
Complex networks emerging from fluctuating random graphs: Analytic formula for the hidden
variable distribution

Sumiyoshi Abe1,* and Stefan Thurner2,†

1Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan
2Complex Systems Research Group, HNO, Medizinische Universität Wien, Währinger Gürtel 18-20, Vienna A-1090, Austria

�Received 29 January 2005; revised manuscript received 6 June 2005; published 2 September 2005�

In analogy to superstatistics, which connects Boltzmann-Gibbs statistical mechanics to its generalizations
through temperature fluctuations, complex networks are constructed from fluctuating Erdös-Rényi random
graphs. Using a quantum-mechanical method, the exact analytic formula for the hidden variable distribution is
presented which describes the nature of the fluctuations and generates a generic degree distribution through the
Poisson transformation. As an example, a static scale-free network is discussed and the corresponding hidden
variable distribution is found to decay as a power law and to diverge at the origin.
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In recent years, much effort has been devoted to the in-
vestigation of network structures underlying artificial as well
as natural complex systems. There, a vertex and an edge
represent an element and a relation between elements, re-
spectively. The main focus here is on the topological struc-
ture of networks, whereas the physical details of interactions
between elements play rather marginal roles. This certainly
offers the possibility for an efficient approach to an under-
standing of collective behaviors in complex systems. Studies
along these lines were initiated by the works of Watts and
Strogatz �1� on small-world networks and of Barabási and
Albert �2� on scale-free networks, see also �3�. These models
are fundamentally different from random graphs considered
by Erdös and Rényi �4�, see also �5�, in the following two
points: �i� small-world networks have much larger values of
the clustering coefficient �1� than random graphs, showing
strong correlations between the edges, and �ii� the degree
distribution of a scale-free network has the form �2�

psf�k� �
1

�k + k0�� �1�

with vertex connectivity, k, and constants, k0� �0,1� and �
�1, in contrast to the Poisson distribution for a random
graph.

The scale-free degree distribution in Eq. �1� implies that
there exist a significant number of vertices that have high
values of connectivity �hubs�. Such a structure is profoundly
relevant to the concept of robustness and vulnerability of the
network �6�.

In �2� it has been discussed that the so-called preferential
attachment rule is sufficient for realizing a growing scale-
free network. The rule implies that a vertex created anew
tends to be linked to an old vertex with probability propor-
tional to the connectivity of that old vertex. Preferential at-
tachment may be capable of explaining structures such as the
Internet �7�, the World Wide Web �3�, and patterns of citing

scientific papers �8�, however it does not seem to explain the
nature of biological networks such as food webs �9�, meta-
bolic networks �10�, and protein architectures in cells �11�.
This indicates that there should exist a variety of mecha-
nisms, which lead to scale-free statistics in Eq. �1�.

There are in fact some methods of generating scale-free
networks which do not assume growth and preferential at-
tachment. For example, in a static model given in �12�, a
weight factor of the specific form is assigned to each vertex.
Then, two vertices are randomly selected with the probability
proportional to their weights and are connected by an edge if
they were not already linked, otherwise they are discarded.
Such an algorithm leads to Eq. �1� with ��2 for large k.
Another static model proposed in �13� introduces varying
vertex fitness. This idea has further been elaborated in �14�,
see also �15�. Nowadays, varying fitness is referred to as the
hidden variable in the literature.

In this paper, we construct static complex networks by
making use of fluctuating random graphs. Our discussion,
which puts an analytical basis on previous works �12–15�, is
guided by the spirit of superstatistics �16–20� that establishes
a connection between Boltzmann-Gibbs statistical mechanics
and its generalizations based on temperature fluctuations. An
essential point here is the analogy of Erdös-Rényi random
graph theory to Boltzmann-Gibbs statistical mechanics: in
the latter, the temperature of a canonical ensemble is fixed,
while the probability of connecting each of the two vertices
is fixed in the former. Therefore, temperature fluctuations
correspond to a varying probability of connection of vertices.
Applying a quantum-mechanical method, we derive a gen-
eral formula for the hidden variable distribution which re-
lates a general complex network to a random graph. As an
example, we analyze a scale-free network in detail and
present the explicit analytic formula for the associated hid-
den variable distribution, which is found to decay as a power
law. The numerical result presented in �13� can thus be ex-
plained analytically.

Let us recall the classical discussion about random graphs
of Erdös and Rényi. Consider N vertices. Each pair of verti-
ces is connected by an edge with probability, q. New edges
are attached in this way, up to the total number, N−1. Then,
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the probability of finding a vertex with degree �connectivity�
k is given by the binomial distribution, which in the large-N
limit becomes Poissonian,

prandom�k� =
�k

k!
e−� �k = 0,1,2, . . . � , �2�

where � is a fixed constant, q�N−1�. This is the analog of the
canonical distribution in Boltzmann-Gibbs statistical me-
chanics, and accordingly � is seen to correspond most natu-
rally to temperature.

Now, a question is how the degree distribution can change
if � is a stochastic variable, in analogy with temperature
fluctuation in superstatistics �16–20�. In this case, the distri-
bution in Eq. �2� is regarded as a conditional probability
distribution, prandom�k ���. Thus, for a certain degree distribu-
tion, p�k�, we have

�
0

�

d�����
�k

k!
e−� = p�k� , �3�

where ���� is the associated hidden variable distribution
�13–15�. In other words, p�k� is the marginal of the joint
probability, ����prandom�k ���. Equation �3� implies that p�k�
is the Poisson transformation of the hidden variable distribu-
tion. In this way, we are able to construct a wide class of
complex networks from a fluctuating random graph.

First, let us consider a general form of p�k�. This is of
obvious importance since real-world networks have diverse
structures, but they can still be characterized by their degree
distributions �21�. To find the form of ����, we employ a
quantum-mechanical method. In particular, we use the coher-
ent state of the harmonic oscillator with unit mass and fre-
quency. The Planck constant is set equal to unity. The cre-
ation and annihilation operators, â† and â, satisfy the
following algebra: �â , â†�=1, �â , â�= �â† , â†�=0. The ground
state is defined by â�0�=0, and the k-particle state is given by
�k�= �k!�−1/2�â†�k�0�, which is the eigenstate of the number
operator, n̂= â†â, that is, n̂�k�=k�k�. 	�k�
k=0,1,2,. . . forms an
orthonormal complete set, the Fock basis. The coherent state,
���, is defined by ���=e−���2/2�k=0

� ��k /�k!��k�, where � is a
complex variable. It also forms the �over�complete set, sat-
isfying �−1

d2�������=1, where d2��d�Re ��d�Im ��
and the domain of integration is the whole complex � plane.
It should be noted that the number distribution in the coher-
ent state is Poissonian: ��k ����2= �����2�k /k!�e−���2/2. Now, we
consider the P representation of a density matrix �̂ �22,23�,

�̂ =� � d2�P��,�*���� ��� . �4�

The function P�� ,�*� may be singular and negative in gen-
eral �however, as we shall see, it turns out to behave well as
a probability distribution in the present context�. Assume that
�̂ is a certain function of the number operator,

�̂ = p�n̂� . �5�

Then, it follows from Eq. �4� that

� � d2�P��,�*�
����2�k

k!
e−���2/2 = p�k� . �6�

In this representation, the degree distribution is the analog of
the energy �i.e., particle number� distribution. It may be of
interest to develop the second quantization formalism for
constructing a network based on such an analogy. Since �̂ is
the function of the number operator, P�� ,�*� is a function
only of ���2. Therefore, with the identification �↔ ���2, we
see the parallelism between Eqs. �3� and �6�. A crucial point
is that it is possible to conversely express P�� ,�*� in Eq. �4�
in terms of �̂ as follows �23�:

P��,�*� =
1

�2e���2� � d2	�− 	��̂�	�e�	�2e�	*−�*	. �7�

From this equation, we can arrive at the general analytic
formula for the hidden variable distribution,

���� = �P��,�*� =
1

�
e���2� � d2	e�	*−�*	�

k=0

�

p�k�
�− �	�2�k

k!

�8�

with �����2.
Finally, let us calculate as an important example the hid-

den variable distribution for a scale-free network character-
ized by the degree distribution in Eq. �1�. In this case, the
normalized density matrix is taken to be

�̂sf =
A

�n̂ + k0��
, �9�

A−1 = 
��,k0� , �10�

where 
�s ,a� is Hurwitz’s generalized zeta function �24�,
which is well defined for s�1 �but can be analytically con-
tinued to an arbitrary complex s except for the singularity at
s=1�. Using the Mellin transformation of �̂sf, that is, �̂sf
= �
�� ,k0������−1
0

�dtt�−1e−�n̂+k0�t with Euler’s gamma

FIG. 1. The log-log plot of �sf��� with respect to � with
��=��=2.5 and k0=0.5. All quantities are dimensionless.
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function ��z�, we obtain the following analytic formula for
the hidden variable distribution:

�sf��� =
1


��,k0������0

�

dtt�−1 exp��1 − k0�t − �et − 1��� ,

�11�

which may be seen as a main analytic result of the present
work for the example of a scale-free network.

The first and second moments of the distribution in Eq.
�11� are analytically calculated to be

��� =

�� − 1,k0�


��,k0�
− k0, �12�

��2� =

�� − 2,k0�


��,k0�
− �2k0 + 1�


�� − 1,k0�

��,k0�

+ k0�k0 + 1� ,

�13�

respectively. From Eqs. �11�–�13�, it is clear that �sf��� de-
cays as a power law,

�sf��� �
1

�� �14�

with the same value of the exponent as that of the degree
distribution

� = � . �15�

However, more significant may be the divergence of �sf���
in the limit �→ +0, which could be observed only through
the analytic formula in Eq. �11�.

In Fig. 1, we present the plot of �sf��� with respect to �,
where the asymptotic power law is recognized.

In conclusion, we have constructed in the spirit of super-
statistics a generic complex network by introducing fluctua-
tions to random graphs. We have derived the exact analytic
formula for the hidden variable distribution which describes
the fluctuation and generates a general form of the degree
distribution through the Poisson transformation. As an ex-
ample, we have considered a static scale-free network. We
have explicitly calculated the associated hidden variable dis-
tribution and have shown that it decays as a power law with
the same exponent as that of the degree distribution and di-
verges at the origin.
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