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We consider a fluid close to its gas-liquid critical point in a bottom-heated cavity. Due to strong density
stratification, both the Schwarzschild and the Rayleigh stability criteria are relevant at the same space scale.
Taking advantage of the competition between these two limits of the convection-onset criterion, we numeri-
cally exhibit striking non-Boussinesq effects: the reverse transition to stability through the Schwarzschild line
of a heat diffusing layer subjected to convection, and the convection onset inside a few-millimeters-thick layer
according to the Schwarzschild criterion.
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When approaching the gas-liquid critical point, several
physical properties of a fluid exhibit strong anomalies. Par-
ticularly, the thermal diffusivity vanishes while the isother-
mal compressibility and the thermal expansion coefficient
tend to infinity. These specific properties lead to a puzzling
heat transfer mechanism: the piston effect �PE� responsible
for the fast temperature equilibrium in a supercritical fluid
�SCF� �1�. In the late 1990s, the interaction between natural
convection and the PE prompted many teams �2–5� to lean
towards the Rayleigh-Bénard configuration. This configura-
tion turned to be a quite interesting system to study hydro-
dynamic stability because, for the SCF, the convection
threshold is governed by a criterion that takes into account
two competitive terms, which, for a normally compressible
fluid, are separately relevant at very different space scales:
The term corresponding to the classical Rayleigh criterion
deriving from the Boussinesq approximation in which the
compressibility of a fluid is completely neglected �thus valid
at small and intermediate space scales�, and the term corre-
sponding to the Schwarzschild criterion �or adiabatic tem-
perature gradient criterion�, which usually plays at large at-
mospheric scales where the effect of the hydrostatic pressure
is prominent. Indeed, the results of the theoretical analysis,
obtained in the 1970s by Gitterman and Steinberg �6�,
showed that, owing to the divergence of the isothermal com-
pressibility of the SCF, the classical Rayleigh criterion
should be modified to take into account the fluid stratification
and thus including the Schwarzschild criterion. Experimental
�2,3� and numerical �4,5� studies confirmed the relevance of
the Schwarzschild contribution. Indeed, these works show,
among others, the existence of a cut-off temperature differ-
ence inside the fluid layer under which no convective motion
is triggered no matter how thick the layer becomes. More-
over, in a thorough numerical work �4�, the authors suspected
that, due to the competition between the two stability criteria,
a diffusing SCF layer subjected to convection might regain
stability through the Schwarzschild line without any external
intervention; this long-awaited result turns now to be a fact.
This paper has a twofold goal. We show first how the
Schwarzschild contribution can have a stabilizing effect

leading to a reverse transition to stability �RTS� of a SCF
diffusing layer subjected to convection. Then, we show how
convection may be triggered in a few-millimeters-thick layer
according to the Schwarzschild criterion usually encountered
for large air columns. This event, observed experimentally
by Kogan and Meyer �2� by reducing the critical point prox-
imity, is exhibited here in completely different conditions
with the information that only a numerical solution can pro-
vide.

A SCF is enclosed in a rectangular two-dimensional �2D�
cavity of height H=15 mm and width L=10 mm, and sub-
jected to earth gravity g �Fig. 1�. Periodic lateral boundaries
are considered in order to simulate the infinite fluid layer
used in theoretical studies �6�. The bottom and top bound-
aries are both rigid and no-slip walls. Initially, the fluid is at
rest, in thermodynamic equilibrium at a constant temperature
Ti slightly above the critical temperature Tc such that Ti
= �1+��Tc, ��1. The fluid is stratified in pressure and den-
sity with a mean density equal to its critical value �c. The
numerical simulation starts by increasing the bottom plate
temperature by �T ��T� few mK� while maintaining the top
plate at its initial temperature Ti.

In addition to the classical Navier-Stokes equations, the

FIG. 1. The Rayleigh-Bénard configuration. The temperature
field structured by the PE.
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mathematical model consists of the energy and state equa-
tions written for a Newtonian van der Waals fluid �7�,

Energy equation:
���CVT�

�t
+ ���CVvT� = − �P + a�2���v�

+ ��� � T� + � ,

Equation of state: P =
�RT

1 − b�
− a�2,

where t is the time and v is the velocity. P, T, and �, are,
respectively, the pressure, the temperature, and the density.
� is the viscous dissipation function. R is the perfect gas
constant, a and b are, respectively, the energy parameter and
the covolume calculated from the critical coordinates: a
=9RTc / �8�c� and b=1/ �3�c�. A �T /Tc−1�−0.5 law is used to
describe the critical divergence of the thermal conductivity
�, while the heat capacity at constant volume CV and the
dynamic viscosity � are supposedly equal to those of a per-
fect gas, CV0 and �0, respectively. We consider the CO2 criti-
cal coordinates �Tc=304.13 K,�c=467.8 Kg/m3�, and trans-
port properties �CV0=472.2 J /Kg/K,�0=3.44	10−5 Pa s�.
The simulations were carried out for Ti−Tc=1 K.

A fully implicit finite-volume method is used to solve the
governing equations in a low Mach number approximation
adapted to the SCF buoyant flows, which, by accounting for
the fluid compressibility with respect to the hydrostatic pres-
sure, is essential for a correct prediction of the convection
onset induced by a weak heating in a SCF �8�. The method is
second-order accurate in space and third-order in time and
has been thoroughly validated �9�. The mesh size for a grid-
independent solution depends on the heating applied to the
bottom plate, the finest being of 100	140 nodes. The mesh
is refined near the walls while it is uniform in the horizontal
direction.

The bottom heating induces a thin hot boundary layer
�HBL�. Due to the high thermal expansion coefficient of
SCF, this hot layer expands upward compressing adiabati-
cally the rest of the fluid leading to a fast and homogeneous
increase of the temperature in the bulk of the cavity by ther-
moacoustic effects. This sequence of events is the so-called
PE. Since the top plate temperature is kept constant, a cold
boundary layer settles along the top plate �Fig. 1�. The ther-
mal boundary layers grow with time at the heat diffusion
speed; when the local Rayleigh number Ra, based on the
HBL thickness, h, and on the temperature difference inside
it, 
T, exceeds the critical value Rac=1100.6, the layer be-
comes unstable. The convection-onset criterion of a bottom-
heated SCF layer �6� is given by

Ra =
gh4��cCP

��
�
T

h
−

gTi�

CP
� 
 Rac, �1�

where �, �, and CP are, respectively, the thermal expansion
coefficient, the kinematic viscosity, and the heat capacity at
constant pressure. The term gTi� /CP is the temperature gra-
dient obtained by moving adiabatically a fluid particle along
the hydrostatic pressure gradient; it represents the contribu-

tion of the Schwarzschild criterion according to which con-
vection arises in a fluid layer when


T

h



gTi�

CP
. �2�

In Fig. 2, the critical value of 
T for the convection onset is
derived from Eq. �1� and plotted vs h �the thick solid line�.
This neutral stability curve consists of two lines representing
the limits of the convection-onset criterion �Eq. �1�� depend-
ing on h. For small values of h, the fluid compressibility can
be neglected and the HBL stability is governed by the clas-
sical Rayleigh criterion, obtained from Eq. �1� by dropping
the term gTi� /CP, while for larger values of h, viscosity and
thermal diffusion are neglected, and the stability depends on
the Schwarzschild criterion given by Eq. �2�. As the HBL
thickens with time, the evolution curve 
T�h� will cross the
Rayleigh line first, which prevents the convection onset from
occuring according to the Schwarzschild criterion. But Fig. 2
suggests that, after crossing the Rayleigh line, a RTS through
the Schwarzschild one might occur if the HBL kept growing
in the unstable zone.

However, this RTS cannot be obtained for any heating;
indeed, let us consider the case of �T=0.5 mK. For a unique
definition valid before and after the convection onset, the
thickness of the HBL for this heating is evaluated as the
distance from the bottom plate where the local temperature
gradient reaches the global one �T /H. In all that follows, h
is the average thickness of the HBL in the horizontal direc-
tion. As the evolution curve 
T�h� �shown in Fig. 2� crosses
the Rayleigh line, the HBL becomes unstable, and the infini-
tesimal perturbations are amplified into a number of convec-
tive cells taking place along the bottom plate. The instant
corresponding to the symbol ��� on the curve is followed by
an exponential increase of the vortices intensity; it is easily

FIG. 2. Evolution of the temperature difference 
T in the HBL
as a function of this latter thickness h. The symbols ��� and ���
represent, respectively, the time when the intensity of the bottom
plate vortices increases exponentially, and the time when the HBL
collapses. The points A, B, C, and D correspond to the snapshots of
the temperature field given in Fig. 5.
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identified on the time evolution of the enstrophy �or squared
vorticity vector modulus� field average in the lower half of
the cavity shown in Fig. 3. The intensity of these vortices
increases until it produces an enough amount of convective
transfer to deform the isotherms with several thermal plumes
rising from the HBL and causing this latter to collapse. Rep-
resented by the symbol ��� in Fig. 2 and more clearly illus-
trated in Fig. 4, this collapse of the HBL prevents the evolu-
tion curve 
T�h� from reaching the Schwarzschild line.
Figure 5�a� shows the temperature field corresponding to
point �A� in Fig. 2. The convection-dominated flow that fol-
lows the collapse of the HBL is three dimensional �10�; how-
ever, the 2D approximation remains a good approach as far
as the onset of convection is sought.

In order to cross the Schwarzschild line, two scenarios are
considered. �i� For a certain weak heating, the convective
transfer would deform the isotherms without causing the col-
lapse of the HBL; this latter would then keep growing to
stabilize again after crossing the Schwarzschild line. �ii�

Starting with an even weaker heating, the curve 
T�h� would
cross under the unstable zone; when its ending point gets
under the Schwarzschild line, the temperature of the bottom
plate might be increased and the Schwarzschild line would
be crossed from below. For both of these scenarios, the
height of the cavity must be large enough to allow the
growth of the thermal boundary layers, and the choice H
=15 mm is a compromise between this requirement and the
mesh size. This point forward, we use the classical definition
of the thermal boundary layer thickness, i.e., the distance
from the bottom plate where the local temperature reaches
the bulk one with a relative difference less than 1%.

A RTS through the Schwarzschild line was obtained for
�T�0.24 mK; we consider here the case �T=0.24 mK.
Once the evolution curve 
T�h� has crossed into the unstable
zone �Fig. 2�, convective cells start to get organized along
the bottom plate, and at point denoted by ��� in Figs. 2 and
3, the intensity of these vortices rises exponentially with time
to reach a maximum and then it starts to decrease once 
T�h�
has crossed the Schwarzschild line towards the stable zone
�Fig. 3�. When this maximum is reached, the most intense
deformation of the isotherms is obtained. However, this de-
formation, shown in Fig. 5�b� and corresponding to point �B�
in Fig. 2, is not large enough to induce the collapse of the

FIG. 3. Time evolution of the enstrophy field average in the
lower half of the cavity. The point denoted ��� shows the beginning
of the exponential increase lasting until convection deforms the
isotherms.

FIG. 4. Time evolution of the HBL thickness. For the RTS and
the COS scenarios, the HBL thickness increases continuously
whereas, for �T=0.5 mK, it brutally decreases when thermal
plumes emerge from the HBL, causing its collapse.

FIG. 5. Snapshots of the temperature field. �a�, �b�, �c�, and �d�
correspond, respectively, to points A, B, C, and D in Fig. 2. �a�
shows the convection onset for �T=0.5 mK �t=69.2 s�. �b� and �c�
show, respectively, for �T=0.24 mK the destabilization �t
=196.9 s� and the RTS �t=692.3 s�. �d� shows the COS �t
=238.6 s�.
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HBL, which keeps growing, as shown in Fig. 4, and the
curve 
T�h� remains in the stable zone. Once the convective
motion is sufficiently damped out, the isotherms distortion in
the HBL disappears as shown in Fig. 5�c�, which corresponds
to point �C� in Fig. 2.

The convection onset according to the Schwarzschild cri-
terion �COS� requires two time-phases heating process. In
the first phase, a constant heating �T=0.12 mK is applied to
the bottom plate. For this weak heating, the evolution curve

T�h�, shown in Fig. 2, remains in the stable zone. This first
phase is maintained as long as necessary to bring the ending
point of 
T�h� under the Schwarzschild line; it lasts about
58 s. The second heating phase consists in increasing �T up
to 0.3 mK in 87 s according to a cosine law. This new heat-
ing induces, inside the HBL, a new thermal boundary layer
that, by expanding, induces a new PE that heats up homoge-
neously the bulk phase. On one hand, the second heating is
slow enough to prevent the convection onset inside the new
thermal boundary layer according to the Rayleigh criterion,
and to merge this new layer into the previously formed HBL.
On the other hand, despite the diminishing factors of the
temperature gradient inside the HBL �the growth of the HBL
and the increase of the bulk temperature by the new PE�, the
bottom heating is fast enough so that the temperature gradi-
ent inside the HBL exceeds the adiabatic one �Eq. �2��. Once
the evolution curve 
T�h� has crossed the Schwarzschild
line, convective cells appear in the whole thickness of the
HBL �Fig. 6�, and not inside the thermal boundary layer
induced by the second heating phase. At point denoted ��� in
Figs. 2 and 3, the intensity of these vortices increases expo-
nentially with time, deforming the isotherms by a number of

convective plumes and causing the collapse of the HBL. The
temperature field after this collapse, at t=238.6 s �corre-
sponding to point �D� in Fig. 2�, is shown in Fig. 5�d�.

Owing to its high compressibility, the SCF allows in a
same cell the interaction between the Rayleigh and the
Schwarzschild stability criteria, an interaction that is impos-
sible in a normally compressible fluid. In this paper, we
showed how the competition of these two limits of the
convection-onset criterion yields to a unique hydrodynamic
behaviour of a SCF: the RTS of a heat diffusion layer sub-
jected to convection without any external intervention. We
also showed how convection can be triggered in a few-
millimeters-thick SCF layer according to the Schwarzschild
criterion, which might be of some help in simulating atmo-
sphericlike phenomena at small space scale.
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FIG. 6. Isotherms �a� and streamlines �b� during the COS sce-
nario �t=226.4 s�, showing that convection arises in the whole
thickness of the HBL.
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