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Experimental observations on synaptic plasticity at individual glutamatergic synapses from the CA3 Shaffer
collateral pathway onto CA1 pyramidal cells in the hippocampus suggest that the transitions in synaptic
strength occur among discrete levels at individual synapses �C. C. H. Petersen et al., Proc. Natl. Acad. Sci.
USA 85, 4732 �1998�; O’Connor, Wittenberg, and Wang, D. H. O’Connor et al., Proc. Natl. Acad. Sci. USA
�to be published�; J. M. Montgomery and D. V. Madison, Trends Neurosci. 27, 744 �2004��. This happens for
both long term potentiation �LTP� and long term depression �LTD� induction protocols. O’Connor, Wittenberg,
and Wang have argued that three states would account for their observations on individual synapses in the
CA3-CA1 pathway. We develop a quantitative model of this three-state system with transitions among the
states determined by a competition between kinases and phosphatases shown by D. H. O’Connor et al., to be
determinant of LTP and LTD, respectively. Specific predictions for various plasticity protocols are given by
coupling this description of discrete synaptic �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid �AMPA�
receptor ligand gated ion channel conductance changes to a model of postsynaptic membrane potential and
associated intracellular calcium fluxes to yield the transition rates among the states. We then present various
LTP and LTD induction protocols to the model system and report the resulting whole cell changes in AMPA
conductance. We also examine the effect of our discrete state synaptic plasticity model on the synchronization
of realistic oscillating neurons. We show that one-to-one synchronization is enhanced by the plasticity we
discuss here and the presynaptic and postsynaptic oscillations are in phase. Synaptic strength saturates naturally
in this model and does not require artificial upper or lower cutoffs, in contrast to earlier models of plasticity.
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I. INTRODUCTION

Experiments on synaptic plasticity at individual synapses
in CA3 to CA1 hippocampal pathways reveal an “all-or-
none” change in their synaptic strength �1,2�. Indications of
this were seen a decade ago �C. F. Stevens and Y. Wang
�personal communication��. The recent measurements have
given substantial standing to the notion that single synapses
may operate as a discrete state system in their plastic changes
associated with long-term potentiation �LTP� and long-term
depression �LTD�.

In this paper we first explore a general formulation of the
possibility that individual synapses can express a finite num-
ber of discrete levels of conductance rather than the continu-
ous or graded or analog picture often formulated �3–6�. Pe-

tersen et al. �1� have commented on the positive
consequences for reliability of neural memory from discrete
state synapses. In addition there is computational evidence
for entry of a small number of free Ca2+ ions through volgate
gated calcium channels and �N-methyl-D-aspartic acid�
�NMDA� receptor ligand gated ion channel activated by syn-
aptic stimulation during plasticity induction protocol �7�. A
synapse which must respond to this very small signal might
well select a strategy of an “all-or-none” response in adjust-
ing its strength as a means of achieving a measure of reli-
ability.

There are studies of network models using discrete state
synapses �8� where the discreteness of the synaptic states is
introduced as a useful computational device and not related
to the observations of Petersen et al. �1� or others �9,10�.

After a brief consideration of a general formulation of an
L level synapse, we focus our attention on L=3, which is
suggested by the recent data of Ref. �9�. With three levels we
explore the transitions among the levels using observations
of Ref. �9�. With some general arguments based on the mea-
surements, we are able to establish values for the normalized
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conductances of the individual L=3 levels, and we suggest
an experiment which will determine an interesting ratio
among the transition rates. Montgomery and Madison �10�
discuss the possibility of four discrete synaptic states, but it
appears that because of the way they identify these states and
the stability of one of the state, their identification may be
equivalent to that of O’Conner, Wittenberg, and Wang �9�.

The transition rates themselves depend on a model
for how complex chemical pathways lead to the change
in �-amino-3-hydroxy-5-methyl-4-isoxazolapropionic acid
�AMPA� conductance and the number of AMPA receptors at
any synapse �11–16�. We adopt a version of our earlier
model �6� of these processes to provide a basis on which to
make quantitative predictions of the outcome of various LTP
and LTD induction protocols on the changes in AMPA con-
ductance of a postsynaptic cell. We explore spike time-
dependent protocols as well as presentation of spike bursts of
various frequencies to the postsynaptic cell. These compare
well to experiment, in particular to results presented in Wit-
tenberg’s dissertation �17�, and predictions are made for vari-
ous spike timing experiments.

We also explore the following setup: a periodically firing
conductance based presynaptic neuron provides excitatory
synaptic input to a periodically firing conductance based
postsynaptic neuron. In certain ranges of frequency and con-
ductance strength for the excitatory connection these neurons
synchronize �18�. We explore the effect on this synchroniza-
tion of our discrete synaptic strength model and show that
the regime of one-to-one synchronization is significantly en-
larged �19� for some conductance strengths and that the syn-
chronization is an in-phase firing of the two neurons.

It is an important feature of models built on a finite num-
ber of discrete synaptic levels that the synaptic strength
�AMPA conductance� is always bounded above and below.
This is in contrast to models developed over the years, in-
cluding our own �6,20�, which do not have this property.

II. METHODS

A. Discrete state synapses: Transition rate models

The data of Ref. �9� suggest that three discrete states of
AMPA conductance are found at individual synapses. If the
total number of levels is L and they are indexed by l
=0,1 ,2 , . . . ,L−1, and there are NS synapses indexed by n
=1,2 , . . . ,NS, then we represent the occupation of synapse n
in state l at time t by Nl

n�t�. These occupation numbers are
either zero or unity. They can change in time due to LTP/
LTD induction protocols or other biological processes. The
average occupation number in state l is given by

pl�t� =
1

NS
�
n=1

NS

Nl
�n��t� . �1�

These pl�t� will constitute the main dynamical variables
of our model. They are taken to satisfy linear rate equations
of the form

dpl�t�
dt

= �
k=0

L−1

�W�k→l��t�pk�t� − W�l→k��t�pl�t�� . �2�

The transition rates W�k→l��t� ,W�l→k��t� are selected to assure

�
k=0

L−1

pk�t� = 1. �3�

As long as the number of active synapses NS is unchanged,
this last equation follows from the definition of pk�t�. In the
limit of NS large, we assume that the pl�t� remain finite; this
is a standard assumption about such a limit for the descrip-
tion of a large number of objects each having a discrete set of
states.

A statistical description of NS�1 independent synapses
undergoing time dependent transitions among the allowed L
states yields Eq. �1� on the average with fluctuations about
this mean of order 1 /�NS, as one might expect.

One can collect the average occupation numbers into an
L-dimensional vector P�t�= (p0�t� , p1�t� , . . . , pL−1�t�) which
satisfies

dP�t�
dt

= M�t� · P�t� , �4�

where M�t� is the L�L matrix of transition rates. The con-
servation rule �3� means that M�t� always has at least one
zero eigenvalue �21,22�. The dynamics of P�t� takes place in
the �L−1�-dimensional space orthogonal to the constant
L-dimensional vector C= �1,1 ,1 , . . . ,1�.

The effect of having this constraint may be seen in the
decomposition of P�t�=C+P��t�, where P��t� ·C=0. The
dynamics of motion for P��t� is

dP��t�
dt

= M�t� · P��t� + M�t� · C , �5�

which is motion of the vector P��t� spanning the
�L−1�-dimensional space orthogonal to C driven by the
time-dependent forcing M�t� ·C. P��t� is defined up to a ro-
tation about C. This dynamical description is similar to that
of driven precession of a spin in a time-dependent magnetic
field.

Each discrete level l=0,1 , . . . ,L−1 has a dimensionless
AMPA conductance gl normalized to some baseline. The di-
mensionless AMPA conductance of the neuron with NS syn-
apses is

GAMPA�t� = �
n=1

NS

�
l=0

L−1

glNl
n�t� = NS�

l=0

L−1

glpl�t� . �6�

This means that the quantity

GAMPA�t�
NS

= �
l=0

L−1

glpl�t� , �7�

the normalized, dimensionless AMPA conductance per syn-
apse, is independent of the number of synapses when NS is
large, depending only on the average occupation number of
the synaptic levels and the conductance associated with each
level. By definition of the baseline synaptic state, before any
LTP/LTD induction protocols are presented to the postsynap-
tic neuron, this quantity is equal to 1:
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GAMPA�t = 0�
NS

= 1. �8�

In our work below, we report the quantity GAMPA�t� /NS−1 as
the output from our simulation of various induction proto-
cols.

To fully specify the model of synaptic plasticity associ-
ated with the presence of discrete levels, we must identify
the conductances gl of each level, and, through some form of
dynamics of the postsynaptic neuron, determine the transi-
tion rates. In the next section we do this for the suggested
three state model of Ref. �9�. However, if observations indi-
cate that there are L�3 levels operating at some synapses,
then the general formulation presented here will cover that
situation as well.

B. Discrete state synaptic models

1. Two state model

In Refs. �2,9� there is clear evidence for a discrete two
state system at individual synapses and measurements show-
ing that the synapses appears to make sudden jumps between
the two states. Yet in Ref. �9� there is presented evidence that
when one presents a saturating LTD protcol followed by
saturating LTP protocol, the LTD is fully reversible, while
the opposite is not the case. We have chosen to investigate a
three state synaptic model in this paper and include in the
discussion the “locked-in” state called H* by O’Conner, Wit-
tenberg, and Wang �9�. Two state systems have been exam-
ined by Ref. �8�, though not using the biophysical model for
transitions between or among states developed here.

2. Three state model

If there are three states l=0,1 ,2 then we need to identify
three discrete level conductances g0 ,g1 ,g2 and the transition
rates among the levels �9� call their three levels “low” �state
0 here�, high �state 1 here�, and “high locked-in” �state 2
here�. They suggest that transitions associated with LTD pro-
tocols connect state 1 to state 0, and transitions associated
with higher frequency protocols, typically leading to LTP,
connect state 0 to state 1 and state 1 to state 2. They also note
that when an LTD protocol is applied following a saturating
LTP protocol to a population of synapses, the synapses can-
not be depressed as fully as when the LTD protocol is ap-
plied to a naive population of synapses. The amount of de-
potentiation possible decreases over the 10 min following
LTP induction. This led them to suggest the presence of a
“high locked-in” state, called H* by them; we call this state
2. They do not require transitions between state 2 and state 0
to account for their data, and we assume none as well.

Using these observations we associate an “LTD transition
rate” g�t� with the transition between state 1 and state 0.
Similarly we associate an “LTP transition rate” f�t� with tran-
sitions between state 0 and state 1. Loosely speaking we
think of g�t� as an aggregated action of phosphatases leading
to the dephosphorylation and/or removal of synaptic AMPA
receptors and f�t� as the aggregated action of kinases oper-
ating in the opposite fashion �12,13�. In the next section we

will specify how one evaluates these transition rates from a
dynamical model of the postsynaptic neuron, but for the mo-
ment we note that f and g will depend on the elevation of
intracellular postsynaptic calcium concentrations �Ca2+�i�t�
above the equilibrium level C0	100 nM. Denoting the time
course of postsynaptic intracellular calcium concentration as
C�t�= �Ca2+�i�t�, we define

�C�t� =
C�t� − C0

C0
, �9�

and the transition rates f�t� ,g�t� are determined by �C�t� in a
manner specified in the next section.

The transition between state 1 and the “high locked-in”
state called 2 is taken to be proportional to the 0→1 transi-
tion rate f�t�. If one had more detailed information on the
biophysical kinase and phosphatase pathways, one could re-
place this simple assumption by a more complex quantity.
We take this transition rate as bf�t� with b a constant to be
determined.

The picture outlined by Ref. �9� does not suggest a tran-
sition from state 2 to state 1, but we find it is necessary. For
the moment we call this transition rate h�t�, and we will
argue that it is proportional to f�t�. h�t� cannot be zero, if the
transition rate framework is to be consistent with observa-
tions associated with a “locked-in” state.

This discussion leads us to the transition rate �or “mas-
ter”� equations associated with the scheme depicted in Fig. 1:

dp0�t�
dt

= − f�t�p0�t� + g�t�p1�t� ,

dp1�t�
dt

= f�t�p0�t� + h�t�p2�t� − g�t�p1�t� − bf�t�p1�t� ,

FIG. 1. Three state model of synaptic plasticity. Individual syn-
apses can move among the three states, marked 0 for the “low”
state, 1 for the “high” state, and 2 for the “high locked-in” state.
The rules for state transition depend on the transition rates f�t� and
g�t� governed by changes in intracellular calcium concentration.
These transition rates are determined by LTP and LTD induction
protocols.
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dp2�t�
dt

= bf�t�p1�t� − h�t�p2�t� . �10�

By construction

d�p0�t� + p1�t� + p2�t��
dt

= 0. �11�

Under prolonged stimulation the postsynaptic intracellular
calcium levels reach approximately constant values, and we
can ask what is the behavior of P�t�= (p0�t� , p1�t� , p2�t�) un-
der such circumstances. This means the functions f�t� and
g�t� are thought of now as constant in time with magnitude
determined by the saturated level of �Ca2+�. We associate this
value of P, after long constant �Ca2+� elevation, with the
fixed point of the equations �10� for P�t�. The state long after
the induction protocol is completed will be the fixed point

Pfixed point =
�gh, fh,bf2�

h�f + g� + bf2 . �12�

In our models, low values of saturated intracellular cal-
cium elevation �C are connected with LTD and higher val-
ues, with a competition between LTD and LTP �23�. The
specific form of the connection between �C and f and g will
be given shortly, but their general dependence is shown in
Fig. 2 �24�. In an LTD protocol g�0 but f 	0. In an LTP
protocol both f and g may be nonzero.

If we take h=ag, then a saturating LTD protocol, with g
�0, f 	0, will deplete both states 1 and 2, leading to a final
state P= �1,0 ,0�. If, however, we apply a saturating LTP
protocol where neither f nor g is zero, thus arriving at Eq.
�12�, and then apply a saturating LTD protocol, the choice
h=ag will lead us back to the state P= �1,0 ,0�, which is not

what is observed. Indeed, O’Connor et al. �9� note that the
state reached by a saturating LTP protocol depotentiates to a
state intermediate between all synapses in state 0 and the
fully saturated state; namely, our fixed point �12�.

If we choose h=af , then this saturating LTD protocol fol-
lowing the saturating LTP protocol leads us to

P =
„a�f + g�,0,bf…

a�f + g� + bf
, �13�

namely, we depopulate state 1 due to the action of g. This is
the kind of depotentiated, but not baseline, state seen by �9�.

We conclude that the choice h=af is consistent with the
observations, and we cannot have a=0. If a=0, the high
locked state would be totally populated by a strong LTP pro-
tocol and the synapse would not leave that state. Indeed,
O’Connor et al. �9� indicate that after such a strong LTP
protocol �two rounds of theta-burst stimulation�, most but not
all synapses, about 80%, are in state 2.

This completes the general formulation of the three level
transition rate model. We now turn to the determination of
the AMPA conductances gl in each level l=0,1 , . . . ,L−1
from the data presented by Ref. �9�. Then we discuss a con-
ductance based neural model for the postsynaptic cell which
permits us to translate electrophysiological activity into tran-
sition rates useful in the equations determining P�t�.

C. Transition rates in a model for voltage and calcium
dynamics

Evaluation of the transition rates f and g requires a spe-
cific model describing how the postsynaptic cell responds to
various induction protocols presented either presynaptically
or as paired presynaptic and postsynaptic actions. It also re-
quires a model for the dynamics of Ca2+ in the postsynaptic
cell. We proceed using the idea that changes in AMPA con-
ductance are induced by the time course of elevation of in-
tracellular Ca2+ �25–29�. The details of the pathways which
follow elevation of Ca2+ are not specified in the phenomeno-
logical approach we use. In this regard we have explored
both one and two compartment models of the voltage and
intracellular calcium dynamics of a cell with AMPA recep-
tors whose strength is changed as a result of biochemical
pathways activated by the induction protocols. The two com-
partment model, which we utilize here, separates the cellular
dynamics into a somatic compartment where action poten-
tials are generated by the familiar sodium and potassium
currents and a dendritic spine compartment where AMPA
and NMDA receptors are located and intracellular calcium
dynamics occurs. The details of this model are located in the
Appendix to this paper. As one improves this model or re-
places it with further experimental insights into the processes
involved in LTP/LTD induction, one can use those improve-
ments to provide evaluations for the transitions rates needed
in the discrete state synapse model. Further exploration of
the way postsynaptic Calcium elevation may influence
AMPA strengths is found in Rubin et al. �30�.

The output from the biophysical model of the neuron
which we require in this section is focused on the time
course of elevation of intracellular calcium concentration

FIG. 2. Steady state values for the transition rates f and g plot-
ted as function of the magnitude of the change in intracellular cal-
cium concentration. �C is in arbitrary units. For small changes in
intracellular calcium concentration only g is nonzero, correspond-
ing to LTD induction, and for larger changes in intracellular cal-
cium concentration, both f and g are nonzero with f being greater
than g, corresponding to an LTP induction protocol.

ABARBANEL et al. PHYSICAL REVIEW E 72, 031914 �2005�

031914-4



relative to the equilibrium concentration C0	100 nM. We
call this time course C�t�= �Ca2+�i�t� and seek the way in
which

�C�t� =
C�t� − C0

C0
�14�

influences the transition rates f�t� ,g�t�.
Our model involves two auxiliary variables, P�t� and

D�t�, which satisfy first-order kinetics driven by Hill func-
tions dependent on �C�t�. These variables satisfy

dP�t�
dt

= FP��C�t���1 − P�t�� −
P�t�
�P

dD�t�
dt

= FD��C�t���1 − D�t�� −
D�t�
�D

, �15�

with driving terms

FP�x� =
�PxL

�P
L + xL , FD�x� =

�DxM

�D
M + xM . �16�

We used the constants �P=10 ms, �D=30 ms, �p=1.0, �D
=1.25, L=10.5, M =4.75, �P=6.7, and �D=13.5 in our calcu-
lations for this work. These equations are discussed in our
earlier paper �6�.

These kinetic quantities are driven by elevation in Ca2+,
�Ca�t��0, from their resting value of zero. They are taken
to be related to the transition rates as

f„t,�C�t�… = P�t�D�t��,

g„t,�C�t�… = P�t��D�t� , �17�

and �=4 as used in our earlier work. The quantities f�t� and
g�t� have dimensions of frequency. Our arguments do not
establish their magnitude but only provide a connection to
their dependence on elevation of intracellular Ca2+ levels.
Multiplying the relations here between f�t� and g�t� and P�t�
and D�t� by a constant rescales the time while not affecting
the final states which lead to specific statements of AMPA
conductance changes after an induction protocol.

The model for voltage dynamics and Ca2+ dynamics is
now established. To proceed we specify an electrophysi-
ological protocol. For example we present a burst of spikes
to the presynaptic terminal with an average interspike inter-
val �ISI� of our choice. Our presynaptic terminal represents
the population of terminals from presynaptic neurons onto a
postsynaptic neuron. This induces a voltage and Ca2+ re-
sponse in the postsynaptic cell, and from the time course of
�C�t� we evaluate the transition rates f�t� and g�t�. These
enter the ‘master’ equation for the average occupations
across the population of NS synapses. Solving the equations
for the pl�t� leads to our evaluation of

GAMPA�t�
NS

= g0p0�t� + g1p1�t� + g2p2�t� ,

=2 −
4p0�t�

3
. �18�

III. RESULTS

We first establish, using the measurements in �9� the val-
ues of the normalized, dimensionless AMPA conductances of
the three levels at an individual synapse. Our arguments
show that they are determined independently of the specific
model for the transition rates. Then we develop a model for
the transition rates which will allow us to make predictions
about the response of the cells to various LTP and LTD pro-
tocols.

A. Determination of the discrete level conductances

At t=0 the observed average occupation of levels is ob-
served to be P�0�= � 3

4 , 1
4 ,0�. This means the normalized

AMPA conductance is

GAMPA�0�
NS

= 1 =
3g0

4
+

g1

4
. �19�

If a strong, saturating LTD protocol is applied to this state,
we reach P= �1,0 ,0�, where the normalized AMPA conduc-
tance is g0. It has been observed �9� that after the induction
GAMPA/NS=0.65±0.03. We take this to be GAMPA/NS= 2

3
=g0 which implies g1=2.

Next apply a phosphatase blocker �okadaic acid was used
in Ref. �9�� so g=0 and, as they did, present a saturating LTP
signal to arrive at the state P= �0,af ,bf� / �a+b�f
= �0,a ,b� / �a+b�, which is independent of the transition rate
f . This is precisely the fixed point noted above with g=0 and
h=af . After this protocol, the normalized AMPA conduc-
tance is approximately 2, leading to

ag1 + bg2

a + b
= 2, �20�

and thus g2=2. Our model corresponds to the set of normal-
ized individual level conductances �g0= 2

3 , g1=2, g2=2�.
The constants a and b are not determined by the observa-

tions so far. Presumably they can be determined by applying
various induction protocols once we have a model for the
transition rates. The actual time series of

GAMPA�t�
NS

=
2

3
p0�t� + 2p1�t� + 2p2�t� �21�

will depend on a and b.
This ratio a /b can be determined by another experiment

not yet conducted. Start with the naive synapse P�0�
= � 3

4 , 1
4 ,0�, apply okadaic acid, so g=0 �as in Ref. �9�� which

blocks phosphatases, and present a saturating LTP protocol.
This leads to the state P= �0,a ,b� / �a+b�. Now wash out the
okadaic acid and apply the kinase blocker k252a, setting f
=0, and present a saturating LTD protocol. This leads one to
the state �a ,0 ,b� / �a+b�. The normalized AMPA conduc-
tance in this state is
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GAMPA

NS
=

ag0 + bg1

a + b
=

2

3

a

b
+ 2

1 +
a

b

. �22�

Measuring GAMPA/NS after this protocol sequence would
give us a value for a /b.

B. LTP and LTD induction protocols

1. Presynaptic bursts

The first protocol we used presented a burst of ten spikes
to the presynaptic terminal and evaluated GAMPA�t� /NS dur-
ing and at the end of the induction period. The interspike
interval �ISI� was constant in the burst, and we show in Fig.
3 the value of GAMPA�t� /NS−1 after the burst as a function of
frequency equal to 1/ISI. Three calculations are presented.
The first, shown with filled circles, involves the action of
both the LTP inducing transition rate f�t� and the LTD induc-
ing transition rate g�t�. As in the experimental data there is a
region of no change in AMPA conductance per synapse for
very low frequencies, then a region of LTD until this crosses
into a region of persistent LTP. The second calculation,
shown with upright triangles, removes the LTD inducing
transition rate, so g�t�=0, which is achieved by Ref. �9� by
the use of okadaic acid. In this calculation we see that LTP
alone is induced at all frequencies where there is a measur-
able effect. The maximum AMPA conductance in the present

model is GAMPA�t� /NS=2 occurring when the lowest state is
totally depleted. The value of unity for GAMPA�t� /NS−1 is
expected when a saturating LTP protocol is applied. Finally,
a third result shown in Fig. 3 is the set of points with in-
verted triangles which occur when one blocks kinase action,
again following the experimental procedures of Ref. �9�,
which means f�t�=0 in our language. Here we see a persis-
tent LTD dropping to GAMPA�t� /NS−1	− 1

3 above frequen-
cies of 10 Hz. This is the smallest possible value in the
present model, as with this induction protocol and f�t�=0 the
lowest state is fully populated, and the AMPA conductance,
in dimensionless, normalized units is 2

3 .
All of this is consistent with the observations and the

expectation of saturating LTP and LTD protocols in the dis-
crete state plasticity model we have developed. It is impor-
tant to note that the bounded nature of the AMPA conduc-
tance is quite important as in many other models, including
our own �4–6�, there is no guarantee that GAMPA�t� /NS is
bounded above or below.

2. Spike timing plasticity

The exploration of spike timing-dependent plasticity at
hippocampal synapses has resulted from the investigations of
the phenomenon since the work of Refs. �31,32�, Poo and his
colleagues �33–35�, and Feldman �36� over the past few
years. We explored this in the present model by first present-
ing a spike presynaptically at a time tpre and evoking a
postsynaptic spike at tpost. The change GAMPA�t� /NS−1 is a
function only of �= tpost− tpre and for our model is shown in
Fig. 4. This reproduces the characteristic window of LTP
centered near �=0 and of width 	10 ms around this point.
Also shown in Fig. 4 are the LTD regions on both sides of
this window. The one for � negative is seen in many experi-
ments. The LTD region for � positive has been seen in ex-

FIG. 3. Frequency-plasticity curve. The change in normalized
AMPA conductance per synapse GAMPA/Ns−1, is plotted as func-
tion of the frequency of a periodic burst of 10 presynaptic spikes
presented to the presynaptic terminal. The circles represent synaptic
plasticity for the full three state model. The upward-pointing tri-
angles represent synaptic plasticity with the term g�t� set to 0, cor-
responding to blocking phosphatase activity in the postsynaptic cell.
One sees and expects LTP alone. The downward-pointing triangles
represent the change in synaptic plasticity with the term f�t� set to
0, corresponding to blocking kinase activity in the postsynaptic cell.
We observe and expect LTD alone in this case. These results are
quite similar to the observations of Ref. �9�

FIG. 4. Spike timing-dependent plasticity protocol. The change
in normalized AMPA conductance per synapse GAMPA/NS−1, plot-
ted as a function of the delay �= tpost− tpre�ms�, between presenta-
tion of a single presynaptic spike at tpre and postsynaptic spike
induced at tpost.
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periments reported by Ref. �34�, and it is common in models,
including ours, which focus on postsynaptic intracellular
Ca2+ as inducing the chain of events leading to AMPA plas-
ticity.

Nishiyama et al. �34� used cesium instead of potassium in
the intracellular pipette solution, and this has been argued by
Wittenberg �17� to depolarize the postsynaptic cell and
broaden the action potential artificially. To address this, Wit-
tenberg has performed experiments in which this additional
depolarizing effect is mimicked by presenting a spike timing
protocol with one presynaptic spike at time tpre and two
postsynaptic spikes with a time difference �t. She uses �t
=10 ms, and the outcome of this protocol for our model is
plotted in Fig. 5�a� with the experimental data �17� �used
with permission�. The change in normalized synaptic
strength resulting from this protocol �GAMPA/NS−1 for the
model� is shown as a function of the time of the second

postsynaptic spike tpost�2�− tpre. For the experiments, normal-
ized synaptic strength is the average peak excitatory postsyn-
aptic current �EPSC� height measured 10–20 min. after the
end of the pairing protocol, normalized by the mean baseline
peak EPSC height. It is clear that the LTP window is sub-
stantially larger than when we evoke just one postsynaptic
spike and resembles the experimental data. We can regard
this as a prediction of our discrete state plasticity model.
Further predictions of this protocol are shown in Figs. 5�b�
and 5�c�, where �t=15 ms and �t=20 ms, respectively. In
each case there is a distinct LTD window for positive
tpost�2�− tpre and a distinctive dip between the LTP peaks
whose separation is dictated by �t.

Our model exhibits a number of features of LTP and LTD
observed experimentally at CA3-CA1 synapses, including
trapping of synapses in a high-strength state, separability of
potentiation and depression by simulated inhibition of kinase

FIG. 5. �a� Change in normalized synaptic strength as a function of the delay �= tpost�2�− tpre when a single presynaptic spike is paired with
two postsynaptic spikes 10 ms apart. tpost�2� is the time of the second postsynaptic spike. Model results �points connected by lines� are plotted
with experimental data of G. M. Wittenberg �large filled circles with error bars; Wittenberg 2003 �17�, used with permission�. Normalized
synaptic strength, for the model, is the normalized AMPA conductance per synapse �GAMPA/NS� after the pairing. For the experiments, it is
the average peak excitatory postsynaptic current �EPSC� height measured 10–20 min after the end of the pairing protocol, normalized by the
mean baseline peak EPSC height �error bars: standard error of the mean�. In the experiments, pairing was repeated 100 times at 5 Hz. �b�
Here we plot change in normalized synaptic strength as a function of the delay �= tpost�2�− tpre when a single presynaptic spike is paired with
two postsynaptic spikes 15 ms apart. As in case �a�, we see a distinct dip in potentiated AMPA conductance is observed for times when
presynaptic spike falls in between the two postsynaptic spike presentations. �c� Similar plot of change in normalized synaptic strength as a
function of the delay �= tpost�2�− tpre when a single presynaptic spike is paired with two postsynaptic spikes 20 ms apart.
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or phosphatase activity, and spike timing-dependent plastic-
ity �9,17�. However, there are a number of ways in which the
model can be developed further. For example, using the pro-
tocols of Ref. �9�, population LTP at CA3-CA1 synapses
rises gradually to a peak level over a few minutes; LTD takes
a few minutes longer than this to develop fully. Our model
does not yet include such a long timescale, but could be
modified phenomenologically to do so. The authors of Ref.
�9� have also found that the high locked-in state in popula-
tions of synapses builds up over several minutes. To model
this phenomenon, we would again need to include a longer
time scale.

While the spike timing-dependent plasticity induced in
our model by 1 presynaptic and 2 postsynaptic spikes is
similar to that observed by Ref. �17�, our result for 1 presyn-
aptic and 1 postsynaptic spike appears to differ from experi-
mental observations �G. M. Wittenberg and S. S.-H. Wang
�unpublished�, data quoted with the authors’ permission�. In
particular, they observed little LTP but significant LTD near
tpost− tpre=0. At other values of tpost− tpre, they observed only
LTD. This suggests that such a protocol provides insufficient
postsynaptic Ca2+ influx to induce LTP reliably. In contrast,
our model shows a narrow but clear window of LTP centered
near tpost− tpre=0. At these values of tpost− tpre, the Ca2+ influx
in our model is sufficient to give f a relatively large value
and thus induce LTP. If the data of Wittenberg and Wang are
correct, then our model will need to be adjusted so that this
Ca2+ influx is not sufficient to induce LTP.

In addition, the model can be used to explore the results
of various LTP and LTD induction protocols that we have not
simulated here but that are used by Ref. �9� and others in
their experiments, such as theta burst stimulation and pairing
protocols. In the long term, a model that more accurately
describes the postsynaptic signaling pathways will eventu-
ally account for all of these various features of the data in a
biologically satisfying manner.

C. Synchronization of two periodic neural oscillators
with discrete state synapses

The final consequence we have investigated of our dis-
crete state plasticity model is for the synchronization of os-
cillating neurons. We take as given that synchronization
among populations of neurons can play an important role in
their performing important functional activity in biological
neural networks. We have abstracted the synchronous activ-
ity of populations of neurons to the simplest setup: two pe-
riodically oscillating Hodgkin-Huxley �HH� neurons coupled
by a synaptic current which we explore with and without
plastic synapses.

We have selected the postsynaptic neuron to be our two
compartment model as described in the Appendix and set it
into autonomous oscillations with a period T2

0. This period is
a function of the injected dc current into the somatic com-
partment. We hold this fixed while we inject a synaptic
AMPA current

Isynapse�t� = gAMPA�t�SA�t��Erev − Vpost�t�� , �23�

into the postsynaptic somatic compartment. Vpost�t� is the
membrane voltage of this postsynaptic compartment.

gAMPA�t� is our time-dependent maximal AMPA conduc-
tance, and SA�t� satisfies

dSA�t�
dt

=
1

�A

S0„Vpre�t�… − SA�t�
S1A − S0„Vpre�t�…

�24�

as described in detail in the Appendix. Vpre�t� is the periodic
presynaptic voltage which we adjust by selecting the injected
dc current into the presynaptic HH neuron. We call the pe-
riod of this oscillation T1.

When gAMPA=0 the neurons are disconnected and oscil-
late autonomously. When gAMPA�t��0 the synaptic current
into the postsynaptic neuron changes its period of oscillation
from the autonomous T2

0 to the driven value of T2, which we
evaluate for various choices of T1. We expect from general
arguments �37� that there will be regimes of synchronization
where T1 /T2 equal integers and half-integers over the range
of frequencies 1 /T1 presented presynaptically. This will be
true both for fixed gAMPA and when gAMPA�t� varies as deter-
mined by our model.

In Fig. 6�a� we present T1 /T2 as function of the frequency
1000/T1 �T1 is given in milliseconds, so this is in units of
Hz� for fixed gAMPA=0.1 mS/cm2 and for gAMPA�t�
=gAMPA�gAMPA�t� /NS� determined from our model. This

FIG. 6. �a� T1 /T2, the ratio of the interspike interval T1 of the
presynaptic neuron to the interspike interval T2 of the postsynaptic
neuron, is plotted as a function of the presynaptic input frequency
1000/T1 Hz for a synapse starting at a base AMPA conductance of
gAMPA�t=0�=0.1 mS/cm2. We see that the one-to-one synchroniza-
tion window is broadened when the static synapse is replaced by a
plastic synapse as determined by the three state model. �b� A similar
plot for different value of base AMPA strength gAMPA�t=0�
=0.2 mS/cm2.
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value is what we used in our earlier calculations with the two
compartment model. It amounts to a choice for the baseline
value of the AMPA conductance. The fixed gAMPA results are
in filled upright triangles and, as expected, show a regime of
one-to-one synchronization over a range of frequencies. One
also sees regions of two-to-one and hints of five-to-two and
three-to-one synchronization. These are expected from gen-
eral arguments on the parametric driving of a nonlinear os-
cillator by periodic forces.

When we allow gAMPA to change in time according to the
model we have discussed above, we see �unfilled inverted
triangles� a substantial increase in the regime of one-to-one
synchronization, the appearance of some instances of three-
to-two synchronization, and a much smaller regime with
two-to-one synchronization. This suggests that the one-to-
one synchronization of oscillating neurons, which is what
one usually means by neural synchrony, is substantially en-
hanced when the synaptic coupling between neurons is al-
lowed to vary by the rules we have described.

We show the same results in Fig. 6�b� for gAMPA
=0.2 mS/cm2. The fixed coupling is larger leading to stron-
ger synchronization of the two neurons in a one-to-one man-
ner even for fixed coupling. Here too �inverted, unfilled tri-
angles� we see that allowing gAMPA to vary in time enlarges
the regime of one-to-one synchronization.

In Figs. 7 and 8 we explore aspects of the internal dynam-
ics of plasticity and Ca2+ time courses for these results. In
Fig. 7 we show C�t�= �Ca2+�i�t� �scaled by a factor of 15 to
fit on this graphic� and GAMPA�t� /NS−1 in response to a
presentation of periodic presynaptic oscillations beginning at
a time 300. As noted earlier, the timescales for the intracel-
lular Ca2+ processes and the timing in changes in GAMPA�t�
are not determined by our model. An arbitrary constant can
multiply the definitions of the transitions rates f�t� and g�t�.
Both quantities rapidly rise, after a small transient of LTD, to
positive but oscillating levels. The maximum GAMPA�t� /NS

−1 is 1 in our model, and we see that this saturating level is
not reached in this protocol.

Finally, in Fig. 8 we examine how the synchronization
manifests itself in the postsynaptic somatic and dendritic

compartment membrane potentials. We plot these potentials
along with Vpre�t�. It is clear that the one-to-one synchroni-
zation occurs with an in-phase oscillation of the presynaptic
and postsynaptic cells. The very short time delay between the
somatic and dendritic compartments of the postsynaptic neu-
ron is part of the model dynamics and not associated with the
presentation of periodic presynaptic spikes to the postsynap-
tic cell. The in-phase synchronization is not seen in other,
less biophysically based, models of plastic synapses and rep-
resents a very desirable feature of this model.

IV. DISCUSSION

The observations, recent and over the years, of discrete
levels for synaptic strength at individual synapses in the

FIG. 7. Intracellular calcium
concentration, scaled by 15, and
the change in normalized synaptic
strength GAMPA�t� /NS−1, is plot-
ted as a function of time in the
case when a periodically spiking
postsynaptic cell is driven by a pe-
riodically spiking presynaptic
input.

FIG. 8. Vsoma�t�, Vdendrite�t�, and Vpre�t�, plotted as functions of
time, when the presynaptic and postsynaptic neurons are synchro-
nized. Note that the presynaptic and postsynaptic neurons are syn-
chronized in-phase with an internal Vsoma�t� to Vspine�t�, time differ-
ence determined by the two compartments of the model neuron.
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CA3-CA1 hippocampal pathways represents a fundamental
property important for the ways we learn and remember.
There is a very interesting and important biophysical ques-
tion about the mechanisms which lead to the expression of a
few discrete levels of AMPA conductance at which indi-
vidual synapses may be found. We do not address this fun-
damental question in this paper, but we have used the obser-
vation to construct a model based on discrete levels with
transition rates among the levels determined by biophysical
dynamics.

We have formulated a discrete level synaptic system in a
general way with L levels allowed to the AMPA conduc-
tance, and then, following the observations of Ref. �9� we
specialized to L=3. The dynamical variables in our model
when L=3 are the average occupation numbers of each level
P�t�= (p0�t� , p1�t� , p2�t�). These are averages over a collec-
tion of NS synapses which contribute to the overall AMPA
determined response of the neuron. While each individual
synapse resides in one of three discrete states, so the indi-
vidual occupation numbers at any given synapse are either
zero or one, the average occupation numbers are smoothly
varying, subject only to p0�t�+ p1�t�+ p2�t�=1, by definition.

We developed differential equations for P�t� which are
linear in the pl�t�, l=0,1 ,2

dpl�t�
dt

= �
l�=0

2

Mll�pl��t� , �25�

and where the transition rates Mll� are determined by nonlin-
ear membrane voltage and intracellular Ca2+ dynamics.

From the observations of Ref. �9� we argued that the tran-
sition rates shown in Fig. 1 sufficed to explain their measure-
ments, and using their reported results we were able to de-
termine that the conductances of the three individual levels
in normalized, dimensionless units were g0= 2

3 , g1=2, g2=2.
The time dependence of the normalized, dimensionless
AMPA conductance per synapse is then

GAMPA�t�
NS

= �
l=0

2

pl�t�gl = 2 −
4p0�t�

3
. �26�

Using our values for the gl and a dynamical model of the
transition rates f�t� ,g�t� as shown in Fig. 1, we reproduced
the observed plasticity in response to a burst of presynaptic
spikes with interspike intervals �ISIs� over the observed
range. Further we made predictions for the response of this
model to spike timing plasticity both for one presynaptic and
one postsynaptic spike and for the case of two postsynaptic
spikes evoked �t apart accompanied by one presynaptic
spike. We presented our results for �t=10, 15, and 20 ms.

Finally we examined the dynamical role played by this
discrete state plasticity model in the synchronization of two
periodically oscillating Hodgkin-Huxley neurons. One such
neuron oscillating with period T2

0 was driven by another such
neuron with period T1. The final period T2 of the driven
neuron, relative to T1, was plotted against 1 /T1 and showed
familiar regions of synchronization. For fixed AMPA cou-
pling gAMPA=GAMPA/NS we found synchronization over
some range of 1/T1 and then demonstrated that allowing

gAMPA to vary according to the plasticity model resulted in a
much larger regime of one-to-one synchronization with the
two neurons oscillating in phase. The results for synchroni-
zation have not been tested experimentally, though some ex-
periments using dynamic clamp based synapses have been
performed �20�.

One striking aspect of the discrete state model, certainly
not limited to our own work, is that the AMPA conductance
has natural upper and lower bounds. Many other models of
plasticity, including our own, do not share this important
feature.

Some of our results, in particular the strengths of the nor-
malized, dimensionless conductances of the synaptic levels
are dependent primarily on the data of Ref. �9�. All of the
transition rates are determined by our two compartment
model for the neuron, as presented in the text and in the
Appendix.

This model will change over time and be improved by
further understanding of the biophysical processes leading to
the discrete states and their transitions among themselves.
The general framework we have presented describing how
the three observed states are connected and several general
results about that system will remain as the representation of
the transition rates is improved.

While our model is based on the idea of discrete state
synapses, by design it describes only populations of such
synapses. In future work we plan to address this discreteness
at the level of single synapses and small numbers of syn-
apses. Questions of interest would include the following. �1�
When the number of synapses is small, does the spread in the
experimental data from trial to trial on excitation of indi-
vidual synapses correspond the the fluctuations observed in
our model over many trials? �2� Is there evidence for het-
erosynaptic interaction? Our model arises when we taken
NS�1 independent synapses undergoing essentially the same
trainsitions and average over the synapses. If their is interac-
tion among synapses, this would need to be modified, and it
is likely that in the examination of the dynamics of a few
synapses, rather than the many studied here, we will be able
to develop an understanding of interactions among synapses.
In Nishiyama et al. �34� there is evidence for heterosynaptic
interactions via calcium dynamics, perhaps mediated by the
endoplasmic reticulum. �3� What is the role, when the num-
ber of synapses is small, of the probabilistic nature of pr-
esynaptic vesicle release? We have passed over these inter-
esting issues in this paper while focusing on the whole cell
behavior.

The dynamics of discrete state synapses is likely to be
most interesting when placed in a network context. What
new phenomena will arise when the synaptic strengths are
bounded below and above while working in a network with
learning is yet to be explored. We have made some prelimi-
nary calculations with the discrete state model when it is
used in our earlier description of the role of plasticity in
maintaining adult birdsong �38�. The indications are that the
important fixed point in that investigation is retained while
the runaway behvior seen there is “cured.” However, it is
clear that there is much yet to explore in this regard.
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APPENDIX

In this Appendix we give the details of the two compart-
ment model of the postsynaptic neuron used in our calcula-
tions. The somatic compartment is the site of spike genera-
tion by the familiar Hodgkin-Huxley �HH� Na+, K+, and leak
currents. The dendritic spine compartment has these currents
as well as a voltage gated calcium current and glutamate
driven NMDA and AMPA channels. The Ca2+ dynamics in
the dendritic compartment drives the synaptic plasticity,
namely changes in the AMPA conductance.

1. The somatic compartment

The dynamical equation for the somatic compartment
takes the general form

CM
dVS�t�

dt
= INa„VS�t�,t… + IK„VS�t�,t… + IL�t� + ISdc + IS�t�

+ GS←D�VD�t� − VS�t�� . �A1�

The currents INa, IK, IL, are the familiar HH Na+, K+, and
leak currents. ISdc is a dc current used to set the resting po-
tential of the cell. IS�t� is an externally managed time depen-
dent current injected into the somatic compartment. It allows
us to evoke an action potential at a specific time in the so-
matic compartment. This propagates back to the dendritic
compartment to induce a depolarizing effect. GS←D(VD�t�
−VS�t�) represents the current flowing into the somatic com-
partment from the dendritic compartment. It couples the volt-
ages of the somatic and dendritic compartments. CM is the
membrane capacitance.

The value of the currents INa, IK, and IL are determined as
usual with

IL�t� = gL�EL − VS�t�� , �A2�

where gL is the conductance of the leak current and EL is the
reversal potential. The voltage gated currents are described
by

I�V,t� = ḡg�t,V��Eeq − V� , �A3�

where Eeq is the reversal potential and ḡ is the maximal
conductance. Both these values are fixed. The value of

g�t ,V�, the fraction of open channels, on the other hand,
depends on the membrane potential and time.

In the case of channels in which g�t ,V� changes, the value
of g�t ,V� depends on the state of “gating particles” m�t ,V�
and h�t ,V�, where m�t ,V� is the activation gate and h�t ,V�
represents the inactivation gate. If N is the number of acti-
vation gates, and M, the number of inactivation gates then

g�t,V� = m�t,V�Nh�t,V�M .

The state of the gating particles, given by m�t ,V� or h�t ,V�,
is a function of the membrane potential as well as time.

These gating variables, denoted by X�t�, are taken to sat-
isfy first order kinetics:

dX�t�
dt

=
X0„V�t�… − X�t�

�X„V�t�…
= �X„V�t�…�1 − X�t�� − 	X„V�t�…X�t� .

�A4�

From the standard HH model, we have the following rela-
tions for the conductances of the Na+ and K+ currents.

gNa�V,t� = m�V,t�3h�V,t� ,

gK�V,t� = n�V,t�4,

where m�V , t� ,n�V , t� are activation gating particles and
h�V , t� represents the inactivation gating particle. At the end
of this appendix we give the functions X0 ,�X, or
�X�V� ,	X�V� for each of the voltage gated ionic currents, in
addition to listing all the model parameters used in the simu-
lations.

2. The dendritic compartment

The dynamics of the dendritic compartment membrane
potential is given by

CM
dVD�t�

dt
= INa„VD�t�,t… + IK„VD�t�,t… + IL„VD�t�…

+ IA„VD�t�,t… + IM„VD�t�,t… + IDdc + IAMPA�t�

+ INMDA�t� + IVGCC�t� + GD←S�VS�t� − VD�t�� .

�A5�

IDdc is a dc current used to set the resting potential of the cell.
INa, IK, and IL represent the standard HH ionic and leak cur-
rents used in the somatic compartment as described above. In
addition to these ionic currents we have considered two ad-
ditional K+ currents IA and IM. IA currents have been reported
to modulate the width of action potentials and influence the
excitability of the cell. In our model, IA attenuates the den-
dritic action potential, which is evoked by backpropagation
of the somatic action potential.

The gating equations for IM and IA are

gM�t,V� = u�t,V�2,

gA�t,V� = a�t,V�b�t,V� ,

where u�t ,V� and a�t ,V� are activation gating particles and
b�t ,V� represents an inactivation gating particle.
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As mentioned above all ionic currents in the dendritic
compartment are also given in terms of Ohm’s law �A3�.
Again GD←S�VS�t�−VD�t�� represents current flowing into
the dendritic compartment through the somatic compartment.

In addition to the currents mentioned above we have three
other currents critical to the synaptic plasticity discussed
here. There is a current associated with the ligand gated
NMDA receptors �NMDARs�. The form for this is

INMDA�t� = gNMDASN�t�B„VD�t�…�VNMDA-eq − VD�t��

where gNMDA is the maximal conductance associated with the
channel. SN�t� ranges between zero and unity, representing
the percentage of open channels at any time. To achieve the
time course of this process in NMDARs, we use a two com-
ponent form for SN,

SN�t� = wfSN1�t� + �1 − wf�SN2�t� , �A6�

0
wf 
1, and where SNl�t� , l=1,2 satisfies

dSNl�t�
dt

=
1

�Nl

S0„Vpre�t�… − SNl�t�
S1Nl − S0„Vpre�t�…

. �A7�

Vpre is scaled to lie between 0 and 1 as it represents the
arrival of an action potential at the presynaptic terminal. Its
function is in turn to release neurotransmitter.

S0(Vpre�t�) is a step function which rises sharply from 0 to
1 when neurotransmitter is released as a result of the presyn-
aptic action potential. When this occurs SNl�t� rises from zero
towards unity with a time constant �Nl�S1Nl−1�. When the
effect of presynaptic action is completed, SNl�t� relaxes to-
wards zero with a time constant �NlS1Nl. wf represents the
fraction of fast NMDA component contribution to NMDA
current. In our model we have chosen wf =0.81, �N1=67.5,
S1N1=70/67.5, �N2=245, S1N2=250/245. In addition the
conductance of the NMDA current depends on postsynaptic
voltage via the term B�V� whose form is given as

B�V� =
1

1 + 0.288�Mg2+�e−0.062V , �A8�

where the concentration of magnesium is in mM and the
voltage is in mV. For simulation purposes we have taken the
physiologically reasonable value of Mg2+=1 mM.

This voltage-dependent conductance depends on the ex-
tracellular magnesium concentration. The voltage depen-
dence of the current is mediated by the magnesium ion
which, under normal conditions, blocks the channel. The cell
must therefore be sufficiently depolarized to remove the
magnesium block. Finally for this excitatory channel
VNMDA-eq	0 mV.

IAMPA represents the ligand gated AMPA receptor current.
This is taken to be of the form

IAMPA = gAMPASA�t��VAMPA−eq − VD�t�� , �A9�

where gAMPA is the maximal conductance for this channel
and SA�t� is the percentage of open channels, satisfying

dSA�t�
dt

=
1

�A

S0„Vpre�t�… − SA�t�
S1A − S0„Vpre�t�…

. �A10�

Again the rise time is less than a millisecond. In our formu-
lation this time is �A�S1A−1�, which we set to 0.1 ms. AMPA
currents decay in approximately 1–3 ms. In our formulation
this decay time is �AS1A, which we set to 1.5 ms. We also
take VAMPA−eq=0 mV.

The final and very important ingredient in inducing syn-
aptic plasticity is the voltage gated calcium channel �VGCC�.
We have used the low threshold current IT for this. The cur-
rent from this channel takes the form

IVGCC�t� = gCG„V�t�…mc
2�t�hc�t� , �A11�

where gC is the maximal conductance of this channel, mc�t�
is the activation function, and hc�t� is the inactivation func-
tion. G�V� is the Goldman-Hodgkin-Katz function

G�V� = −
V

C0

�Ca2+�i�t� − �Ca2+�oe−2VF/RT

1 − e−2VF/RT

= −
V

C0

C�t� − �Ca2+�oe−2VF/RT

1 − e−2VF/RT , �A12�

where C�t�= �Ca2+�i�t�. The Goldman-Hodgkin-Katz function
is used because of the large disparity in the intracellular
�Ca2+�i and the extracellular �Ca2+�o concentrations. F is
Faraday’s constant, R is the gas constant, and T the absolute
temperature. Other factors of the G�V� equation are absorbed
in the conductance gC. C0 is the equilibrium intracellular
�Ca2+� concentration, which is about 100 nM.

3. Coupling between the somatic and dendritic compartments

The coupling parameters between the two compartments
are determined from the cytoplasmic resistance and the met-
ric dimensions of each compartment. We take the specific
cytoplasmic resistance of the cell to be ri=200 � cm.

We take the somatic compartment to be a isopotential
sphere of dsoma=32.5 �m in diameter and the dendritic com-
partment to be an isopotential cylinder of diameter ddendrite
=10 �m and length ldendrite=360 �m.

In order to determine the coupling resistance value we
assume the somatic compartment to be a cylinder of equiva-
lent surface area. We then have the total cytoplasmic resis-
tance of the somatic compartment

RIsoma =
rilsoma

X�Asoma�
= 0.007839 � 107�

while the total cytoplasmic resistance for the dendritic com-
partment is

RIdendrite =
rildendrite

X�Aden�
= 1.713 � 107� ,

where X�Asoma�=
dsoma
2 /4.0, and X�Aden�=
ddendrite

2 /4.0.
Therefore, the average cytoplasmic coupling resistance
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RI =
RIsoma + RIdendrite

2
	

RIdendrite

2
= 0.861 � 107� .

The coupling parameters in units of mS/cm2 are calculated
as

GS←D =
1

AsomaRI
= 3.5 mS/cm2 �A13�

and

GD←S =
1

AdenRI
= 1.0 mS/cm2 �A14�

4. Calcium dynamics

The dynamics of intracellular calcium �Ca2+�i�t� in the
dendritic compartment, which affects the efficacy of synaptic
strength, is comprised of �Ca2+�i�t� decaying to an equilib-
rium value of Co on a timescale of �C	15 ms, which we
take to be about 30 ms in our model, plus fluxes of �Ca2+�i�t�
due to the three channels, AMPA, NMDA, and VGCC con-
sidered in the dendrite model above. The first-order differen-
tial equation for �Ca2+�i�t�=C�t� then is

dC�t�
dt

=
1

�C
�Co − C�t�� + CNMDA + CAMPA + CVGCC,

�A15�

where

CNMDA = gNCSN�t�B„VD�t�…�VNMDA-eq − VD�t�� ,

CAMPA = gacSA�t��VNMDA-eq − VD�t�� ,

CVGCC = gCCG„VD�t�…mc
2�t�hc�t� .

The constants gNC,gac ,gCC are not the same, even dimen-
sionally, as the conductances in the voltage equation. Their
values, given at the end if this appendix, reflect among other
things, that the net AMPA current is composed primarily of
other ions in addition to Ca2+ and that NMDA channels are
highly permeable to Ca2+ ions. This completes the descrip-
tion of our model.

5. Parameters in the two compartment model

The various constants appearing in our two compartment
model are collected here. The membrane capacitance is CM
=1.0 �F/cm2 for all neurons.

The somatic compartment. The maximal conductances, in
units of mS/cm2, of the ionic currents are gNa=215, gK=43,
gL=0.813. The reversal potentials in units of mV are VNa-eq
=50, VK-eq=−95, and VL-eq=−64. The dc current injected into
the somatic compartment ISdc=−7.0 �A/cm2, so that the cell
is at −75 mV at rest. The magnitude of the additional current
injected into the somatic compartment is Isoma
=160.8 �A/cm2; in using it to induce a postsynaptic spike, it
is taken to have a duration of 1 ms or less. CM
=1.0 �F/cm2.

The dendritic compartment. For the standard HH ionic
currents we have the same parameters as above. Maximal
conductances associated with various dendritic currents, in
units of mS/cm2, are gNMDA=0.05, gAMPA=1.75, and gC
=1.�10−6. In the Mg2+ blockage function B�V�, we take
�Mg2+�=1 mM. In the GHK function G�V�, the ratio of ex-
ternal �Ca2+� to equilibrium intracellular �Ca2+� is 15 000.
The temperature is 25 °C. The conductance values for addi-
tional potassium currents used are gM =6.7 and gA=100 in
units of mS/cm2. Finally, IDdc=−7.0 �A/cm2. CM
=1.0 �F/cm2.

Calcium dynamics. For calcium dynamics we have �C
=30 ms, gNC=0.15, gac=1.5�10−5, and gCC=3.5�10−5.
These are in units of mV−1 ms−1. C0, the basal calcium con-
centration in the cell, is normalized to 1.

Finally in the equation for the NMDA and AMPA channel
open percentages SN�t� and SA�t�, we use the “step” function

S0�V� = 1
2 �1 + tanh�120�V − 0.1���

and the constants �A=1.4 ms, �Nfast=67.5 ms, �Nslow

=245.0 ms, S1A= 15
14, S1Nfast=

70
67.5 , S1Nslow= 250

245 .

6. Activation and deactivation parameters of various channels

�m�V� =
0.32�13 − �V − Vth��

e�13−�V−Vth��/4.0 − 1
,

	m�V� =
0.28��V − Vth� − 40�

e��V−Vth�−40�/5 − 1
,

�h�V� = 0.128e17−�V−Vth�/18, 	h�V� =
4

e40−�V−Vth�/5 + 1
,

�n�V� =
0.032�15 − �V − Vth��

e�15−�V−Vth��/5 − 1
, 	n�V� =

0.5

e�V−Vth�−10/40 ,

mco�V� =
1

1 + e−�52+V�/6.2 ,

�mc�V� = 0.204 +
0.333

e−�131+V�/16.7 + e�15+V�/18.2 ,

hco�V� =
1

1 + e�72+V�/4 , �u�V� =
0.016

e−�V+52.7�/23 ,

	u�V� =
0.016

e�V+52.7�/18.8 , �a�V� =
− 0.05�V + 20�

e−V+20/15 − 1
,

	a�V� =
0.1�V + 10�
e�V+10�/8 − 1

, �b�V� =
0.00015

e�V+18�/15 ,

	b�V� =
0.06

e−�V+73�/12 + 1
,
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�hc�V� = 0.333e�V+466�/66.6 if V 
 − 81,

=9.32 + 0.333e−�V+21�/10.5 if V � − 81,

where Vth=−65 mV in the soma compartment and −48 mV
in the dendrite compartment.

7. Numerical method

All the simulations for the model presented in this work
were written in C and used a fourth-order Runge-Kutta algo-
rithm with a fixed time step of 0.01 ms. They were run under
Linux on a computer with an Athlon 2400 MHz processor.

8. Code for the model

The code for the model can be obtained from http://
inls.ucsd.edu/�talathi/Wangcode/Code.tar.gz.
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