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We propose a method to evaluate the influence of dynamical noise on chaotic systems. For Chua’s electronic
circuit as a typical chaotic system, it is demonstrated that dynamical noise influences the temporal fluctuation
of singular values obtained from singular value decomposition. This behavior, however, is independent of
additional measurement noise. The appearance of this fluctuation is compared to Shannon entropy of coarse-
grained trajectories in its dependence on the noise amplitude. Additionally, noise-induced stabilization is
discussed from the change of a pattern of a flip-flop process.
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I. INTRODUCTION

Every physical system is subject to noise in the real
world. In general, there are two types of noise in any physi-
cal system, namely, measurement noise and dynamical noise.
Different from the former, the latter type of noise is said to
be realistically intrinsic to a physical system and yields an
extremely complicated mechanism accompanied by feed-
back. As a result, it is quite difficult to analyze on both the
theoretical and experimental levels. On the other hand, since
a chaos system displays particularly strong nonlinearity and
sensitivity to its initial condition, dynamical noise may have
a remarkable and fatal influence on a chaos system. Numer-
ous studies concerning dynamical noise in chaos have ap-
peared. Although recently some studies estimated noise lev-
els by means of the Bayesian approach �1–3�, a target noise
type is restricted to the additive one with a Gaussian prob-
ability distribution. Therefore, it is difficult to apply those
methods to some general situations. In addition, dynamical
noise brings about stabilization of the system such as sto-
chastic resonance �4,5�, vibrational resonance �6–8�, coher-
ence resonance �9–11�, and noise-induced stabilization
�10,12–16�. Accordingly, we try to show numerically a
method to evaluate the influence of dynamical noise on
chaos independently of noise types and to qualitatively dis-
tinguish it from that of measurement noise. Furthermore,
noise-induced stabilization is also discussed. As an analytical
tool, singular value decomposition �SVD�, which is fre-
quently employed for a principal component analysis
�17,18�, is used for inquiring into the temporal fluctuation of
a chaotic system caused by noise. Empirically, singular val-
ues are obtained from SVD and the temporal fluctuation of
singular values (TFSV) is investigated.

II. TEMPORAL FLUCTUATION OF SINGULAR VALUES
(TFSV)

Generally, dynamical noise and measurement noise are
defined for a flow system, respectively, as follows:

ẋ = f�x,��D�� , �1a�

y = g�x� + ��M�, �1b�

where x and y are, respectively, the underlying state vector
and the observed one; f is a governing function of the sys-
tem; g is an observation function; and ��D� and ��M� are dy-
namical and measurement noise, respectively.

SVD is the operation to diagonalize the singular matrix.
Now, if the N�n rectangular matrix X is diagonalized, the
covariance matrix XtX can be decomposed into XtX=V�2Vt,
where �2 is the n�n diagonal matrix and V and Vt are the
n�n orthogonal matrix and the transposed matrix of V, re-
spectively. Here, VVt=VtV= In is satisfied using the n�n unit
matrix In. As �2=diag��2�1� ,�2�2� , . . . ,�2�n�� is obtained,
we can extract singular values �SVs� ���i� � i=1,2 , . . . ,n�,
which are nonzero. The relatively larger SVs correspond to
the principal orthogonal basis of the deterministic system.
The smaller SVs correspond to the nondeterministic compo-
nents, which are mainly influenced by numerical error. How-
ever, the effect of the rounding error is not presently exam-
ined, as it is extremely difficult to consider such errors in the
analysis. In general, measured data are frequently obtained as
a scalar time series, so the procedure of SVD is explained for
such data. Now, an �n ,J� window �vi ,vi+J , . . . ,vi+�n−1�J� is
prepared, where n is the number of elements of the window
and J is a sample time in applying the method of delays as
described in Ref. �17�. Here, a finite measured time series
�vi�R � i=1,2 , . . . ,N+n−1� is transformed into the N
�n�N�n� matrix X and, thus, the n�n covariance matrix
XtX can be expressed as follows:

XtX =�
	vi

2
 	vivi+J
 ¯ 	vivi+�n−1�J


	vi+Jvi
 	vi+J
2 
 ¯ 	vi+Jvi+�n−J�J


] ] � ]

	vi+�n−1�Jvi
 	vi+�n−1�Jvi+J
 ¯ 	vi+�n−1�J
2 


� ,

�2�

where 	·
 denotes the time average for i=1,2 , . . . ,N. The
appearance that noise influences SVs can be explained by
considering the behavior of each component of XtX indicated
in Eq. �2�.*Electronic address: todoriki@q.t.u-tokyo.ac.jp
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A. Measurement noise

In the presence of measurement noise, each SV uniformly
increases, since the underlying state vectors and the noise are
uncorrelated, as explained in Ref. �17�. Namely, the covari-
ance matrix XtX has a quite simple structure that is almost
diagonal, where all diagonal values are larger by the same
amount than those of a noiseless case. If the system remains
steady, such diagonal values are expected to be nearly con-
stant independent of the passage of time.

B. Dynamical noise

On the other hand, in the presence of dynamical noise, the
result is utterly different from the case of measurement noise,
and XtX loses its simple structure. Since the underlying state
vectors and dynamical noise are correlated, the dynamical
noise complicatedly affects both each diagonal component
Ai= 	vi

2
 and each off-diagonal component Bi,j = 	viv j
�i� j�
of XtX �i , j=1,2 , . . . ,n�. The operation of SVD is to reduce
the values of all of Bi,j by means of a similarity transforma-
tion of the orthogonal matrix. Accordingly, when each value
of Bi,j is reduced in the process of SVD, the complexity of
each Bi,j spreads on each Ai and, therefore, each value of Ai
complicatedly changes. Moreover, since the statistical prop-
erties of both Ai and Bi,j depend upon the time series data,
from which XtX is built, SVs temporally fluctuate for con-
secutive time series. Thus, the influence of dynamical noise
on chaos can be extracted with a different form from that of
measurement noise. This result means that the influences of
dynamical noise and measurement noise can be distinguished
even in the case of the noise-mixed data composed of both
noises. The concrete way of extracting TFSV is explained
next.

C. Estimation of TFSV

In practice, TFSV can be estimated as follows �see Fig.
1�. First, temporally consecutive time series data sets are
prepared. Each set is called an “interval” �Ik �k
=1,2 , . . . ,Nint� in this paper. In each Ik, N elements are in-
cluded such as �vN�k−1� ,vN�k−1�+1 , . . . ,vN�k−1�+N�. Second, SVs
��k�i� � i=1,2 , . . . ,n� are obtained in each Ik, where i is an
“index” of SVs lined in descending order. Third, the aver-
aged SVs �a�i� � i=1,2 , . . . ,n� over all of Ik are calculated for
every index such as a�i�=1/Nint�k=1

Nint�k�i�. The difference be-
tween these two sets ��k�i�� and �a�i�� is regarded as the
extent of TFSV; therefore, TFSV can be estimated by inves-
tigating this difference.

In order to determine the difference, we introduce a per-
formance index: the correlation coefficient �C�, which is ob-
tained every Ik on the assumption that the system remains
steady �19� �see also Fig. 1�. Particularly, Ck for each Ik can
be calculated as follows:

Ck =
�i=1

n
��k�i� − �k��a�i� − ā�

�i=1

n
��k�i� − �k�2�i=1

n
�a�i� − ā�2

, �3�

where s̄k and ā are the averages of �k�i� and a�i� for i, re-
spectively, and Ck� �−1,1�. As the difference between

the sets ��k�i�� and �a�i�� becomes large, Ck becomes small,
approaching 0 as it moves away from 1. However, in
practice, the average of Ck; Cav is used as a proxy of Ck,
so that we can grasp the whole tendency of all of Ck and
TFSV can be estimated by Cav. Since a probability distribu-
tion of correlation coefficients is generally asymmetric, their
average cannot be easily obtained. However, as the distribu-
tion can be transformed into a symmetric quasinormal one
by means of Fisher’s z transformation �20�, Cav can be ob-
tained by inversely transforming the arithmetic average
at the quasinormal, obtained by Fisher’s z transformation.
A standard deviation can be also obtained from the quasinor-
mal distribution in the same way, expressing numerical
error.

III. NUMERICAL ANALYSIS

A. Preparation

In the following section, Chua’s electronic circuit is
used as a typical chaos system, which is described by
the three-dimensional ordinary differential equations that
follow �21�:

C1

dVC1

dt
=

1

R
�VC2

− VC1
� − fNR

�VC1
� , �4a�

C2

dVC2

dt
=

1

R
�VC1

− VC2
� + iL, �4b�

L
diL

dt
= − VC2

, �4c�

where fNR
�VC1

�=GbVC1
+ 1

2 �Ga−Gb��VC1
+Bp�− �VC1

−Bp�.
VC1

, VC2
, and iL indicate voltage of two capacitors C1, C2,

FIG. 1. The concept of the extraction of TFSV. Temporally
consecutive time series data sets are prepared. Each of sets
is called an “interval” �Ik �k=1,2 , . . . ,Nint�. N elements;
�vN�k−1� ,vN�k−1�+1 , . . . ,vN�k−1�+N� are included in each Ik. Mean-
while, each performance index Ck is calculated from the obtained
SVs ��k�i� � i=1,2 , . . . ,n� in each Ik using the averaged SVs
�a�i� � i=1,2 , . . . ,n�. TFSV can be estimated by the average Cav as a
proxy of Ck.
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and the current of coil L, respectively; fNR
�VC1

� denotes the
three-segment odd-symmetric voltage-current characteristic
of the nonlinear resistor NR, by which the system exhibits a
large variety of typical chaotic behaviors. The i.i.d. dynami-
cal noise � with a zero mean is added to VC1

such that
VC1

→VC1
+� as additive noise. In this work values of param-

eters giving rise to double-scroll chaos are selected as fol-
lows: C1=10 nF, C2=100 nF, L=18 mH, 1/R=0.55 1/�,
Ga=−0.758 mA/V, Gb=−0.409 mA/V, and Bp=1.17 V.
Here, the analyses are performed for the scalar time series
of VC1

.
In this study, four kinds of time series are prepared, these

being noise-free data �NF-data�, measurement noise data
�M-data�, dynamical noise data �D-data�, and noise-mixed
data composed of both dynamical noise and measurement
noise �DM-data�. Each noise level is given as a ratio of a
standard deviation of noise data to that of the time series VC1

in NF-data. The range of the noise amplitude is 0.01%–
20.0% for M-data and 0.01%–3.7% for D-data, where 3.7%
is the maximum, below which a chaotic state can be retained.
For DM-data, measurement noise with a 20.0% noise level is
added to all D-data. The fourth-order Runge-Kutta method is
used with a constant time step 	s=0.000 005. The number of
elements N in each interval and the number of intervals Nint
are 100 000 and 10 000, respectively. SVD is performed for
all intervals to extract TFSV. However, ahead of SVD, an
adequate �n ,J� window should be determined, satisfying the
window length 	w=n	L=nJ	s, where the lag time 	L is ex-
pressed as 	L=J	s. In particular, the most important param-
eter is 	w. Though the detail is not presented here, in this case
	w=60	s can be determined by considering the bandlimiting
frequency in fast Fourier transform �FFT� analysis as ex-
plained in Ref. �17�. However, there are some difficulties in
deciding the properties of the adequate window. This prob-
lem is still open to discussion, but the result should satisfy
nJ=60. Here, it is desirable to avoid the noise floor relevant
to the nondeterministic basis in order to verify the essential
behavior of the system as indicated in Refs. �17,22�. Accord-
ingly, SVD is undertaken with a relatively larger n=60, that
is �n ,J�= �60,1� first in order to extract the number of the
leading SVs.

B. Results of SVD

Figure 2 shows results of SVD with the �60,1� window of
the four representatives in a certain Ik, where SVs are arrayed
in descending order. Here, in the case of DM-data, the per-
centages in parentheses indicate a dynamical and a measure-
ment noise level, respectively. As the first 4 SVs are rela-
tively large for each of the cases indicated in Fig. 2�a�, it
can be found that the number of leading SVs is 4, which is
approximately equal to the original number 3. Accordingly,
for the main analyses at the next stage, n=4, that is �n ,J�
= �4,15� is adopted. Here, the characteristic of measurement
noise also appears in the uniform increase of all SVs as
shown in the enlarged figure, Fig. 2�b�. Next, TFSV is inves-
tigated for the first four leading SVs by using the �4,15�
window. Results are expressed by histograms related to a
frequency distribution of SVs. SVs calculated from all Ik
are classified into four groups corresponding to the four in-
dices and arranged in histograms with the interval width
5.5�10−5. In Fig. 3 histograms of the same representatives
in the first index are shown. The shape of each histogram
displays the extent of TFSV. A lower and broader shape in-
dicates a greater extent of TFSV. Accordingly, it can be ob-
served that the extent is larger in both D-data �3.7%� and
DM-data �3.7% +20.0% � from the shape of the histograms.
The same results are also obtained in all indices and in other
noise levels. Meanwhile, the deviation in NF-data originates
in numerical error.

C. Averaged correlation coefficient „Cav…

In order to concretely obtain the features of histograms,
Cav is calculated next. In Fig. 4 every Cav of M-data is nearly
equal to that of NF-data independently of the noise ampli-
tude, while each Cav of D-data and DM-data decreases as the
noise level increases �a�. Significant decreases can be seen
especially above the approximately 1.0% noise level. It is
inferred from the results that these changes correspond to the
destruction of the structure of the system caused by dynami-
cal noise. In addition, the influence in the noise-mixed data
such as DM-data can also be discerned with both NF-data

FIG. 2. Results of SVD with the �60,1� window of the four
representatives in a certain Ik. As the first 4 SVs are relatively large
for each of the cases, the number of leading SVs is 4, which is
approximately equal to the original number 3 �a�. The characteristic
of measurement noise also appears in the uniform increase of all
SVs as shown in the enlarged figure �b�.

FIG. 3. Histograms of the same representatives in the first index.
The shape of each histogram displays the extent of TFSV. As a
lower and broader shape indicates a greater extent of TFSV, accord-
ingly, the extent is larger in both D-data �3.7%� and DM-data
�3.7% +20.0% � from the shape of the histograms.
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and M-data, independently of the noise amplitude. This re-
sult is the same as we expected before the analysis. Accord-
ingly, in this study, we can discern from the enlarged view in
Fig. 4�b� the influence of dynamical noise from that of mea-
surement noise, especially at levels exceeding 0.02%, though
this cannot be generalized. Cav in D-data and DM-data, how-
ever, also indicates temporarily and counterintuitively large
values in the middle around 0.05%–0.3% as shown in the
enlarged view, Fig. 4�b�. We call this region an “irregular
part.” Furthermore, the Cav goes so far as to indicate a larger
value than that of NF-data around 0.12%–0.7%. We call this
region a “stable part.” What happens in these regions will be
discussed later.

Now, let us consider the dependence of Cav on the number
of points N in each interval Ik. As illustrated in Fig. 5, related

to D-data, if N becomes large, Cav approaches 1, which cor-
responds to a noiseless instance, and the change of Cav be-
comes smaller. Furthermore, Cav changes more smoothly
against the change of the noise amplitude, because the dif-
ference of the statistical properties among the intervals de-
creases and, therefore, the influence of noise on the system
cannot be identified. However, particularly in the case of an
extremely large N, numerical error cannot be ignored, be-
cause the change of Cav becomes extremely smaller. There-
fore, it becomes difficult to extract TFSV. Additionally, cal-
culation time increases considerably. In contrast, in the case
of an extremely small N, there is a statistical stability prob-
lem because of the extremely short number of points. Ac-
cordingly, an adequate N is required for extraction, though it
is difficult to precisely determine the adequate value. In this
work, the relatively large number 100 000 is selected to en-
sure reasonable calculation time and avoid the influence of
numerical error.

IV. VERIFICATION OF VALIDITY

A. A flip-flop process

To verify the validity of our results, we focus on a flip-
flop process, where a trajectory circulates away from the
unstable fixed point on one lobe of a double-scroll attractor
and switches to the other lobe after rotating several times, as
explained in Ref. �10�. It can be maintained that dynamical
noise affects the statistical features of the flip-flop process.
Meanwhile, the flip-flop process can be described as a
one-dimensional symbol sequence composed of 1 and 0. In a
local maximum of Vc1, if a point of a trajectory is on
one lobe of an unstable fixed point in a three-dimensional
phase space and the maximum value of Vc1 is positive, a
symbol s=1 is assigned to the symbol sequence. Otherwise,
such as in the case of a point on another lobe, an s=0 is
assigned.

B. Shannon entropy

The influence of dynamical noise on the symbol sequence
can be estimated by employing Shannon’s familiar entropy
measure. As the entropy describes an amount of information
related to disorder of a system, it is expected to evaluate the
amount of disorder of the system influenced by dynamical
noise. According to Ref. �12�, nth-order Shannon entropy Hn
is based on the probability distribution of words of the length
n in the symbol sequence as follows:

Hn = − �
wn�Wn,p�wn�
0

p�wn�log2 p�wn� , �5�

where wn denotes a word of the length n, Wn means the set of
all of wn, and p�wn� is the probability that wn appears in the
symbol sequence. Here, the Shannon entropy difference hn is
obtained from Hn as follows:

hn = Hn+1 − Hn, �6a�

h0 = H1, �6b�

where hn describes the mean information quantity for a sym-
bol sequence. Each hn with n� p vanishes for period p se-

FIG. 4. Cav for all the data. The significant decrease can be seen
above the approximately 1.0% noise level in Cav of D-data and
DM-data, differently from those of NF-data and M-data �a�. Here,
error bars for D-data and M-data �20.0%� are partially indicated,
while the irregular and the stable part can be seen in the middle
noise levels around 0.05%–0.3% and 0.12%–0.7%, respectively, in
the enlarged view �b�. Error bars are abbreviated.

FIG. 5. Dependence of Cav on the number of points N in
each interval Ik. In large N, Cav approaches 1, which corresponds
to a noiseless instance, and the change of Cav becomes smaller.
Particularly in the case of an extremely large N, numerical error
cannot be ignored. In contrast, at an extremely small N, there is a
statistical stability problem because of the extremely short number
of points.
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quences and, on the other hand, each hn is equal to n for a
purely random symbol sequence. Accordingly, the entropy h
can be expressed as the limit of hn as follows:

h = lim
n→�

hn. �7�

In this study, the statistical features of the flip-flop process
can be sufficiently investigated by knowing the change of the
entropy around the typical time scale of the switching pro-
cesses as referenced in Ref. �13�. This typical time scale can
be regarded as the mean passage time 5.1 when the trajectory
passes on the same lobe in NF-data. Accordingly, n=5 can
be determined. The entropy h is defined as h5. If the disorder
of the flip-flop process increases, h5 becomes large. In
contrast, if the disorder decreases and a stable state arises, h5
becomes small. The results of the entropy are shown in Fig.
6. Here, the number of points in each symbol sequence is
100 000. From this figure, at least two obviously irrational
problems arise. One is that the entropy of M-data and D-data
counterintuitively indicates much smaller values at large
noise levels. The other is that the entropy of DM-data
is lower than those of any other types of data, in spite of
the presence of large measurement noise �the noise level
is 20%�. The reason behind these problems is that numerous
local maximum points, irrelevant to a flip-flop process, are
generated by a large noise; therefore, the frequencies of
words with the longer constant sequence, such as “11111,”
“00000,” “11110,” “01111,” and so on, increase and,
consequently, apparent stable states seem to occur, though
such states are not practically produced as the flip-flop
process.

C. Shannon entropy for coarse-grained trajectory

To avoid these problems, smoothing is utilized prior to the
extraction of the symbol sequences. In this study, a moving
average operation with 20 time steps is introduced as a
smoothing method, and the coarse-grained trajectories are
obtained with the small fluctuations fully eliminated from the
original trajectories. After the extraction of the symbol se-
quences from the coarse-grained trajectories, Shannon en-
tropy is calculated for the sequences. The results of the en-
tropy are shown in Fig. 7.

The entropy of M-data is relatively stable against the in-
crease of the noise amplitude. Behaving quite differently
from that of M-data, each entropy of D-data and DM-data
increases on the whole as the noise amplitude increases. An
especially significant increase can be seen above the noise
level of approximately 1.0%. These results are quite similar
to those of Cav. From these results, it can be found that the
striking change observed in Cav above the approximately
1.0% noise level originates in the disorder of the system,
presumably due to the destruction of the system structure
caused by dynamical noise as mentioned before. Further-
more, the irregular part �around 0.05%–0.5%� where the en-
tropy counterintuitively decreases, and the stable part

FIG. 6. Shannon entropy for all the data. At least two obviously
irrational problems can be seen. One is that the entropy of M-data
and D-data counterintuitively indicates much smaller values at large
noise levels. The other is that the entropy of DM-data is lower than
those of any other types of data, in spite of the presence of large
measurement noise �the noise level is 20%�.

FIG. 7. Shannon entropy for the coarse-grained trajectories in
all the data. The entropy correlates highly with Cav in regard to all
of the data. The quite similar counterintuitive behavior to that of
Cav is also observed at the irregular part �around 0.05%–0.5%� and
the stable part �around 0.12%–0.8%�.

FIG. 8. Frequency distributions of all the words of the length 5.
Changes in the distribution are dependent on ̂ in any data. The
similar behavior to a period of approximately 5 in the flip-flop
process originally arises in the main �a�. The striking similarity in
appearance with both Cav and the entropy can be identified by the
common tendency against a noise amplitude increases and the
manifest inclusion of the counterintuitive change in both the irregu-
lar part �around 0.04%–0.4%� and the stable part �around 0.07%–
1.0%� in the case of the decimal word ̂=0.484 corresponding to a
binary word “01111” in �a� �b�.
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�around 0.12%–0.8%� where the values are lower than those
of NF-data can be seen. From the results, the entropy corre-
lates highly with Cav even in these parts in regard to all of
the data. Accordingly, it can be surmised that the counterin-
tuitive behaviors observed in both Cav and the entropy prob-
ably indicate the transition of the system to the stable states
similar to period p �p�5� and are essential to the system.
Consequently, it can be found, from the results of the tradi-
tional Shannon entropy measure, that Cav allows us to extract
the complexity caused by dynamical noise. Next, the coun-
terintuitive behavior in the irregular and the stable parts is
examined.

D. Noise-induced stabilization

Frequency distributions of all the words are investigated,
so that we can see how a pattern of the flip-flop process
changes depending on a noise amplitude �10�. In Fig. 8, fre-
quency distributions of all the words of the length 5 are
shown for NF-data and D-data, with four noise levels as
representatives. Each binary word can be transformed into a
corresponding decimal word as follows:

sksk+1 ¯ sk+n−1 →  = �
k=1

n

sk � 2k−1, �8�

where sk is a kth symbol on the symbol sequence, and
sksk+1¯sk+n−1 and  are a binary and a decimal word, re-
spectively, as explained in Ref. �10�. Here,  is normalized as
̂= / �2n−1�. Based on Fig. 8�a�, it can be shown that
changes in the distribution are dependent on ̂ in any data
and, in addition, some of ̂ indicating large peaks correspond
to words of longer constant sequences, such as “11111,”
“00000,” “11110,” “01111,” and so on. Particularly, as the
existence of the large peaks corresponding to “11111” and
“00000” means that the similar motion to period approxi-
mately 5 in the flip-flop process orginally arises in main.
Here, some peaks of relatively shorter constant sequences
“11100”, “00011”, “11000”, and “00111”, which are also il-
lustrated in this Fig. 8�a�, inevitably exist in the presence of
the longer constant sequences “11111”, “00000”, “11110”,
and “01111”. Accordingly, the existence of such shorter se-
quences does not necessarily imply peroid 2 or 3. At every ̂,
as the value of each peak depends on a noise level, the be-
havior of the flip-flop process depends on the noise ampli-
tude. The appearance is expressed in Fig. 8�b�. This shows
the result in the case of the decimal word ̂=0.484 corre-
sponding to a binary word “01111” as indicated in Fig. 8�a�.
According to this figure, the striking similarity in appearance
with both Cav and the entropy can be identified by the com-
mon tendency against a noise amplitude increases and the
manifest inclusion of the counterintuitive change in both the
irregular part �around 0.04%–0.4%� and the stable part
�around 0.07%–1.0%�. Furthermore, the ranges of these parts
correspond closely with those of Cav and the entropy. Addi-
tionally, from Fig. 8�a�, it can be found that in D-data
�0.4%�, which indicates the maximum frequency distribution
in Fig. 8�b�, the frequency distributions at 1.00 and 0.00
corresponding to “11111” and “00000” associated with the

periodic motion of period 5 decrease and, instead, those of
the decimal words corresponding to “11110,” “01111,”
“11100,” “00011,” “11000,” “00111,” and so on associated
with the periodic motion of period 4 increase. Consequently,
the dominant period changes from approximately 5 to ap-
proximately 4 due to the noise, and the periodic stable be-
havior is emphasized. At this state, Cav indicates a large
value approaching 1, since the fluctuation of the singular
values becomes small, while Shannon entropy decreases, as
the disorder of the flip-flop process decreases and a periodic
behavior is emphasized. More specifically, noise-induced sta-
bilization such as coherence resonance is generated as indi-
cated in Refs. �9–11�. Further detailed investigation is re-
quired to ascertain the mechanism of the noise-induced
stabilization.

Quite similar results are obtained from Cav, Shannon
entropy, and frequency distribution, there are differences
between our method compared with the others. In the cases
of entropy and frequency distribution, it is necessary to
smooth the original time series data and extract the symbol
sequence from it prior to the analysis, as explained in
Sec. IV. This is disadvantageous due to the increased number
of processes, the increased possibility of error resulting from
the additional operations, the increased complexity of the
operation, and the like. Our method determines the differ-
ence between the influence of dynamical noise and that of
measurement noise without any preprocessing. Accordingly,
our method is particularly robust for the analysis of real-
world data, where both dynamical noise and measurement
noise are present. The proposed method has already been
applied to other types of noise, including additive noise with
a uniform probability distribution and multiplicative noise
with a Gaussian and a uniform one. Qualitatively similar
results to the aforementioned have been obtained in any case.
In addition, though the details are not presented here, the
validity and the effectiveness of this method was verified and
confirmed with the Lorenz system in another typical chaotic
system.

V. CONCLUSIONS

The influence of dynamical noise on chaos can be numeri-
cally extracted by using the proposed method even in the
presence of measurement noise. The extraction is performed
by detecting the temporal fluctuation of singular values ob-
tained from SVD. From the results, it can be shown that, as
expected, changes of Cav are dependent on noise amplitude.
The results of Cav are quite similar to those derived using
Shannon entropy and frequency distribution. Accordingly, it
can be said that Cav allows us to extract the complexity stem
from the destruction of the system structure and the genera-
tion of stable states caused by dynamical noise. Counterin-
tuitive behaviors are observed in any method. In this in-
stance, these behaviors probably are essential to the system,
and indicate the transition of the system to the stable states
from the results of frequency distribution. Although quite
similar results are obtained from Cav, Shannon entropy, and
frequency distribution, there are some differences in our
method in comparison with the other methods. In the cases

TODORIKI, NAGAYOSHI, AND SUZUKI PHYSICAL REVIEW E 72, 036207 �2005�

036207-6



of entropy and frequency distribution, it is necessary to
smooth the original time series data and extract the symbol
sequence prior to the analysis. This is disadvantageous due to
the increased number of processes, the increased possibility
of error caused by the additional operations, the increased
complexity of the operation, and so on. Our method can
determine the difference between the influence of dynamical
noise and that of measurement noise without any preprocess-
ing. Accordingly, it can be said that our method is particu-
larly robust for the analysis of real-world data, where both
dynamical noise and measurement noise are present. Analy-
ses are shown only for the case of Chua’s electronic circuit.
However, our method has already been applied to other types

of noise, and qualitatively similar results to the aforemen-
tioned have been obtained in any case. In addition, though
the details are not presented here, the validity and the effec-
tiveness of our method was verified and confirmed in another
typical chaotic system using the Lorenz system.
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