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We study the evolution of social networks that contain both friendly and unfriendly pairwise links between
individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced
triad—a triangular loop with one or three unfriendly links—is reversed to make the triad balanced. With this
dynamics, an infinite network undergoes a dynamic phase transition from a steady state to “paradise”—all links
are friendly—as the propensity p for friendly links in an update event passes through 1/2. A finite network
always falls into a socially balanced absorbing state where no imbalanced triads remain. If the additional
constraint that the number of imbalanced triads in the network not increase in an update is imposed, then the
network quickly reaches a balanced final state.
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I. INTRODUCTION

In this work, we investigate the role of friends and en-
emies on the evolution of social networks. We represent in-
dividuals as nodes in a graph and a relationship between
individuals as a link that joins the corresponding nodes. To
quantify a relationship, we assign the binary variable
sij = ±1 to link ij, with sij =1 if nodes i and j are friends and
sij =−1 if i and j are enemies �Fig. 1�. A basic characteriza-
tion of relationships between mutual acquaintances is the
notion of social balance �1,2�. The triad ijk is defined as
balanced if the sign of the product of the links in the triad,
sijsjkski, equals 1, while the triad is imbalanced otherwise. We
define a triad to be of type �k if it contains k negative links.
Thus �0 and �2 are balanced, while �1 and �3 are imbal-
anced. A balanced triad therefore fulfills the adage that: �i� a
friend of my friend is my friend, �ii� an enemy of my friend
is my enemy, �iii� a friend of my enemy is my enemy, and
�iv� an enemy of my enemy is my friend. On the other hand,
an imbalanced triad is analogous to a frustrated plaquette in
a random magnet �3�.

A network is balanced if each constituent triad is balanced
�1,2�. An ostensibly more general definition of a balanced
network is that every cycle in the network is balanced. Cart-
wright and Harary showed �4� that the cycle-based and triad-
based definitions of balance are equivalent on complete
graphs. Their result implies that if an imbalanced cycle of
any length exists in a complete graph, an imbalanced triad
also exists.

Balance theory has been initiated by Heider �1� and other
social psychologists �5,6�, and the subject remains an active
research area �2,7–12�. Much of this work was devoted to
classifying balanced stable states of networks when relation-
ships are static. A fundamental result from these studies is

that balanced societies are remarkably simple: either all in-
dividuals are mutual friends �we call such a state “paradise”�
or the network segregates into two antagonistic cliques
where individuals within the same clique are mutual friends
and individuals from distinct cliques are enemies �we call
such a state “bipolar”� �4�. Balance theory also has natural
applications to international relations �13�. As a particularly
compelling example, the Triple Alliance �1882� pitted Ger-
many, Austria-Hungary, and Italy against the Triple Entente
�1907� countries of Britain, France, and Russia �14�. This
bipolar state of competing alliances clearly contributed to the
onset of World War I.

A large network is almost surely imbalanced if the rela-
tionships are randomly chosen to be friendly or unfriendly.
Clearly such a network is socially unstable and the web of
relations must evolve to a more stable state if the individual
nodes behave rationally. In this work, we go beyond a static
description of social relations and investigate how an ini-
tially imbalanced society achieves balance by endowing a
network with a prototypical social dynamics that reflects the
natural human tendency to reduce imbalanced triads. A re-
lated line of investigation, based on evolving social networks
with continuous interaction strengths, has also recently
appeared �15�.

II. MODELS

We first consider what we term local triad dynamics
�LTD�. In an update step of LTD, we first choose a triad at
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FIG. 1. Imbalanced triads �1 �left� and �3 �right� and the pos-
sible outcomes after an update step by local triad dynamics. Solid
and dashed lines represent friendly �e.g., sij =1� and unfriendly
�e.g., sik=−1� relations, respectively.
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random. If this triad is balanced ��0 or �2�, no evolution
occurs. If the triad is imbalanced ��1 or �3�, we change
s→−s on a randomly-chosen link as follows: �1→�0 occurs
with probability p, and �1→�2 occurs with probability 1
− p, while �3→�2 occurs with probability 1 �Fig. 1�. One
unit of time is defined as L update events, where L is the total
number of links. Notice that for the special case of p=1/3,
each link of an imbalanced triad is flipped equiprobably.

After an update step in LTD, the imbalanced target triad
becomes balanced, but other balanced triads that share a link
with this target may become imbalanced. These triads can
subsequently evolve and return to balance, leading to new
imbalanced triads. Such an interaction cascade is familiar in
social settings. For example, if a married couple breaks up,
the acquaintances of the couple may then be obliged to re-
define their relations with each partner in the couple so as to
maintain balanced triads. These redefinitions, may lead to
additional relationship shifts, etc.

For p�1/2, we shall show that LTD quickly drives an
infinite network to a quasistationary dynamic state where
global characteristics, such as the densities of friendly rela-
tions or imbalanced triads, fluctuate around stationary values.
As p passes through a critical value of 1 /2, the network
undergoes a phase transition to a paradise state where no
unfriendly relations remain. On the other hand, a finite net-
work always reaches a balanced state. For p�1/2, this bal-
anced state is bipolar and the time to reach this state scales
faster than exponentially with network size. For p�1/2, the
final state is paradise. The time to reach this state scales
algebraically with N when p=1/2 and logarithmically in N
for p�1/2.

We also investigate constrained triad dynamics �CTD�.
Here, we select a random link and change s→−s for this link
if the total number of imbalanced triads decreases. If the total
number of imbalanced triads is conserved in an update, then
the update occurs with probability 1 /2. Updates that would
increase the total number of imbalanced triads are not al-
lowed. We again define the unit of time as L update events,
so that on average each link is changed once in unit of time.
The global constraint accounts for the socially plausible fea-
ture that an agent considers all of its mutual acquaintances
before deciding to change the character of a relationship.
CTD also corresponds to an Ising model with a three-spin
interaction between the links of a triad, H=−�ijksijsjkski,
where the sum is over all triads ijk, with zero-temperature
Glauber dynamics �16�. As we shall see, a crucial outcome of
CTD is that a network is quickly driven to a balanced state in
a time that scales as ln N.

In the following two sections we analyze the dynamics of
networks that evolve by LTD or CTD. For simplicity, we
consider networks with a complete graph topology—
everyone knows everyone else. This limit is appropriate for
small networks, such as the diplomatic relations of countries.
We then summarize and discuss some practical implications
of our results in Sec. IV.

III. LOCAL TRIAD DYNAMICS

A. Evolution equations

We begin with essential preliminaries for writing the gov-
erning equations for the various triad densities. Let N,

L= � N
2

�, and N�= � N
3

� be the numbers of nodes, links, and tri-
ads in the network. Define Nk as the number of triads that
contain k negative links, with nk=Nk /N� the respective triad
densities and L+ �L−� the number of positive �negative� links.
The number of triads and links are related by

L+ =
3N0 + 2N1 + N2

N − 2
, L− =

N1 + 2N2 + 3N3

N − 2
. �1�

The numerator counts the number of positive links in all
triads while the denominator appears because each link is
counted N−2 times. The density of positive links is therefore
�=L+ /L= �3n0+2n1+n2� /3, while the density of negative
links is 1−�=L− /L.

A fundamental network characteristic is Nk
+, which is de-

fined as follows: for each positive link, count the number of
triads of type �k that are attached to this link. Then Nk

+ is the
average number of such triads over all positive links. This
number is

Nk
+ =

�3 − k�Nk

L+ . �2�

The factor �3−k�Nk accounts for the fact that each of the Nk

triads of type �k is attached to 3−k positive links; dividing
by L+ then gives the average number of such triads. Analo-
gously, we introduce Nk

−=kNk /L−. Since the total number of
triads attached to any given link equals N−2, the correspond-
ing triad densities are

nk
+ =

Nk
+

N − 2
=

�3 − k�nk

3n0 + 2n1 + n2
, �3a�

nk
− =

Nk
−

N − 2
=

knk

n1 + 2n2 + 3n3
. �3b�

We now write the rate equations that account for changes
in the various triad densities in a single update event. We
choose a triad at random; if it is imbalanced ��1 or �3�, we
change one of its links as shown in Fig. 1. Let �+ be the
probability that a link changes from � to � in an update
event and vice versa for �−. Since a link changes from
1→−1 with probability 1− p when �1→�2, while a link
changes from −1→1 with probability p if �1→�0 and with
probability 1 if �3→�2, we have �see Fig. 1�

�+ = �1 − p�n1, �− = pn1 + n3. �4�

Since each update changes N−2 triads and we also de-
fined one time step as L update events, the rate equations for
the triad densities have the size-independent form

dn0

dt
= �−n1

− − �+n0
+,

dn1

dt
= �+n0

+ + �−n2
− − �−n1

− − �+n1
+,

dn2

dt
= �+n1

+ + �−n3
− − �−n2

− − �+n2
+,
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dn3

dt
= �+n2

+ − �−n3
−. �5�

B. Stationary states

We first study stationary states. Setting the left-hand sides
of Eqs. �5� to zero and also imposing �+=�− to ensure a
fixed friendship density, we obtain

n0
+ = n1

−, n1
+ = n2

−, n2
+ = n3

−.

By forming products such as n0
+n2

−=n1
+n1

−, these relations are
equivalent to

3n0n2 = n1
2, 3n1n3 = n2

2. �6�

Substituting �+ and �− from Eq. �4� into the stationarity
condition �+=�− gives n3= �1−2p�n1. Using this result, as
well as the normalization �nk=1, in Eqs. �6�, we find, after
some straightforward algebra,

nj = �3

j
��	

3−j�1 − �	� j , �7�

where

�	 = �1/�	3�1 − 2p� + 1� , p 
 1/2,

1, p � 1/2,

 �8�

is the stationary density of friendly links. Equation �7� shows
that relationships are uncorrelated in the stationary state. As
shown in Fig. 2, the density of friendly links �	 monotoni-
cally increases with p for 0
 p
1/2, while for p�1/2,
paradise is reached where all people are friends. Near the
phase transition, the density of unfriendly links 1−�	 van-
ishes as 	3�+O���, as ��1−2p→0.

C. Temporal evolution

A remarkable feature of Eqs. �5� is that if the initial triad
densities are given by Eq. �7�—uncorrelated densities—the
densities will remain uncorrelated forever. For such initial
conditions it therefore suffices to study the time evolution of

the density of friendly links ��t�. This time evolution can be
extracted from Eqs. �5�, or it can be established directly by
noting that ��t� increases if �3→�2 or �1→�0 and de-
creases if �1→�2. Taking into account that the respective
probabilities for these processes are 1, p, and 1− p, we find

d�

dt
= 3�2p − 1��2�1 − �� + �1 − ��3. �9�

Thus the time dependence of the density of friendly links is
given by the implicit relation

�
�0

� dx

3�2p − 1�x2�1 − x� + �1 − x�3 = t . �10�

When p�1/2, the stationary density of Eq. �8� is ap-
proached exponentially in time:

��t� − �	 
 e−Ct, C =
6�

1 + 	3�
,

where again �=1−2p. At the threshold value p=1/2, the
friendship density is given by

� = 1 −
1 − �0

	1 + 2�1 − �0�2t
. �11�

Here the approach to paradise is algebraic in time—viz.,
1−�→1/	2t as t→	. As a consequence, the leading behav-
ior is

�n0,n1,n2,n3� → �1 −
3

	2t
,

3
	2t

,
3

2t
,

1

�2t�3/2� . �12�

Finally, when p�1/2,

1 − � 
 exp�− 3�2p − 1�t� , �13�

so that paradise is reached exponentially quickly.

D. Fate of a finite society

Although an infinite network reaches a dynamic steady
state for p�1/2, a finite network ultimately falls into an
absorbing state for all p. Such absorbing states are necessar-
ily balanced, because any network that contains an imbal-
anced triad continues to change. To see why such an absorb-
ing state must eventually be reached, consider the evolution
in which at each step an unfriendly link changes to friendly
in an imbalanced triad. Since the number of unfriendly links
always decreases, a balanced state is reached in a finite num-
ber steps. Finally, because this particular route to a balanced
state has a nonzero probability to occur, any initial network
ultimately reaches an absorbing balanced state.

Our simulations show that a finite network evolves to a
bipolar state for p�1/2, independent of the initial state. The
size difference of the two final cliques is virtually indepen-
dent of the initial configuration because the network spends
an enormous time in a quasistationary state before reaching
the absorbing state. For p�1/2, we estimate the time to
reach a bipolar state by the following crude argument �17�.
Consider a nearly balanced network. When a link is flipped

FIG. 2. Exact stationary densities nk�p� and the density of
friendly relations �	 as a function of p. Simulation results for �	 for
N=64 �crosses� and 256 �boxes� are also shown.
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on an imbalanced triad, then of the order of N new imbal-
anced triads will be created in the adjacent triads that contain
the flipped link. Thus, starting near a balanced state, local
triad dynamics is equivalent to a biased random walk in the
state space of all network configurations, in which the bias is
directed away from the balanced state, with the bias velocity
v proportional to N. Conversely, when the network is far
from balance, local triad dynamics is diffusive in character
because the number of imbalanced triads will change by the
order of ±N equiprobably in a single update. The correspond-
ing diffusion coefficient D is then proportional to N2. Since
the total number of triads in a network of N nodes is
N�
N3, we therefore expect that the time TN to reach bal-
ance will scale as

TN 
 evN�/D 
 eN2
. �14�

When p�1/2, paradise is reached with a probability that
quickly approaches 1 as N→	. At the threshold p=1/2, a
naive estimate for the time TN to reach paradise is given
by the time at which the density of unfriendly links
a�t��1−��t� is of the order of N−2, corresponding to one
unfriendly link in the network. From Eq. �11�, the criterion
a�TN�
N−2 gives TN
N4. While simulations show that TN

does scales algebraically with N, the exponent value is much
smaller �Fig. 3�b��. The source of this smaller exponent is the
existence of anomalously large fluctuations in the number of
unfriendly links.

To determine these fluctuations in the thermodynamic
limit, we write the number of unfriendly links A�t��L−�t� in
the canonical form �18�

A�t� = La�t� + 	L��t� , �15�

where a�t� is deterministic and ��t� is a stochastic variable.
Both a and � are size independent in the thermodynamic

limit �L
1�, and the form of Eq. �15� assures that the aver-
age �A� and variance �A2�− �A�2 grow linearly with the total
number of links L. In the Appendix, we show that ����2�
grows as

� 
 	t as t → 	 . �16�

Thus the time to reach paradise TN is determined by the
criterion that fluctuations in A become of the same order as
the average—viz.,

	L��TN� 
 La�TN� . �17�

Using a�t�
1/	t from Eq. �11� together with Eq. �16� and
L
N2, we rewrite Eq. �17� as N2TN

−1/2
NTN
1/4. This leads to

the estimate

TN 
 N4/3. �18�

Above the threshold p�1/2, paradise is approached ex-
ponentially quickly �see Eq. �13�� and the time to paradise
scales logarithmically with network size:

TN 
 �2p − 1�−1ln N . �19�

Interestingly, the estimates �18� and �19� coincide when
2p−1
N−4/3 ln N. That is, there is a finite-width critical re-
gion near the phase transition due to finite-size effects. In the
Appendix, we estimate this width by analyzing the fluctua-
tions below the threshold p�1/2 and obtain essentially this
same result.

Summarizing, the asymptotics for the absorption time are

TN � �exp�N2� , p � 1/2,

N4/3, p = 1/2,

�2p − 1�−1ln N , p � 1/2,
� �20�

in agreement with the simulation results in Fig. 3.

IV. CONSTRAINED TRIAD DYNAMICS

A. Jamming and absorption time

In constrained triad dynamics, the number of imbalanced
triads cannot increase in an update event, and the final state
can either be balanced or jammed. A jammed state is one in
which imbalanced triads exist and for which the flip of any
link increases the number of imbalanced triads. Since this
type of update is forbidden in CTD, there is no escape from
a jammed state. Moreover, jammed states turn out to be
much more numerous than balanced states �see Sec. IV D�.
In spite of this fact, we find that the probability for the net-
work to reach a jammed state, Pjam�N�, quickly goes to zero
as N increases, except for the case of an initially antagonistic
society ��0=0�, where Pjam�N� decays slowly with N �Fig. 4�.
Thus the final network state is almost always balanced for
large N and consists either of one clique �paradise� or two
antagonistic cliques. It is worth mentioning that we never
observed “blinkers” �19� in simulations, although we cannot
prove that such states do not exist. These are trajectories in
the state space that evolve forever and correspond to a net-
work in which all possible updates involve no change in the
number of imbalanced triads.

FIG. 3. Average absorption time as a function of N for an ini-
tially antagonistic society ��0=0� for �a� p=1/3, �b� p=1/2, and �c�
p=3/4. The line in �b� has slope 4/3.
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Another fundamental feature of CTD is that the time TN
for a network of N nodes to reach its final state generically
scales as ln N. While TN now depends on the initial condi-
tion, in contrast to LTD, this dependence occurs either in the
amplitude or in lower-order corrections of the absorption
time. Thus the logarithmic growth of TN with N is a robust
feature of CTD.

B. Final clique sizes

An unexpected feature of CTD is the phase transition for
the difference in sizes C1 and C2 of the two final cliques as a
function of �0 �Fig. 5�. We quantify this asymmetry by the
scaled size difference �= �C1−C2� /N. For �0�0.4 the
cliques sizes in the final bipolar state are nearly the same size
and ��2��0. As �0 increases toward �0

*�0.65, the size dif-
ference of the two cliques continuously increases. A sudden
change occurs at �0

*, beyond which the final network state is
paradise. The probability distribution for � is sharply peaked
about its average value as N→	 �Fig. 6�. Since ��2� and the
density of friendly links �	 are related by ��2�=2�	−1 in a
large balanced society, uncorrelated initial relations generi-
cally lead to �	��0. Thus CTD tends to drive a network into
a friendlier final state.

While we do not have a detailed understanding of this
phase transition, we give a qualitative argument that suggests
that a large network undergoes a sudden change from
�	=0 �two equal-size cliques� when �0�1/2 to �	=1 �para-
dise� when �0�1/2. The fact that the transition appears to be
located near �0

*�0.65 �Fig. 5� rather than at �0=1/2 indi-
cates that our approach is not a complete description for the
transition.

We first assume, as observed in simulations of large net-
works, that jammed states do not arise. We also assume that
a network remains uncorrelated during its early stages of
evolution. Consequently the densities n+��n0

+ ,n1
+ ,n2

+ ,n3
+� of

triads that are attached to a positive link are

n+ = „�2,2��1 − ��,�1 − ��2,0… . �21�

For a link to change from � to �, it is necessary that
n1

++n3
+�n0

++n2
+. From Eq. �21�, this condition is equivalent

to 4��1−���1, which never holds. Similarly, the densities
n−��n0

− ,n1
− ,n2

− ,n3
−� of triads attached to a negative link are

n− = „0,�2,2��1 − ��,�1 − ��2
… . �22�

The requirement n1
−+n3

−�n0
−+n2

− now reduces to
1�4��1−��, which is valid when ��1/2.

Thus, for a large uncorrelated network, only negative
links flip in CTD. Since the density of negative links is
1−�, the governing rate equation is

d�

dt
= 1 − � , �23�

from which

� = 1 − �1 − �0�e−t. �24�

From the criterion 1−��TN�
N−2, corresponding to one un-
friendly link remaining in the network, the time to reach
paradise is given by TN
 ln N, in agreement with simula-
tions. According to Eq. �24� a network should evolve to para-
dise for any initial condition.

However, our simulations indicate that this homogeneous
solution is unstable for �0�1/2. In this case, the density of
friendly links � initially still increases according to Eq. �24�
until ��1/2. At this point, correlations in the relationship

FIG. 4. Probability of reaching a jammed state Pjam as a func-
tion of N for several values of �0.

FIG. 5. Asymmetry of the final state as a function of the initial
friendship density �0 for several network sizes.

FIG. 6. Scaled probability distribution of the relative difference
between the final clique sizes for �0=0 and 1/2.
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structure begin to arise and these ultimately lead to a bipolar
society with �	�1/2. We now give a qualitative argument to
support these observations.

When ��t��1/2, there are many partitions of the network
into two subnetworks S1 and S2 of nearly equal sizes
C1= �S1� and C2= �S2�, for which the densities of friendly
links within each subnetwork, �1 and �2, slightly exceed 1/2,
while the density � of friendly links between subnetworks is
slightly less than 1/2. Our basic point is that this small fluc-
tuation is amplified by CTD so that the final state is two
nearly equal-size cliques.

To appreciate how such an evolution can occur, we as-
sume that relationships within each subnetwork and between
subnetworks are homogeneous. Consider a negative link in
S1. The densities of triads attached to this link are given by
Eq. �22�, with � replaced by � when the third vertex in the
triad belongs to S2, and by Eq. �22�, with � replaced by �1
when the third vertex belongs to S1. The requirement that a
link can change from � to � according to CTD now be-
comes

C1�1 − 4�1�1 − �1�� + C2�1 − 4��1 − ��� � 0, �25�

which is always satisfied. Additionally, negative links within
each subnetwork can change to positive with rate 1, while
positive links within each subnetwork can never change.

Consider now a positive link between the subnetworks.
The triad densities attached to this link are given by

n j
+ = „�� j,��1 − � j� + � j�1 − ��,�1 − ���1 − � j�,0…

when the third vertex belongs to S j. Since

��1 − � j� + � j�1 − �� − �� j − �1 − ���1 − � j�

= �2� j − 1��1 − 2�� ,

the change +→− is possible if

�C1�2�1 − 1� + C2�2�2 − 1���1 − 2�� � 0. �26�

Thus, if the situation arises where �1�1/2, �2�1/2, and
��1/2, the network subsequently evolves to increase the
density of intrasubnetwork friendly links and decrease the
density of intersubnetwork friendly links. These link densi-
ties thus evolve according to the rate equations

d�1

dt
= 1 − �1,

d�2

dt
= 1 − �2,

d�

dt
= − � , �27�

and give the instability needed to drive the network to a final
bipolar state.

The last step in our argument is to note that when
C1�C2�N /2, the number of ways, � N

C1
�, to partition the

original network into the two nascent subnetworks S1 and S2
is maximal. Consequently, the partition C1=C2 has the high-
est likelihood of providing the initial link density fluctuation,
after which the homogeneous evolution �23� is replaced by
the clique evolution �27� so that a homogeneous network
organizes into two nearly equal-size cliques. Although our
argument fails to account for the quantitative details of the
transition shown in Fig. 5, the primary behaviors of ��2� in
the two limiting cases of �0→0 and �0→1 are described
correctly.

C. Structure of jammed configurations

While jammed configurations can arise in CTD, we will
now show that jammed states are possible if and only if the
network size is N=9 or N�11. To prove this statement, we
first explicitly construct jammed configurations for N=9 and
N�11. Figure 7 shows three jammed configurations for
N=9, the smallest possible N where jammed configurations
can occur. The example in Fig. 7�a� was observed in simu-
lations, while the jammed configuration in Fig. 7�b� consists
of three antagonistic cliques of three nodes each. We now
generalize this latter construction of jammed states to arbi-
trary N�11.

Consider three mutually antagonistic cliques of sizes
�m1 ,m2 ,m3�, with m1+m2+m3=N. A link within a clique is
necessarily stable, as all attached triads are of type �0 or �2.
Conversely, a negative link between clique 1 �circles in Fig.
7�b�� and clique 2 �squares� is attached to both stable and
imbalanced triads. There are m1−1+m2−1 attached stable
triads of type �2, where the third node of the triad is either
within clique 1 or clique 2, and m3 attached imbalanced tri-
ads of type �3, where the third node is in clique 3 �triangles�.
The requirement for link stability among these cliques is then

m1 + m2 � m3 + 2,

m2 + m3 � m1 + 2,

FIG. 7. Examples of jammed configurations for N=9 �only
friendly links are displayed�. �a� A jammed configuration that ap-
peared in simulations. �b� A jammed state consisting of three mu-
tually antagonistic cliques. �c� A jammed state derived from �b� in
which the top clique from �b� is friendly toward the remaining two
cliques.
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m3 + m1 � m2 + 2, �28�

where the last two equations arise by cyclic permutations of
the first.

We term a partition �m1 ,m2 ,m3� “jammed” if it satisfies
the inequalities �28�. By summing pairs of Eqs. �28�, we find
mj �3, j=1,2 ,3. Thus jammed partitions are possible only
for networks of size N=m1+m2+m3�9. Following the rules
in Eq. �28�, the following partitions are jammed: for N=3k
with k�3, partitions of the form �k ,k ,k�; for N=3k+2
with k�3, �k ,k+1,k+1�; and for N=3k+1 with k�4,
�k ,k ,k+1�. Thus jammed partitions indeed exist for N=9
and N�11.

Finally, we show that jammed states are impossible for
N
8 and N=10. As a preliminary, we need the following.

Lemma. Let ABC be imbalanced, ADC balanced, and
sAC=−1. Then one of the two triads ABD and BDC is bal-
anced, and the other is imbalanced.

Proof. Let sXYZ=sXYsYZsZX be the sign of the triad XYZ.
For the imbalanced ABC triad we have sABC=−1 while for
the balanced triad sACD=1. Using additionally the identities
sXY =sYX, sXY

2 =1, we obtain the product of the signs of triads
ABD and BDC:

sABDsBDC = sABsBDsDAsBDsDCsCB = sABsDAsDCsCB

= sABsBCsCAsACsCDsDA = sABCsACD = − 1,

from which the lemma immediately follows.
Now suppose that there is a jammed state in a network

with an even number of nodes N=2k. By definition, there is
at least one imbalanced triad in the jammed state; let ABC be
such an imbalanced triad with sAC=−1. Since the state is
stable, out of the N−2=2k−2 triads attached to the link AC,
at least k are balanced. �Note that this construction requires
k�3; however, it is trivial to show that there is no jammed
state for the case k=2�N=4��. Take k such balanced triads
and denote them ADjC, j=1, . . . ,k. To each pair of triads
ABC and ADjC we now apply the lemma. Then there is a
certain number x of imbalanced triads among ABDj and a
certain number y of imbalanced triads among CBDj, with
x+y=k. Stability ensures that there are at most k−2 imbal-
anced triads attached to the link AB. Recalling that ABC is
imbalanced and that there are x imbalanced triads ABDj, we
obtain x+1
k−2. A similar argument applied to link CB
leads to y+1
k−2. Summing these inequalities and using
x+y=k gives k�6 or N�12 for even N.

The case of odd N is similar. We set N=2k−1, with
k�3. Now each link is attached to at least k balanced triads
and at most k−1 imbalanced triads. Repeating the same ar-
gument as for the even case we obtain the conditions
x+1
k−1 and y+1
k−1 with x+y=k, which leads to
N�9 for odd N.

D. Number of jammed configurations

Last, we show that the number of jammed configurations
greatly exceeds the number of balanced configurations. The
total number of distinct network configurations is 2L. Each
balanced state has the form �m1 ,m2 �m1+m2=N�, and we
enumerate all classes of balanced states by counting the in-

teger solutions of m1+m2=N, with 0
m1
m2. Therefore
the number of classes of balanced states is B=k+1 for
N=2k and N=2k+1. The total number B of balanced states
is determined from

B = �
m1+m2=N

�m1 + m2

m1
� = 2N �29�

and is thus much larger than the number of classes of bal-
anced states.

For the number of classes of jammed states J and the
number of jammed states J, we can only establish lower
bounds. For large N, instead of exact counting we employ a
continuum description. From Eq. �28�, the number of
jammed partitions is equal to N2 times the area A of the
region inside the triangle x1+x2+x3
1 defined by inequali-
ties x1+x2�x3, x2+x3�x1, and x3+x1�x2; this area is
A=1/8. We also divide by 3!=6 to account for overcounting
different permutations of m1 ,m2 ,m3. Thus J�N2 /48. We
could improve this bound by counting additional jammed
states built from the construction in Fig. 7�c�, but this con-
tribution would not affect the N dependence of the bound.
However, we do not know whether J�N2 or J grows faster
than N2 due to the existence of jammed states, such as those
in Fig. 7�a�, that are not in the classes described in Sec. IV C.

We obtain a lower bound for J in a similar manner to that
in Eq. �29� for counting the number of balanced states,

J � �
jammed

�m1 + m2 + m3

m1,m2,m3
� � 3N, �30�

where the sum is over jammed partitions and the trinomial
coefficient is

�m1 + m2 + m3

m1,m2,m3
� =

�m1 + m2 + m3�!
m1!m2!m3!

.

The summand in Eq. �30� is sharply peaked around m1=m2
=m3=N /3, and therefore the sum is very close to 3N which is
the sum over all partitions. Again, the lower bound may be
weak because of the neglect of nontripartite jammed con-
figurations.

In summary, we find that J�3N
2N=B. Thus the total
number of jammed states greatly exceeds the total number of
balanced states. Nevertheless, for a random initial condition,
the probability to end in a balanced state is very close to 1
while the probability to end in a jammed state is negligible;
that is, the basin of attraction of balanced states greatly ex-
ceeds the basin of attraction of jammed states.

V. SUMMARY AND DISCUSSION

In social relations, we may encounter the uncomfortable
situation of an imbalanced triad. If you have two friends that
develop a mutual animosity, then an imbalanced triad of re-
lations exists. You will then likely have to choose between
these two friends, thereby resolving the social conflict and
restoring the relationship triads to balance. In this work, we
implemented simple and prototypical dynamical rules for
healing imbalanced triads and we investigated the resulting
evolution of these social networks.
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In the case of local triad dynamics, a finite network falls
into a socially balanced state, where no frustrated triads re-
main. The time to reach this final state depends very sensi-
tively on the propensity p for forming friendly links in the
update events that heal social imbalance. For an infinite net-
work, the balanced state is never reached when p�1/2 and
the system remains in a stationary state. The density of un-
friendly links gradually decreases and the network undergoes
a dynamical phase transition to an absorbing, paradise state
for p�1/2.

We also examined the dynamics in which an additional
global constraint is imposed that the number of imbalanced
triads in the entire network cannot increase in an update
event. The virtue of this dynamics is that the final outcome
is always reached quickly. A downside, however, is that
the final configuration of the network may be jammed—
these are states that are not balanced, but where flipping any
link increases the number of imbalanced triads. Fortunately,
the probability of reaching a jammed state is vanishingly
small and the final state is either a two-clique bipolar state or
paradise.

As alluded to in the Introduction, a natural application for
social balance ideas is to international relations, with the
prelude to World War I being a particularly appropriate ex-
ample. For example, the Three Emperors’ League �1872, re-
vived in 1881� aligned Germany, Austria-Hungary, and Rus-
sia, leaving France isolated. However, the Turkish-Russian
war �1877� and tension between Austria-Hungary and the
Balkan states unraveled Russia’s participation in the League,
and a bipartite agreement between Germany and Russia
lapsed in 1890. In the meantime, the Triple Alliance was
formed in 1882 that joined Germany, Austria-Hungary, and
Italy into a bloc that continued until World War I.

On the other hand, a French-Russian alliance was formed
over the period 1891–1894 that ended France’s diplomatic
isolation with respect to the Triple Alliance. Subsequently an
Entente Cordiale between France and Great Britain was con-
summated in 1904 and then a British-Russian agreement in
1907, after long-standing tensions between these two coun-
tries, that then bound France, Great Britain, and Russia into
the Triple Entente. While our historical account of these Byz-
antine maneuvers is very incomplete �see Ref. �14� for more
information�, the basic point is that among the six countries
that comprised the two major alliances, bipartite relation-
ships changed as triads became unbalanced and there was a
reorganization into a balanced state of the Triple Alliance
and the Triple Entente that became the two main protagonists
at the start of World War I.

On the theoretical side, there are several avenues for ad-
ditional research. One possibility is to relax the definition of
imbalanced somewhat. This is the direction followed by
Davis �9� who proposed the “clusters model” in which triads
with three unfriendly relations are deemed acceptable. The
clusters model thus allows for the possibility that “an enemy
of my enemy may still be my enemy.” This more relaxed
definition for imbalanced triads may lead to interesting dy-
namical behavior that will be worthwhile to explore.

Another natural generalization of the balance model
would be to ternary relationships of positive �, negative �,
or indifferent 0. These relations may lead to the emergence

of cliques �groups of mutual friends who dislike other
people� and communities �groups of mutual friends with no
relations with other people�. It would be interesting to study
the number of cliques and number of communities as a func-
tion of network size and the density of indifferent relation-
ships. Communities on the Web can be effectively identified
�20�, and these results may allow for useful comparisons
between data and model predictions. Finally, relations need
not be symmetric; that is, sij may be different from sji, and it
may be interesting to generalize the basic notions of balance
to networks with such asymmetric interactions.
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APPENDIX: FLUCTUATIONS IN LOCAL TRIAD
DYNAMICS

In this appendix, we compute the normalized variance
�= ��2�. We focus on the most interesting case of the critical
regime p=1/2, where fluctuations exhibit the asymptotic be-
havior of Eq. �16�. Then we briefly discuss the two regimes
p�1/2 and p�1/2.

We first note that A changes according to

A → �A − 1 rate N3,

A − 1 rate pN1,

A + 1 rate �1 − p�N1,
� �A1�

which describe the processes N3→N2, N1→N0, and
N1→N2, respectively. From �A1� we obtain

d

dt
�A� = − �N3� − p�N1� + �1 − p��N1� , �A2�

which simplifies to

d

dt
�A� = − �N3� �A3�

at the threshold p=1/2. Since �A��a and �N3�� �A3��a3 to
lowest order, Eq. �A3� can be written as

da

dt
= − a3, �A4�

whose solution is given by Eq. �11�. Similarly from �A1� we
obtain

d

dt
�A2� = ��− 2A + 1�N3� + p��− 2A + 1�N1�

+ �1 − p���2A + 1�N1� , �A5�

which, for p=1/2, simplifies to
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d

dt
�A2� = �N3� + �N1� − 2�AN3� . �A6�

Subtracting Eq. �A3� multiplied by 2�A� from Eq. �A6�, we
obtain the evolution equation for the variance:

d

dt
��A2� − �A�2� = �N3� + �N1� + 2��A��N3� − �AN3�� .

Now using standard methods �18� to compute moments of
the stochastic variable A=La+	L�, Eq. �15�, we obtain the
leading behavior �A2�− �A�2��, while �N3��a3 and �N1�
�3a�1−a�2. Similarly, the leading terms in �A��N3� and
�AN3� cancel, while the next correction is

�A��N3� − �AN3� � 3a2� − 6a2� . �A7�

Using these results for the various moments, the variance
satisfies

d�

dt
= − 6a2� + a3 + 3a�1 − a�2. �A8�

Dividing Eq. �A8� by Eq. �A4� we obtain

d�

da
=

6

a
� −

a3 + 3a�1 − a�2

a3 . �A9�

Since �=a6 solves the homogeneous equation d� /da
=6� /a, we seek a solution of the inhomogeneous equation
�A9� in the form �=a6s�a�. Equation �A9� becomes

ds

da
= −

a3 + 3a�1 − a�2

a9 = −
3

a8 +
6

a7 −
4

a6 ,

whose solution is

s =
3

7

1

a7 −
1

a6 +
4

5

1

a5 + C . �A10�

Thus �=a6s�a�, with s�a� given by Eq. �A10�. The integra-
tion constant C is fixed to satisfy the initial condition
��a0�=0. In particular, for a totally antagonistic initial net-
work ��0=0 or a0=1�, C=−8/35. In this case a=1/	1+2t,
and the variance becomes

� =
3

7

1

a
− 1 +

4

5
a −

8

35
a6. �A11�

The leading asymptotic behavior �→ �3	2/7�t1/2 holds
independent of the initial condition. Hence we establish the
crucial result �16�, which leads to the asymptotic behavior
�18� for the absorption time for p=1/2.

For p�1/2, or �=1−2p�0, we recast Eq. �A2� into

da

dt
= 3�a�1 − a�2 − a3, �A12�

which is of course identical to Eq. �9�. Following the same
steps that led to Eq. �A8�, we then derive for the variance

d�

dt
= a3 + 3a�1 − a�2 − 6��a2 − ��1 − a��1 − 3a�� .

�A13�

When p�1/2, both a and � quickly approach stationary
values

a	 =
	3�

	3� + 1
, �	 =

3

4

1
	3�

1 + �

�	3� + 1�2
. �A14�

The density of unfriendly links in a finite system therefore
exhibits fluctuations of the order of 	�	 /L about the average
density a	. Close to the phase transition point, the magnitude
of fluctuations eventually becomes comparable with the av-
erage. From a	
	�	 /L and Eq. �A14�, we find that this
equality occurs when �
N−4/3; this gives an estimate of the
width of the phase transition region due to finite-size effects.

When p�1/2, both a and � vanish as t→	. A straight-
forward asymptotic analysis of Eq. �A13� yields

� →
a

���
�

a

2p − 1
as a → 0. �A15�

Fluctuations become comparable with the deterministic
part when a
	� /L
	a / �2p−1�L—that is, when La

�2p−1�−1. Using a
e−3�2p−1�t from Eq. �13� we estimate
the time to reach paradise to be

TN 
 �2p − 1�−1 ln��2p − 1�N2� . �A16�

The difference between this result and Eq. �19�, which was
established using the naive criterion La
1, is small because
the factor 2p−1 appears inside the logarithm.
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