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We present measurements of the complete spatiotemporal Fourier spectrum of Faraday waves. The Faraday
waves are generated at the interface of two immiscible index matched liquids of different density. By use of a
light absorption technique we are able to determine the bifurcation scenario from the flat surface to the
patterned state for each complex spatial and temporal Fourier component separately. The surface spectra at
onset are found to be in good agreement with the predictions from the linear stability analysis. For the
nonlinear state our measurements show in a direct manner how energy is transferred from lower to higher
harmonics and we quantify the nonlinear coupling coefficients. Furthermore we find that the nonlinear cou-
pling generates static components in the temporal Fourier spectrum leading thus to a contribution of a nonoscil-
lating permanent sinusoidal deformed surface state. A comparison of hexagonal and rectangular patterns re-
veals that spatial resonance can give rise to a spectrum that violates the temporal resonance conditions given
by the weakly nonlinear theory.
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I. INTRODUCTION

The Faraday experiment is probably the first nonequilib-
rium pattern forming system that was investigated scientifi-
cally, namely by Michael Faraday in 1831 �1�. Nevertheless
it took until only recently to become possible to determine
the complete Fourier spectrum of the deformed surface state
�2�. While an experimental analysis of the full mode spec-
trum in other pattern forming model systems like Rayleigh-
Benard or Taylor Couette has been standard technique for a
long time, the refraction of light at the free surface of a liquid
makes the analysis of surface waves rather difficult. Quanti-
tative information about the patterned state is important not
only to verify the validity of theoretical calculations �3–5�
but also to gain insight on the resonance mechanisms that
form the patterns. The Faraday experiment is especially
known for its richness of different patterns that are observed
�6–11�. By using complex liquids �12�, very low fill heights
�13� or by introducing additional frequencies to the driving
signal, complex ordered states like superlattices �2,14,15�
have been recently observed. But we will demonstrate that
even simple patterns like lines, squares, or hexagons ob-
served in a single driving frequency experiment can still un-
veil unknown surprising characteristics.

A discussion of the earlier different attempts to reveal
quantitative information on the surface elevation profile
h�r , t� of Faraday surface waves is given in �16�. The main

difficulties follow from the difference in refractive indices of
the liquid and air. The interface diffuses almost no light lead-
ing to a reflection or refraction of incident light only. To our
knowledge there is only one optical method that overcomes
this problem with the use of polystyrene colloids to provide
light scatterers within the fluid �17�, but the method was only
used in a turbulent regime. Another powerful method for the
investigation of capillary waves on ferrofluids based on x-ray
absorption was presented in �18�, but the related costs and
efforts might be justified for fully opaque liquids only. A
remarkable study of local surface deformation measurements
by use of a focused laser beam is given by Westra et al. �19�.
These authors also present quantitative data regarding the
temporal phases and find good agreement with theoretical
calculations, but the local character of the measurements pre-
vents a determination of discrete spatial Fourier modes. An-
other study of local surface heights based on laser induced
fluorescence was presented by Lommer and Levinsen �20�.
Finally a spatial extended light deflection method combined
with local temporal measurements was presented by Arbell
and Fineberg �21�.

To bypass the problems associated with light refraction
and reflection on a liquid-air interface we chose to study the
interface between two index matched liquids. The upper fluid
is transparent, the lower one is dyed. In the presence of sur-
face deformations the spatial distribution of the instanta-
neous thickness can be deduced from the intensity of the
light passed through this layer. From a hydrodynamic point
of view the replacement of the air by a second liquid is
nothing but a change of viscosity and density. The low kine-*Electronic address: c.wagner@mx.uni-saarland.de
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matic viscosity of air simplifies the theoretical calculations
only. However, already the first exact theoretical analysis of
the linear stability problem by Kumar and Tuckerman �3� has
been made for a more general case, i.e., for a system con-
sisting of two liquid layers and recently experimental studies
on two liquid systems came more into focus �22�.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The container
consists of an aluminium ring �diameter D=18 cm� separat-
ing two parallel glass windows by a gap of 10 mm. It is filled
by two nonmiscible liquids: a silicone oil �SOIL, Dow Corn-
ing, �Midland, Michigan� viscosity �=20 mPas, density �
=949 kg/m3� and an aqueous solution of sugar and NiSO4
�WSS, �=7.2 mPas �=1346 kg/m3�. The liquid-liquid inter-
facial tension has been determined with the pending droplet
method to �=35±2 dynes/cm yielding a capillary length of
�c=� / ���g�1/2=3 mm, with g the Earth acceleration, �� the
differences in the fluid densities. Our measurements were
performed at a wavelength range of 5 to 15 mm, thus we
observed capillary-gravity waves. The ratio of the filling
heights SOIL/WSS was 8.4/1.6. The choice of the low fill
height for the lower liquid was made in order to obtain a
variety of different patterns, including a transition from
squares to hexagons �23�. Nevertheless a theoretical analysis
of critical accelerations yields that our experiments are in the
infinite depth limit except for the �=12 Hz measurement
where the amount of bulk and bottom damping is approxi-
mately equal and the richest pattern dynamics occur. The
sugar concentration has been adjusted to match the refractive
index to the covering silicone oil layer �n�1.405� with a
precision of 5�10−4. The Ni2+ ions produce a broad absorp-
tion band in the spectral region 600–800 nm and provide
high contrast patterns projected on the diffusive screen. The

container is illuminated from below with parallel light, and a
bandpass optical filter in front of the camera was used to
detect only wavelengths �= �655±5� nm. By varying the in-
tensity of the lamp the flat interface has been set on a level of
about 50% of the maximum optical transmission. At a NiSO4
concentration of 25 wt % the contrast between the light in-
tensity passing through crests and valleys of the wave pattern
was optimum. The associated coefficient of optical absorp-
tion was measured with UV-vis spectrometry as 	
=6.6±0.1 cm−1. The absorption coefficient 	 does not de-
pend on the light intensity, at least in the range of our ex-
periments. In order to avoid uncontrolled changes of the vis-
cosity, density, and interfacial tension of both liquids all the
measurements have been performed at a constant tempera-
ture �23±0.1 °C�. The Faraday waves were excited by an
electromagnetic shaker vibrating vertically with an accelera-
tion in the form �a�t�=a0cos��t��. The driving signal came
from a computer via a digital/analog �D/A� converter and the
acceleration was measured by a piezoelectric sensor. A self-
developed closed loop algorithm was used to suppress higher
harmonics n��t� in the driving signal to guarantee mono-
chromatic driving. Faraday patterns were recorded in the fol-
lowing way: A high speed �500 Hz, 256�256 pixels� 8-bit
charge-coupled device �CCD� camera was mounted above
the diffusive screen. Pictures were taken synchronously to
the external driving. For a certain instant to the surface el-
evation of the Faraday patterns h�x ,y , to� is given by

h�x,y,to� =
1

	
ln

Ir�x,y�
Ip�x,y,to�

, �1�

where Ir�x ,y� and Ip�x ,y , to� are two-dimensional �2D� inten-
sity distributions captured by the camera for the reference
picture �flat interface, ao=0� and for the Faraday pattern
�ao�0�, respectively. Consequently, the surface elevation
function h�x ,y , t� is Fourier transformed and the time evolu-
tion of the Fourier amplitudes and phases of spatial modes is
extracted. The use of a high speed camera compared to the
earlier measurements by some of the coauthors ��2�� allows
for a better temporal resolution and the method is not sensi-
tive to distortions �defects� on time scales of several periods.
The logarithm of the intensity profile renders the dynamic
range nonlinear, and with an 8-bit dynamical range the reso-
lution is approximately 1% �2%� at small �high� surface el-
evations, relative to the maximal surface heights. An analysis
based on geometrical optics shows that errors that might re-
sult from the remaining differences in the indices of refrac-
tion are below the experimental resolution. The validity of
the method has been also checked with flat layers of colored
liquids of different thicknesses and the same accuracy was
found. However, one should note that the Fourier transfor-
mation integrates over many pixels thus a significantly better
resolution is expected.

III. LINEAR REGIME AND BEYOND

The experiments were performed by quasistatically ramp-
ing the driving amplitude for the frequencies f =� /2
=12,
16, 20, 29, and 57 Hz from slightly below the critical accel-

FIG. 1. Experimental setup: L—halogen lamp, Ln—lens,
C—container filled by two liquids: SOIL and WSS with the same
refractive indices, DS—diffusive screen, IF—interference filter,
CCD—high speed CCD camera.
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eration ac ��= �a−ac� /ac=−0.02� up to just below the accel-
eration where the interface disintegrates and droplets occur.
In the same form a ramp was driven down to check for
hysteretic effects, of which none were found. For each am-
plitude step a series of pictures were taken and then Fourier
transformed. Typically the pattern occurs in the center region
of the container first but evolves in a range of ��=0.02.
From the Fourier transformation of the pictures captured at
−0.02���0.1 �Fig. 2� the critical acceleration ac and the
critical wave-number kc has been determined �Fig. 3�.

They can be compared with the results from the theoreti-
cal linear stability analysis that has been performed by using
the algorithm proposed by Kumar and Tuckerman �3�. The
agreement between theory and experiment is very good,
similar to former studies at the liquid air interface �24,25�.
However, with our method we might be able to verify more
predictions from the linear theory. Linear theory only treats
transient amplitudes that are growing exponentially in time
while all experiments mentioned below have been performed
when the amplitudes were fully saturated. Their size and
their symmetry are determined by the nonlinearities of the
problem but one could speculate that near onset the influence

of the nonlinearities on the relative distribution of temporal
components in the spectrum of the basic modes is weak,
especially if the data are extrapolated to �=0.

It is a particular feature of the Faraday experiment, that at
onset only one wave-number kc becomes unstable, but the
temporal spectrum already contains multiples of the funda-
mental oscillation frequency 
 at onset. We are in the regime
of subharmonic response and the fundamental oscillation fre-
quency at onset is always 
=� /2 but the spectrum contains
also �n+1/2�� frequency components, where n is an integer.
Thus we write the surface deformation h�r , t� of our satu-
rated waves as

h�r,t� =
1

4�
i=1

N

�
n=−�

+�

Ai,nei�ki·r+�n+1/2��t� + c.c. =
1

4�
i=1

N

�Aie
iki·r

+ c.c.� �
n=−�

+�

���n + �Fn�ei�n+1/2��t + c.c.� . �2�

Here r= �x ,y� is the horizontal coordinate. The set of com-
plex Fourier coefficients �n are the components of the eigen-
vector related to the linear stability problem and determine
the subharmonic temporal behavior. Fn are unknown contri-
butions from nonlinear interactions that can be determined
by comparing our data with linear theory. The spatial modes
are characterized by the wave-vectors ki, each carrying an
individual complex amplitude Ai that are determined by the
nonlinearities of the problem. In principle the wave-vector ki
can have any length and orientation but at onset the relation
�ki�=kc holds. The number N of participating modes deter-
mines the degree of rotational symmetry of the pattern: N
=1 corresponds to lines, N=2 to squares, N=3 to hexagons
or triangles, etc. It can be shown �27� that the �n and �−n are
coupled in a way such that �n−1

* =�−n �* denotes the complex
conjugate� so that heterodyning of right and left traveling
waves always results in standing waves. Neglecting �Fn at
small supercriticality � Eq. �2� then reads

h�r,t� = �
i=1

N

��Ai�cos�ki · r + �i��

� �
n=0

+�

��n�cos��n + 1/2��t + �n� , �3�

where �i and �n represent a set of the spatial and temporal
phases. The complex eigenvectors �n can be calculated and
the ratio of the amplitudes ��n+l� / ��n� as well as the temporal
phases �n can be compared with experimental data. They are
obtained in the following way: For each step in the driving
amplitude a series of snapshots of the surface state �Fig. 2� is
taken. The primary pattern consists of squares and as men-
tioned above their formation is governed by the nonlineari-
ties of the problem for which we cannot make any predic-
tion.

The Fourier transformation, when applied to a temporal
sequence of pictures, yields the temporal behavior of spatial
amplitudes Ai=A(k�ij�) that are shown in Figs. 4�a�–4�c�.
For the wave-vectors k�ij� crystallography notations are
used, e.g., k�10� and k�01� are the vectors that generate the

FIG. 2. Snapshots of the square Faraday pattern ��a� and �b��
and their power spectra ��c� and �d�� at � /2
=12 Hz and �=0.17
�a0=30.0 m/s2� for two different temporal phases corresponding to
maximum ��a�� and minimum ��b�� surface elevation as indicated by
arrows �t1 and t2� in Fig. 4.

FIG. 3. Critical acceleration ac ��a�� and critical wave number kc

��b�� for different driving frequencies �. The symbols are the ex-
perimental data, the lines are theoretical calculations based on the
linear stability analysis. The size of the symbols coincides with the
size of the error bars.
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unit cell of the square pattern �Fig. 2�. The temporal evolu-
tion of the amplitude of one of the critical modes A�k�10��
with �k�10��=kc �Fig. 4�a�� is then again Fourier transformed
which results in a typical spectrum shown in Fig. 5�a�. These
data are taken for all driving strengths � �Figs. 6�a� and 6�b��
and we always find the same values for the amplitudes of the
symmetry equivalent modes A(k�10�) and A(k�01�) �not
shown� within the experimental resolution. In agreement
with former investigations �16� in a system with a larger
aspect ratio �container size to wavelength� our study reveals
that the fundamental spatial mode �k�10��=kc for all �. We

can now extract the ratio of A(3� /2 ,k�10�) /A(� /2 ,k�10�)
that is shown in the inset of Fig. 7 exemplarily for a fre-
quency of � /2
=12 Hz. Similarly, the theoretical values
have been determined for the strongest growing mode that is

FIG. 4. Temporal behavior of amplitudes A corresponding to
spatial modes k�10� ��a��, k�20� ��b��, and k�11� ��c�� of the square
Faraday pattern at � /2
=12 Hz and �=0.17 �a0=30.0 m/s2�. �d�
shows the driving signal a�t�. Please note, that in contrast to Ref.
�2�, not the square root of the power spectra but the amplitude A of
the surface elevation h�r , t�=A cos�k�ij� ·r� is shown.

FIG. 5. Temporal Fourier spectra �� /2
=12 Hz� of the ampli-
tudes A�k�ij ,
�� corresponding to several spatial modes of the os-
cillating square Faraday pattern ��a�, �b�, and �c�� ��=0.18� and
hexagonal Faraday pattern ��d�, �e�, and �f�� ��=0.38�.

FIG. 6. Amplitudes A�n� /2� of the k�10� ��a�� and k�11� ��b��
modes at � /2
=12 Hz as a function of the driving strength �. �c�
The square of the sum of the subharmonic components of the �10�-
mode versus �. As would be expected for a forward bifurcation the
data can be linearly fitted, at least up to driving strength of �
�0.1
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found to be equal to the critical mode within reasonable reso-
lution. The contribution of the �3� /2� component is of the
order of 5 to 10% and increases slightly with the driving
strength. The agreement between the experiment and linear
theory is astonishingly good up to driving strength ��0.5,
especially for lower driving frequencies. This means that the
contributions Fn are weak and surprisingly the good agree-
ment even holds up to secondary patterned surface states,
where a transition from a square to a hexagonal state takes
place and, as will be shown later, rather strong nonlinear
contributions participate in the overall dynamics of the sys-
tem. The experimental data show also that at driving strength
as low as �=0.02 the surface state oscillates with frequencies
�n+1/2�� but contains no measurable higher spatial Fourier
modes �see Fig. 6�b�� in perfect agreement with the
linear theory. This allows an extrapolation of
A(3� /2 ,k�10�) /A(� /2 ,k�10�) to the critical region ��=0�
for all driving frequencies � �Fig. 7�. The amplitude ratio
decreases first with increasing frequency and then passes a
minimum at � /2
�40 Hz. This characteristic shape
reflects the amount of damping which is present in the
system. At low driving frequencies the ratio between fill
height and the wave number is small. In this regime
the damping from the bottom of the container, which in-
creases as the frequency is lowered, is the most significant
contribution. For higher driving frequencies the damping
from the bulk of the liquid �an increasing function with the
frequency� becomes dominant. This behavior is also reflected
in the critical accelerations �see Fig. 3�a��. The ratio
A(5� /2 ,k�10�) /A(� /2 ,k�10�) has been evaluated too, but
the experimental resolution is not sufficient any more for a
conclusive comparison between theory and experiment.

In the same way the temporal phases �n can be extracted
from the Fourier spectrum �Fig. 8� and also here a good
agreement between the theoretical predictions and experi-
mental data is obtained, at least for the fundamental � /2
component. For the 3� /2 component the scatter of the ex-
perimental data is very large and we find significant differ-
ences between experiment and theory, probably due to non-
linear interactions.

IV. NONLINEAR SURFACE STATE AT �=12 Hz

A. Square state

The primary pattern near onset �0���0.28� consists of
squares, shown in Fig. 2. Its formation is determined by the
minimum of the Lyaponov functional. The corresponding
amplitude equation of the critical modes �26� and a quanti-
tative theoretical prediction of the expected pattern can be
given by inspection of the cubic coupling coefficient �4,5�.
To our knowledge, for a two liquid system there have not yet
been attempts to calculate this coefficient. The amplitude
equations follow from a solvability condition of the weakly
nonlinear analysis of the underlying constitutive equation
and its principle form is already determined by the symmetry
of the system. For the subharmonic response one can write

��tA�ki� = �A�ki� − �
j=1

N

���ij��A�k j��2A�ki� , �4�

where � is the linear relaxation time and ���ij� is the cubic
coupling coefficient which depends on the angle �ij between
the modes ki and k j. The temporal spectra of spatial ampli-
tudes A�ki� are characterized only by subharmonic compo-
nents �n+1/2�� given by the �n from the linear eigenvec-
tors. Equation �4� predicts a pitchfork bifurcation and in
order to study this scenario one has to first extract the differ-
ent temporal Fourier modes of the measured time depen-
dence of A�ki� �Fig. 4�. The result is shown in Figs. 5�a� and
6�a�. As long as the pattern consists of squares there is no
harmonic response in the basic spatial modes to observe, but
a continuous growth of � /2 and 3� /2 components only.
The 5� /2 component is very weak and only slightly larger

FIG. 7. Ratio of the amplitudes A�3� /2� /A�� /2� of the k�10�
mode at �=0 for different driving frequencies. The symbols mark
experimental, the lines data from the linear theory. The experimen-
tal data are extrapolated from measurements at ��0 shown in the
inset: The amplitude ratios at � /2
=12 and 29 Hz as a function of
the driving strength �. FIG. 8. Temporal phases ��� /2� ��a�� and ��3� /2� ��b�� of the

k�10� mode for two driving frequencies versus driving strength �.
The symbols are the experimental data, the lines are the theoretical
calculations. Squares and broken line: � /2
=57 Hz; circles and
dotted line: � /2
=12 Hz. In the range 0.2���0.28 a transition
from squares to hexagons takes place leading thus to a disordered
state. For this reason an extraction of the phases is not possible
there.
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than the noise. The square of the sum of the amplitudes As
=A�� /2�+A�3� /2� yields a straight line if plotted versus
the driving strength � �Fig. 6�c�� as would indeed be ex-
pected for the case of a pitchfork bifurcation. Since As

2

=� /� one can extract the cubic coupling coefficient from the
slope, and we find �=0.179 mm−2.

Now we can inspect the next higher harmonic spatial
modes A(k�11�) and A(k�20�). Their temporal behavior is
shown in Figs. 4�b� and 4�c�, respectively. Both modes are a
result of an interaction of three modes related to the wave
vectors which satisfies the spatial resonant condition, e.g.,
k�11�+k�1̄0�+k�01̄�=0 and k�20�+k�1̄0�+k�1̄0�=0. As a
natural consequence of such nonlinear spatial wave interac-
tion they obey harmonic oscillations, shown in Figs. 5�b� and
5�c�. The striking result of our analysis is rather the constant
offset that we find in the A(k�11�) and A(k�20�) spectrum
�see Figs. 4�b� and 4�c�� resulting in zero frequency contri-
butions in the temporal spectra presented in the Figs. 5�b�
and 5�c�. This means that in addition to the oscillatory part
the interfacial profile contains always contributions of static
deformations of the form h�r , t�= �Ai�cos�ki ·r�, with ki
=k�11� ,k�20�. This might be a surprising result, even if the
mass conservation is not violated. In fact, this is just a simple
consequence of the quadratic coupling of a real standing
surface wave oscillation �5�, i.e. �A1cos��t /2�cos�ki ·r��2

gives in particular contribution �A1
2�1+cos �t�cos�2ki ·r�

�compare also with Fig. 14�c��.
This quadratic coupling scheme can be verified by plot-

ting A(k�20�) and A(k�11�) versus the square of the ampli-
tude of the fundamental mode A(k�10�) �or versus the prod-
uct of symmetry equivalent modes, i.e. A(k�10�)
�A(k�01�)=A(k�10�)2 within the experimental resolution�.
The data can be perfectly reproduced by a linear fit �see Fig.
9�. From the slope one gets the efficiency � of this nonlinear
coupling which we find to be nearly the same in value for all
frequencies �� /2
=12, 16, 20, and 29 Hz� where square
patterns were observed. Finally our Fourier analysis yields
that the imaginary part of the coupling scheme obeys the
same resonance conditions, and the spatial phases of the
higher harmonic modes are given by �(k�20�)=2�(k�10�)
and �(k�11�)=�(k�10�)+�(k�01�).

B. Hexagonal state

In the range �0.20���0.28� the pattern becomes disor-
dered and at higher driving accelerations transforms to a hex-
agonal state �see Fig. 10� that consists of three fundamental
spatial Fourier modes k1,2,3. It should be mentioned that for
the construction of the crystallographic unit cell two basis
vectors k�10� and k�01� are sufficient thus k1=k�10�, k2

=k�1̄1�, and k3=k�1̄1�+k�10�=k�01̄�, as indicated in Fig.
11.

The surface elevation profile in the hexagonal state also
reveals the striking offset of static sinusoidal surface defor-
mation, but in contrast to square patterns, both harmonic and
subharmonic responses contributions are presented in tempo-

FIG. 9. Amplitudes A�k�20�� and A�k�11�� versus the square of
the amplitude of the fundamental mode A�k�10�� �� /2
=12 Hz�.
Coefficient � is the slope of the linear fit and characterizes the
efficiency of the nonlinear interaction.

FIG. 10. Snapshots of the hexagonal Faraday pattern ��a�, �b�,
and �c�� and corresponding power spectra ��d�, �e�, and �f�, respec-
tively� at � /2
=12 Hz and �=0.37 �a0=39.3 m/s2� for three dif-
ferent temporal phases. �a� Down hexagons; �b� pattern near the
minimal surface elevation, �c� up hexagons. See Refs. �2,13� for
further explanations on the switch from up to down hexagons in the
Faraday Experiment.

FIG. 11. Vector diagram of the interacting modes for the hex-
agonal surface state.

KITYK et al. PHYSICAL REVIEW E 72, 036209 �2005�

036209-6



ral Fourier spectra �see Figs. 5�d�–5�f� and Figs. 6�a� and
6�b��. While the harmonic �n�� temporal component in the
higher spatial harmonics k�20� and k�11� appear in a similar
manner as for the square pattern, the spatial resonance con-

dition k�10�+k�01̄�=k�11̄� results in harmonic �n�� contri-

butions in the critical mode �k�11̄��=kc. Consequently har-

monic �n�� and subharmonic ��n+1/2��� components of
the fundamental modes together couple back thus leading to
the appearance of subharmonic response in the higher spatial
modes k�20� and k�11�. It must be stressed that the harmonic
contributions do not appear in the temporal spectra of the
linear unstable modes kc and quadratic interactions of
�n� /2� components do not appear in the amplitude equa-
tions. Nevertheless the hexagonal state allows for a spatial
resonance between linear unstable modes. In other words,
this means that we have here the interesting case where the
system has a broken temporal symmetry within the frame-
work of the weakly nonlinear approximation that is driven by
spatial resonance only. This symmetry break is not observed
in the quadratic state, where spatial resonance between linear
unstable modes is forbidden. This particular violation of the
weakly nonlinear resonance conditions can best be seen in
Fig. 6�a� where the components of harmonic response of the
fundamental spatial mode with �k�10��=kc clearly occurs af-
ter the transition from squares to hexagons is realized. A
similar behavior for subharmonic components of the higher
spatial modes is observed �see e.g., Fig. 6�b� for �k�11��
=	3kc�.

V. PATTERN DYNAMICS AT � /2��12 Hz

The pattern dynamics at driving frequencies � /2

�12 Hz is characterized by a transition to a line pattern. At
� /2
=16 Hz the pattern still consists of squares only
whereas at � /2
=20 and 29 Hz the primary pattern consists

FIG. 12. Snapshots of the Faraday pattern ��a�,�c�, and �e�� and
the power spectra ��b�, �d�, and �f�� at � /2
=20 Hz and �=0.6
�a0=54.4 m/s2� ��a�,�b��; � /2
=20 Hz and �=0.08 �a0

=36.7 m/s2� ��c�,�d��; � /2
=57 Hz and �=0.11 �a0

=116.3 m/s2� ��e�,�f��.

FIG. 13. Amplitudes A�� /2� of the k�10� and k�01� modes at
� /2
=29 Hz ��a��, and k�1� mode at � /2
=57 Hz ��b�� as a
function of the driving strength �. The marked strip in �a� indicates
the region of the crossed rolls state.

FIG. 14. The amplitudes of spatial modes A�k� ��a�� and A�2k�
��b�� in the line state at � /2
=57 Hz and �=0.11 �a0

=116.3 m/s2�. The temporal constant offset in �b� is indicated by
A�2k ,0�. �c� shows the dependence of A�2k ,0� versus A2�k ,� /2�.
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of lines, which are sometimes slightly distorted �Figs. 12�c�
and 12�d��. But at higher driving strength � a second Fourier
mode, perpendicular to the first one, starts to grow �Fig.
13�a�� and we observe a “crossed roll” state which trans-
forms at highest � into a pure square state. For � /2

=57 Hz a pure line state is stable for all driving strengths
�see Figs. 12�e�, 12�f�, and 13�b��. A pronounced static offset
in the temporal behavior of A�2k� mode �Fig. 14�b�� is here
even larger than the temporal oscillation amplitude and
A�2k , t� thus never crosses the zero line. Similarly, as was
shown for the A(k�20� ,�) or A(k�11� ,�) modes in the
square state, this quadratic coupling scheme holds also for
the zero frequency �static� component as shown in Fig. 14�c�.

VI. CONCLUSION

We have demonstrated a technique to quantitatively mea-
sure the spatiotemporal Fourier spectrum of Faraday waves
on a two liquid interface. With this technique it is possible to

test theoretical predictions, especially from numerical simu-
lations. To our knowledge there has still been no full Navier
Stokes numerical simulation made of the 3D problem and
quantitative tests for future work are most important and thus
we would like to encourage such attempts. But with our tech-
nique we are also able to verify known predictions from the
linear stability analysis and we find good agreement up to
high driving strength of ��0.5. In the nonlinear state the
most pronounced result is the identification of significant
temporal static spatial surface deformations. With our possi-
bility to access any Fourier component separately we can
identify several resonance mechanisms, including an inter-
esting case of a temporal resonance violation in the frame-
work of the weakly nonlinear theory by use of spatial reso-
nances.
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