quantitatively in this paper.
The numerical algorithm developed to solve the coupled
equations that describe the electromagnetic field converges
well for the input parameters illustrated in this study. Our
kinetic model gives a reasonable solution for non-MHD 2D
boundary layers forming at the edges of plasma jets moving
through background magnetic field and stagnant plasma.
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APPENDIX A: MOMENTS OF VELOCITY DISTRIBUTION
FUNCTION

The electric charge and current density are proportional
respectively to the zero order and first order moment of the
VDF. Their analytical expressions are obtained by integrat-
ing the velocity distribution function defined in Eq. �11� and
�13�. The number density of the species � is determined by

Q�
000 = 4�

−�

+� �
Hc�

+� �
�c�

+� � 
Bf��H,�,px�
2m�

2
H − Hc�

� − �c�

�dHd�dpx.

�A1�

Using the expressions �7�, �8�, �11�, and �13� the integrals
�A1� can be expressed in terms of analytical functions. The
zero order moment is proportional to the charge density:

���y,z� =
q�N�1

2
e−e��y,z�/KT�1 erfc� eAx�y,z�


2m�KT�1
	

+
q�N�2

2
e�−e��y,z�−eAx�y,z�V0�/KT�2

�erfc�−
eAx�y,z�


2m�KT�2
	 . �A2�

The electric current density of the species � is determined by

FIG. 10. The z profile of the nondimensional electrostatic po-
tential �upper left panel�, plasma bulk velocity �upper right panel�,
parallel component of the electric field �lower left panel�, and par-
allel gradient of the plasma bulk velocity �lower right panel�. The
plots correspond to four different y coordinates given in the lower
left panel.
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the first order moments of the VDF. Only Q�
100 is different

from zero:

Q�
100 = 4�

−�

+� �
Hc�

+� �
�c�

+� � px − q�Ax

m�
	

�� 
Bf��H,�,px�
2m�

2
H − Hc�

� − �c�

�dHd�dpx. �A3�

Using the expressions �7�, �8�, �11�, and �13� the electric
current density becomes

jx��y,z� = N�2
 KT�2

2	m�

e−e���y,z�−Ax�y,z�V0�/KT�2

��
 	m�

2KT�2
V0 erfc�−

eAx�y,z�

2m�KT�2

	
+ b�e�eAx�2/2m�KT�2� − b�N�1
 KT�1

2	m�

e−e��y,z�/KT�1

�e−�eAx�y,z��2/2m�KT�1, �A4�

jy��y,z� = 0, jz��y,z� = 0, �A5�

where b�=sgn�q��. It should be pointed out that our choice
of truncated Maxwellian VDF �7�, �8�, and �11� is dictated by
mathematical convenience, not by any basic physical reason.
For any more complex VDF derived from particle flux ex-
perimental measurements, the triple integrals �A1� and �A3�
would have to be calculated by more evolved numerical in-
tegrations.

APPENDIX B: SCALING FACTORS

For convenience all plasma and electromagnetic field
variables have been normalized. The general rule of normal-
ization is defined by

P = �PP*,

where P is the physical quantity, �P is the dimensional
scaling factor, and P* is the corresponding nondimensional
quantity.

The electric potential is scaled with the potential differ-
ence necessary to accelerate an electron to a thermal refer-
ence energy KTref:

� = ���*, �� =
KTref

e
.

The magnetic vector potential is scaled with

Ax = �Ax
Ax

*, �Ax
=


2meKTref

e

and the electric current with

j = � jj
*, � j = �eN0�
2KTref

me
.

The velocity is scaled with the electron thermal velocity

V = �VV*, �V =
2KTref

me
;

we have also defined the nondimensional quantities

� =
me

mi
, �e =

Tref

Te1
, �e2 =

Tref

Te2
,

�i =
Tref

Ti1
, �i2 =

Tref

Ti2
.

The spatial coordinate perpendicular and parallel to the mag-
netic field are both scaled with the electron Larmor radius,

y = �yy
*, �y =


2meKTref

eB
,

z = �zz
*, �z =


2meKTref

eB
.

The values of these scale factors are given in Table II for the
plasma jet model discussed above.
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